

6593 Riverdale St. San Diego, CA 92120 619-727-4800

Structural Calculations

C	
t O	r
Ĩ	-

CBISC-12 Curb

CBISCSAV1518**

Prepared for: PROVENT / RRS 3847 Wabash Drive Mira Loma, CA 91725

Date: June 24, 2021 Project Number: PV2103

6593 Riverdale St.

	1			
(on long edge)	Tens _{MAX} =	3479	lbs	> Along long edge of curb.
ongitudinal:	Comp _{MAX} =	2994	lbs	> Along short edge of curb.
(on short edge)	Tens _{MAX} =	2761	lbs	> Along short edge of curb.

---> Negative values indicate opposite load.

g MOUR GROUP ENGINEERING + DESIGN

<u>Curb Design</u>							
Fy =	50 ksi	Fu =	65 ksi		t = 0.0	713 14 Gauge	
E =	29500 ksi						- B'
Calculate Section Pro	operties of Curb	_					
A'=	5.500 in		a =	5.144 in = A'	-(2r+t)		
B'=	1.500 in		a'=	5.429 in = A'	-t		
C'=	0.000 in (0 if no	o lips)	b =	1.322 in = B	'-[r+t/2+a(r+	-t/2]] C	
a =	0.000 (0 - no L	ip; 1 w/ lip)	b'=	1.464 in = B	-(t/2+at/2)		
R =	0.1069 (Inside b	end radius)	C =	0.000 in = al	C'-[r+t/2]]	_	
t =	0.0713 in	10	C'=	0.000 in = al	[C'-t/2]	F	₹_/
r =	0.143 in = R+t	/2	U =	$0.224 \text{ in } = \pi r$	7/2		A'
X =	0.261 In (DISta	ince between cent	rold and W	eb centerline)			
	0.109 in (Mom	ent of Inertia abou	it V_Aviel				+ I
ιy – Λ –	0.59 in ²						
A =	2.03 in						
rv =	0.432 in						
rmin =	0.432 in						
Axial Compression	01102 111						I
Pu =	3.450 k	(Max Axial Com	(a		2	D _c = 1.80	
Pn/Ωc =	4.075 k			(2)		
Fe =	14.24 ksi	$P_n = F_n A$	If $\lambda_c \leq 1.5$; $F_n = (0.658^{n_c})$	F_y	F_{y}	$\pi^2 E$
λc =	1.87	$\frac{\alpha}{\Omega_c} = \frac{\alpha}{\Omega_c}$	$If \lambda > 15$	$\cdot F = \frac{0.877}{F}$	Λ _C	$= \sqrt{\frac{F_e}{F_e}}$ F_e	$=\frac{1}{(kl/)^2}$
Fn =	12.49 ksi		$1 \int n_c > 1.5$, $I_n = \frac{1}{\lambda_c^2} I_y$	1	N	(γr)
Ly =	77.13 in	Lateral unbrace	ed length				
$k_y L_y / r_y =$	143	(assume k=0.8)					
Compression (<u> Check = _ 0.K.</u>						
Check Web Crippling		Oha ahalimit			0 7 50 -	۰ ۲	
n =	5.5 IN	Check limit	S:		C = 7.50	(See table	e C3.4.1-2, fastened
t =	0.0713 IN	n/t =	//.14 ≤ 20		2 _R = 0.08	- to suppo	ort, two flange, end
N =	7.00	N/t =	98.18 ≤ 2		$v_{\rm N} = 0.12$		loading)
$\Omega_{\rm w} =$	1.75	N/n =	1.2/3 ≤ 2.		_h = 0.048 _	J	
$P_n = P_n =$	1.747 K 1.112 k	R/1 =	1.50 ≤ 12			$ R\rangle$	$N \setminus \begin{pmatrix} 1 & -h \end{pmatrix}$
long side: Pur =	1.237 k web stit	fener RF0'D #	clins = 3	$P_n = C t^2 F_y \sin(9)$	$(0) \left(1 - C_R \right)$	$\left \overline{t} \right \left 1 + c_N \right $	$\overline{t} \left \left \frac{1 - c_h}{t} \right \right $
Short side: Pu	1.207 k web stil	fener REO'D #	clips = 2			• / (•	
Short Side. T u _{Long} –	1.4// K Web Still		ctip5 = 2				
Check Web Stiffener	16Ga x 1	3/16in x 7in (C-ch	annel)				
width of stiffener =	7.000 in		ts =	0.0566 16 Gau	ige		
web of stiff. w =	6.717 in		Rs =	0.0849 in			
***Check w/ts ≤ 1.2	8√E/Fys		Ω _c =	1.70			
w/ts = 1.28v(E/Fys) =	118.675 31.091> w/	ts over limit Use	e C3.7.2				
$P_n = 0.7(P_{wc} + A)$	$(eF_{y}) \geq P_{wc}$						
Pwc =	1.947 k	Ae =	0.380 in ²				
Pn =	14.669 k						
$Pn/\Omega_c =$	8.629 k	<u>0.K.</u>					
Corner Connections	1/4" o S	AE Grade 8 bolts v	v/ 1/4-20-L	INC Threaded in	nserts		<u> </u>
Tcrnmax =	1725 lbs	Max(F _{nmaxASD} /4	-OR- Fhas	Dtrans/4 corner of	connections)	
Vcrnmax =	1739 lbs	(Max Ten/2 cori	ner connec	tions per side)			
	Bolt: Tall	= 2480 lbs		Vall = 1	096 lbs		
Threade	d Insert: Tall	= 2860 lbs		Vall = 1	714 lbs		
#	f of Bolts required	for Tension =	0.7				
	# of Bolts require	ed for Shear =_	1.6	***If c	ombined fai	ls:	
	# o	f Bolts Used =	2.0		USE	> 3.0	
Check Com	bined Stress in Bo	olts & Inserts:	1.141 <u>N</u>	<u>G.</u>	StressCom	ıb = 0.761	<u>0.K.</u>
Check 1/8" welded co	onnection	< USE WELD)	Ω = 2	2.35		
Assume L/t > 2	25: 25*t = 1.78	33 in P_n	-1075	tIF >V	I	$V_{req}\Omega$	
	Lreq'd = 1.12	76 in "7	$\Omega = \overline{\Omega} 0.75$	$u = v_{req}$	□req'd —	$0.75tF_u$	

MOUR GROUP

g

Connection Unit to	o Curb Clip		#10	SMS scre	w	Ω =	3.0		
t1 =	0.0713 in	(clip thic	ckness)	t2/t1 =	1.4	Fu1 =	65	ksi	
t2 =	0.1017 in	ı (unit bas	se rail thickr	ness)		Fu2 =	65	ksi	
d =	0.190 in	(screw d	liameter)		dw =	0.375	in (nom. wa	asher diameter	-)
For t2/t1 < 1 0.		Pns =	2377 #	Fo	r t2/t1 > 2 5.				. т
Shear: $P_{ns} =$	$4.2F_{\mu 2}$ $t_{2}^{3}d$	3.86	k 2077 11	<u>10</u>	Pns =	2377 #		t2~	▲ I
Pro	$= 2.7t_1 dF_{11}$	2 38	k	$P_{mc} =$	$= 2.7t_1 dF_{11}$	2377 11	k	~~	•
r ns P	$= 2.7 t_1 dF_0$	2.30	k	P =	$2.7 t_0 dE_{u1}$	2.00	k	t.~	\square
Pns/O =	792 #	0.07	K	- 115	211 02001 02	0.07	K		to an and a second s
Pss/Q =	540 # <-	- Control	ς		0.05. 1			Ľ	╡╧╝_│
Tension Pnot =	1 068 k	(screw n	ull-out strer	P _n	$o_t = 0.85t_c dI$	F_{u2})			r de la calega de
Pnov =	2.607 k	(screw p	ull-over stre	enath) P	$\iota_c = \min(\iota_1, \iota_2)$ = 15t.d	ι ₂) Γ.			
$Pts/\Omega =$	356 # <-	- Control	s		$bv = 1.5c_1u_W$	- <i>u</i> 1			
$Pts/\Omega =$	820 #		- (full tens	sile screw	capacity)				
	Shear (k)	# clips	V _{clin} (k)	V _{allow} (lb)	# screws	spacing			
Long side:	3.450	3	1.15	540 #	4	2.00 in			
Short side:	3.450	2	1.73	540 #	4	2.00 in			
clip	width (in) =	7.00	cl	ip height =	2.5	in			
m	in spacing =	0.57 in	edge	distance =	0.5	in (min. 1.	ōd)		
<u>Check Block shea</u>	<u>r rupture:</u> 0	.K.	thin	nest part =	0.0713	AISI BSR a	pplies		
Fy =	50 ks	si	Ω =	2.22	bolt/screw	connection			
Agv =	0.463 in	2	Anv =	0.416	in ²	Ant =	0.082	in ²	
Rn/Ω =	8.674 k		$R_n = 0.6F_y$	$A_{gv} + F_u A$	$_{nt} \leq 0.6F_uA_n$	$v + F_u A_{nt}$		-	<u> </u>
	<u>BSR 0.K.</u>				(AISI Sec	:t. E5.3)			ŧΤ
Curb Loads (cop)	ied from above	e)			Loads at ea	ch Isolator	Type:	OSA	
Transverse:	Comp _{MAX} =	3712	lbs		Transverse	loading:	Comp _{MAX} =	1237.3 lbs	
(on long edge)	Tens _{MAX} =	3479	lbs		(on long	edge)**	Tens _{MAX} =	1159.7 lbs	
	Shear _{MAX} =	6900	lbs		# isolators:	3	Shear _{MAX} =	690.0 lbs	
Longitudinal:	Comp _{MAX} =	2994	lbs		Longitudina	I loading:	Comp _{MAX} =	1497.0 lbs	
(on short edge)	Tensmax =	2761	lbs		(on shor	tedge)	Tensmax =	1380.6 lbs	
(************	Shear _{MAX} =	6900	lbs		# isolators:	2	Shear =	690.0 lbs	
compression force	on isolator:	1.497 k	≤ 1.660 k	о.к.	**assumes cap	acity of 1/4 ho	ddown from ea	ach adjacent edge]
' Max uplift	on isolator:	1.381 k	≤ 1.660 k	0.K.	Γ. ν		6.0 in	<u> </u>	
Max shear	on isolator:	0.690 k	≤ 0.800 k	0.K.				*	
Forces on top bolt	<u>t:</u>				2.0 in O			\bigcirc	1
Tension =	1.381 k		d _b =	0.375	in				
Shear =	0.690 k		oper rail, t =	0.1017	in		7.0 in		
<u>Shear on curb rail</u>	$P_n = te$	eF _u	Ω =	2.00	(Appendix	A, Section	E3.1 AISI)		
Shear O.K.	Pn/Ω =	6.611 k	e =	1.0	in				
Net section ruptu	<u>re:</u> $P_n = A$	$_{n}F_{t}$	Ω =	2.22	(Appendix	A, Section	E3.2 AISI)		
	Pn/Ω =	7.117 k	An =	0.165	in				
	N.S.R.	0.K.	$F_t = 0$	(0.1 + 3d/)	$F_u \leq F_u =$	43.063	ksi		
Bolt Bearing Stre	$\underline{ngth}: P_n = C$	$m_f dt F_u$	Ω =	2.50	(Section E	3.3.1 AISI)			
	$Pn/\Omega =$	2.975 k	d/t =	3.69	,	1.00			
CL	Bearing	U.K.	(A):	3.00		1.00			
Shear and tension	<u>ווו Dolt:</u> מ	1 E	(Appendix	A, Section	1 ⊑3.4 AISIJ		0 1 1 0 /	. 2	
Tension	$P_{nt} = P$	$b^{\Gamma}nt$		40.5	кы	A _b =	0.1104	IN ⁻	
	$Pnt/\Omega =$	1.788 k	Bolt tension	1 U.K.		Ωt =	2.25	(Table E3.4-1,	AISIJ
Shear	$P_{nv} = A$	1b ^r nv	⊢nv =	24.0	KSI	Ωv =	2.40	(Table E3.4-1,	AISIJ
_	Pnv/Ω =	1.104 k	Bolt shear	0.K.					
Combined Shear a	and tension in	<u>bolt:</u>	-	40.5-		-			,
$F'_{nt} =$	$1.3F_{nt} - \frac{\Omega F_{nt}}{\pi}$	$f_v \leq F_{nt}$	ft =	12.50	ksi	fv =	6.25	ksi 0.k	ι.
	F_{nv}	- ·	⊢'nt =	27.35	KSI	⊢nv/Ω =	10.00	KSI	
The state of the state	$P'_{nt} =$	$= A_b F'_{nt}$	P'nt/Ω =	1.342 k	NO GOOD - L	use Welds	-	0 55	
Longitudinal weld	Loading:	L =	1.5	$P_n/Q = \frac{1}{2}$	$1 - \frac{0.01L}{L}$	$t_2 F_{1/2} > V_{}$	Ω =	2.55	
If L/t < 25: L/t =	21.04	t =	0.0713	´ ¹¹ Ω ($t_2 \int_{1}^{2}$	2 u2 — •re	⁴ Pn/Ω =	2.153 k	
i ransverse weld l	oading:	t =	0.0713	P_n/q	$r_{1} = \frac{1}{C} t L F_{u} \ge$	T_{req}	Ω =	2.35	
L =	1	⊦u =	65	KSI	- 11	•	Pn/Ω =	1.972 K	

---> Negative values indicate opposite load.

6593 Riverdale St.

MOUR GROUP ENGINEERING + DESIGN

	Curb Loads (copi	ied from upp	er rail cal	<u>cs)</u>	_	Loads at ea	ich Isolator	• Type:	OSA	
Γ	Transverse:	Comp _{MAX} =	3712	lbs		Transverse	loading:	Comp _{MAX} =	1237.3	lbs
	(on long edge)	Tens _{MAX} =	3479	lbs		(on long	edge)**	Tens _{MAX} =	1159.7	lbs
		Shear _{MAX} =	6900	lbs		# isolators:	: 3	Shear _{MAX} =	690.0	lbs
ľ	Longitudinal:	Comp _{MAX} =	2994	lbs		Longitudina	al loading:	Comp _{MAX} =	1497.0	lbs
	(on short edge)	Tensway =	2761	lbs		(on shor	rt edge)	Tensway =	1380.6	lbs
	(Shear _{MAX} =	6900	lbs		# isolators:	2	Shear _{MAX} =	690.0	lbs
Maxic	ompression force	on isolator:	1.497 k	≤ 1.660 k	о.к.	**assumes cap	acity of 1/4 ho	olddown from ea	ch adiacent e	edge
	Max uplift	on isolator:	1.381 k	≤ 1.660 k	0.K.	L K		6.0 in	, ,	r r
	Max shear	on isolator:	0.690 k	≤ 0.800 k	0.K.	*				
	Forces on bottom	bolts:				2.0 in 🔾				\circ
	d _b =	0.5	in							
	base curb, t =	0.1017	in					7.0 in		• T
	Tension =	0.690	k / bolt						t ₂	, T
	Shear =	0.345	k / bolt							
	Shear on base cur	b: $P_n =$	teF.,	Ω =	2.00	(Appendix	A, Section	E3.1 AISI)	t ₁	
		$Pn/\Omega =$	6.611 k	e =	1.0	in	,			
		She	ar 0.K.							' efte
	Net section ruptur	The: $P_n =$	$A_n F_t$	Ω =	2.22	(Appendix	A, Section	E3.2 AISI)		
	'	$Pn/\Omega =$	8.428 k	An =	0.153	in	,			
		N.S.	R. 0.K.	$F_t =$	(0.1 + 3d)	$(s)F_{u} \leq F_{u} =$	55.250	ksi		
	Bolt Bearing Stree	<u>hath:</u> $P_n =$	Cm _f dtF _u	Ω =	2.50	(Section E	3.3.1 AISI)			
	5	Pn/Ω =	3.966 k	d/t =	4.92					
		Bearir	ng 0.K.	C =	3.00	mf =	1.00			
	Shear and tension	in bolt:	•	(Appendix	A, Section	n E3.4 AISI)				
	T	$P_{nt} =$	$A_b F_{nt}$	Fnt =	45.0 ksi	A _b =	0.1963	in ²		
	Tension	Pnt/Ω =	3.927 k	Bolt tensio	n 0.K.	Ωt =	2.25		a • • •	
	Choor	$P_{nv} =$	$A_b F_{nv}$	Fnv =	27.0 ksi	Ωv =	2.40		4	
	Silear	Pnv/Ω =	2.209 k	Bolt shear	0.K.	***(Tabl	e E3.4-1, A	lSI)***	-	•
	Combined Shear a	and tension i	<u>n bolt:</u>							↓ Τ
	$F'_{mt} =$	$1.3F_{nt} - \frac{\Omega F_n}{M}$	$\frac{t}{T}f_n < F_{nt}$	ft =	7.03	ksi	fv =	1.76	ksi	0.K.
	nı	F_{nv}	<i>yv</i> - <i>m</i>	F'nt =	45.00	ksi	Fnv/Ω =	11.25	ksi	
		P'_{nt}	$= A_b F'_{nt}$	P'nt/Ω =	3.927 k	Combined I	Not Applica	able -> F'nt =	= Fnt	
	Connection of Cur	b to Support	Ing Struct							
	Root Loading	SEISMIC:	(U.6-U.145	DSJD + 0.7E	lha	WIND:	0.6D + W	(/20	lha	Т
C • •	<u>IT diisvei se:</u>	/1/1	Uptint _{MAX} =	5000 [[[$\frac{1}{C} $	4020 T (2)*	LDS	
Cor	npression _{SEISMIC} =	6161	lDS	=[FpmaxAS	D*(HCM+I		145 _{DS} J*(WG	unit+curb/2J**	wcurb]/w	SULD
~	iension _{SEISMIC} =	5860	lDS		_{IIC} -(U.6-U. I	45 _{DS} J*(WGTU	Init+curb) of (0)* I E	*	. (0] / .
U	ompression _{WIND} =	5/7	lDS	=[F _{h transASD}	"(HCM+HC		JI _{unit+curb} /Z	J"WCUFD-F _{ver}	tASD ^{**} WCUr	
	lension _{WIND} =	1230	lbs	=[F _{h transASD}	*(Hcm+Hc	urbJ-0.6*(WG	jl _{unit+curb} /2	J*wcurb+F _{ver}	_{tASD} *wcur	b/2]/wcurb
0	<u>Longitudinal:</u>	(80)	Uplift _{MAX} =	4425	lbs		$Shear_{MAX} =$	4628	lbs	1 _.
Cor	mpression _{SEISMIC} =	4726	lbs	=[FpmaxAS	D*(Hcm+I		14S _{DS} J*(WG	31 _{unit+curb} /2J*	Lcurb]/Lc	urb
	Tension _{SEISMIC} =	4425	lbs	=Comp _{SEISM}	_{IIC} -(0.6-0.1	4S _{DS} J*(WGTu	unit+curbJ			
С	ompression _{WIND} =	87	lbs	=[F _{h transASD}	*(Hcm+Hc	urb)+0.6*(W0	GT _{unit+curb} /2	J*Lcurb-F _{ver}	_{tASD} *Lcurk	o/2]/Lcurb
-	Tension _{WIND} =	740	lbs	=[F _{h transASD}	*(Hcm+Hc	urb)-0.6*(WG	GT _{unit+curb} /2)*Lcurb+F _{ver}	_{tASD} *Lcurk	o/2]/Lcurb
	Wood Attachmer	nt:	1/4"φ x 3.	5" Simpson S	SDS screw	/:w/2.25" thr	readed em	(SGmin = 0.	43)	
			Tall _{metal} =	1397	lbs	Vall _{metal} =	1230	lbs		
	Transverse:		Tall _{wood} =	616	lbs	Vall _{wood} =	672	lbs		
	# of Sc	rews Req'd f	for Uplift =	9.51		COMBINE	D LOADING:	0.910	0.K.	
	# of Sc	rews Req'd f	or Shear =	6.89		Req'd Min	n Spacing =	8.3	in o.c.	
	Total	# of screws	required =	15						
	<u>Use 15 - 1/4"ф х</u>	3.5" Simpson	SDS screw	rs @ 8.3 in o.c	along lon	g side of curb	w/ 2.25" th	readed embe	<u>ed</u>	

g MOUR GROUP ENGINEERING + DESIGN

	<u>Longitudinal:</u>									
	# of Screws	Req'd fo	r Uplift =	7.18		COMBINED L	OADING:	0.994 (0.K.	
	# of Screws	Req'd for	r Shear =	6.89		Screw S	pacing =	8.3 i	in o.c.	
	Total # of s	crews re	equired =	10						
	<u>Use 10 - 1/4"ф x 3.5" S</u>	Simpson S	SDS screws	@ 8.3 in o.c. alo	ng short :	side of curb w	v/ 2.25" thr	eaded embe	<u>ed</u>	
-	Steel Deck Attachn	nent: 1/	/2" φ A307	7 Bolts to steel a	angle be	low deck		_		
			Tall _{bolt} =	3927 lbs		Vall _{bolt} =	2209 l	bs		
	<u>Transverse:</u>	Т	Fall _{metal} =	2975 lbs		Vall _{metal} =	3072 l	bs		
	# of Bolts	Req'd fo	r Uplift =	1.97		COMBINED L	OADING:	0.792	0.K.	
	# of Bolts	Req'd for	r Shear =	2.10		Bolt S	pacing =	37.2 i	in o.c.	
	Total # o	f bolts re	equired =	4						
	<u>Use 4 - 1/2" ф АЗО7 Во</u>	olts to ste	el angle be	elow deck @ 37.2	in o.c. a	ong long side	e of curb			
	Longitudinal:									
	# of Bolts	Req'd fo	r Uplift =	1.49		COMBINED L	OADING:	0.671 (0.K.	
	# of Bolts	Req'd for	r Shear =	2.10		Bolt S	pacing =	35.3 i	in o.c.	
	I otal # o	f bolts re	equired =	3			C 1			
-	<u>Use 3 - 1/2" φ Α307 Βα</u>	DITS TO STE	crickup	elow deck @ 35.3	<u>in o.c. a</u>	ong snort sid				<u> </u>
	For Concrete anchoi	<u>rage:</u>	SEISMIC		$+ 0.7\Omega_0$	2) 2	$D_0 = 2.0$			
		nent: 3/	/4" φ thra	a roas in Hitti F	lit-HY 2U	iu epoxy w	// 4" embe	0		
		l _{LRFD} =	1957	lbs		vall _{LRFD} =	454U l	bs ∝=(1·	+ 0.2SDS)	D + 2.5E = 1.708
	$Iall_{ASD} = Iall_{LF}$	$_{RFD}/\alpha =$	1146	lbs Va	$ll_{ASD} = V$	$all_{LRFD}/\alpha =$	2658 l	bs (D = 0.758	E = 0.242
~	<u>Iransverse:</u>	U	plift _{MAX} =		D*(1)	Sn	$ear_{MAX} =$	9256 l]
Cor	mpression _{SEISMIC} =	10488 lb	05	=[2.U*FpmaxAS		+HcurbJ+(1+	0.14S _{DS} J*(\ 	WGI _{unit+curb} /	2J*wcurb]/wcurb
	lension _{SEISMIC} =	10187 lb	05	=Comp _{SEISMIC} -lU	.6-0.145	_{DS} J*(WGTuni	t+curbJ			
	Shear _{SEISMIC} =	9256 lb)S	=2.0*FpmaxASL)/2			.	1010 8	
	Min Bolts Regid L	Jplift =	8.89	spacing =	13.95 in	1 O.C.	,	lapplied =	1018.7	lbs
Г		near =	3.48 alta	spacing =	37.21 1	T	V	vapplied =	544.5	lDS
	spaced at 12	10 D(240 in		COMBINED LOAD	DING =	$\frac{T_{applied}}{T_{applied}} +$	$\frac{v_{aplilea}}{V_{aplilea}}$	≤ 1.2 =	= 1.09	
L	3paceu at 12 الدو 10 - 3/4" له thrd'd	rods in H	lilti Hit-HV	200 enoxy @ 12 /	1 in ocn	¹ allow,ASD	allow,ASD a side of ci	urh w/ 4" em	hed	
	Longitudinal.	<u>1003 III II</u>	nlift	7317 lbs	+ III 0.c. I	Sh	$ear_{\rm MAX} =$	9256 I	lbcu	Ī
Cor	nnressionariania =	7618 lb		=[2 0*EnmaxAS	D*(Hcm	+Hcurh)+(1+	0 145 ₅₅)*()	WGT	/2]*L curh]	I I/Lourb
		7317 lb	ns.	=Comperience-(0	6-0 145	₀c]*(WGTuni	it+curb)	······································	2, 200.0,	, _ 0 0 1 0
	Shear sticking =	9256 lb	ns	=2 0*EnmaxASE	.0 0.140 1/2					
	Min Bolts Rea'd L	Jolift =	6.39	spacing =	11.77 ir	1 O.C.		Tapplied =	1045 3	lbs
	Min Bolts Reg'd S	hear =	3.48	spacing =	23.54 ir	1 0.C.	,	Vapplied =	544.5	lbs
Ī	Try using	7 bo	olts			T _{applied} .	$V_{apllied}$	< 1.0	1 10	
	spaced at 11	.77 in	n o.c.	COMBINED LOAL	JING =	$\overline{T_{allow,ASD}}^+$	$\overline{V_{allow,ASD}}$	≤ 1.2	= 1.12	

Use 7 - 3/4" ϕ thrd'd rods in Hilti Hit-HY 200 epoxy @ 11.8 in o.c. max. along short side of curb w/ 4" embed

CURB DESIGN SU	MMARY:	CBISC-12	CBISCSAV15	18	Unit:	Sunchoice 15-18			
UPPER CURB RAIL	THICKNESS:	0.1017 in	12 Gauge						
UNIT CLIP	THICKNESS:	0.0713 in	14 Gauge						
# OF CLIPS (LONG SIDE) - 3 clips with 4 - #10 SMS screws each clip									
WEB STIFFENER: 16Ga x 1 3/16in x 7in (C-channel) stiffener at each clip									
# OF CLIPS (S	HORT SIDE) -	2 clips with	4 - #10 SMS	screws each	clip				
WE	STIFFENER :	16Ga x 1 3/	'16in x 7in (C-	channel) stif	fener at eac	h clip			
VIBRATION ISOLATOR TYPE: OSA Top stud diameter: 3/8 (3) - OSA Isolators long side									
Anchor be	olt diameter:	1/2	Anchor ho	le diamter: 9/16 (2) - OSA Isolators short side					
BASE CURB	THICKNESS:	0.1017 in	12 Gauge			***Must weld top of OSA***			
WE	STIFFENER :	NOT REQU	RED						
CORNER CO	ONNECTION:	Use minim	um 3 - 1/4" φ	SAE Grade 8	bolts w/ 1/	4-20-UNC Threaded inserts			
CLIDB		WOOD		STE	EL	CONCRETE			
	L/4"φ x 3.5" Simpson SDS screws v			1/2" ф A30	07 Bolts to	3/4" φ thrd'd rods in Hilti Hit-HY			
ANCHUKAGE	2.25" thre	aded ember	d (SGmin =	steel angle below deck		200 epoxy w/ 4" embed			
LONG DIRECTION	15	6 @ 8.26 in c).C.	4 @ 37.2	21 in o.c.	10 @ 12.4 in o.c.			
SHORT DIRECTION	10) @ 8.29 in c).C.	3@35.3	31 in o.c.	7 @ 11.77 in o.c.			