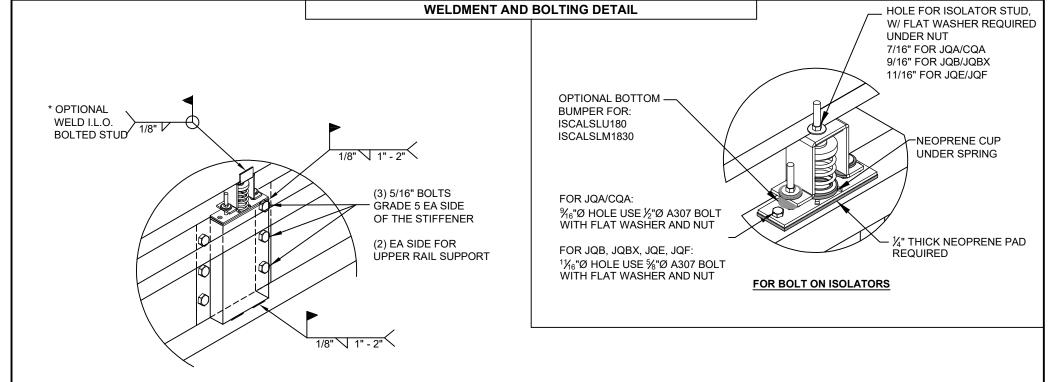


Structural Calculations for CBISC-02 Series

CBISCLXL** SERIES


Prepared for:

PROVENT / RRS

3847 Wabash Drive Mira Loma, CA 91725

Date: August 23, 2023

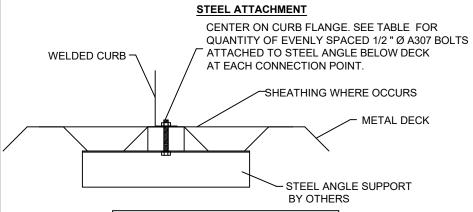
Project Number: PV2312

Note: * - INDICATES WELD REQUIRED I.L.O. BOLTED STUD FOR THE FOLLOWING CURBS:

BASE CURB SUPPORT

- -LXL (CBISC-02)
- -PRD3715 (CBISC-04)
- -SAV1518 (CBISC-12)
- -SAV2025 (CBISC-13)
- -SAV28 (CBISC-14)

3847 WABASH DRIVE MIRA LOMA, CA 91725


PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITTED TO:
COMPANY:
JOB NAME:
EQUIPMENT:
NOTES:

FORM NO: CB-61

 DATE:
 REV:
 DRAWN BY:

 08/14/23
 2
 FMM

	NO. OF ANCHORAGE BOLTS REQUIRED				
CURB	LONG SIDE	SHORT SIDE			
LXS	3 @ 19.25" O.C.	2 @ 23" O.C.			
LXL	3 @ 19.25" O.C.	2 @ 33" O.C.			
SUN3672	4 @ 21" O.C.	2 @ 27.25" O.C.			
PRD3715	6 @ 14.28" O.C.	3 @ 20.75" O.C.			
PRS	4 @ 20.46" O.C.	2 @ 31.13" O.C.			
PRL	5 @ 17.44" O.C.	2 @ 41.5" O.C.			
SAV1518	6 @ 22.43" O.C	3 @ 35.56" O.C.			
SAV2025	7 @ 21.02" O.C	3 @ 35.56" O.C.			
SAV28	7 @ 23.75" O.C	3 @ 35.56" O.C.			

ASSUMES:

CONC SLAB
fc= 4000PSI MINIMUM
6" MIN THICKNESS
NORMAL WEIGHT CONCRETE
MIN. 9-1/8" EDGE DISTANCE.

Meets seismic requirements for the following codes: CBC 2022 IBC 2021 ROOF ANCHORAGE DETAIL
CBISC Series

LXS

LXL

SUN3672

PRD3715

PRS

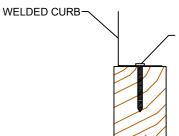
PRL

SAV1518

SAV2025

SAV28

CONCRETE ATTACHMENT


WELDED CURB

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 5/8" Ø THREADED ROD IN HILTI HIT-HY 200 V3 EPOXY WITH 4" EMBED

	NO. OF ANCHORAGE BOLTS REQUIRED			
CURB	LONG SIDE	SHORT SIDE		
LXS	4 @ 12.83" O.C.	2 @ 23.0" O.C.		
LXL	4 @ 12.83" O.C. 3 @ 16.50" O.C.			
SUN3672	4 @ 21.0" O.C.	2 @ 27.25" O.C.		
PRD3715	9 @ 8.92" O.C.	6 @ 8.30" O.C.		
PRS	5 @ 15.34" O.C.	3 @ 15.56" O.C.		
PRL	7 @ 11.63" O.C.	4 @ 13.83" O.C.		
SAV1518	8 @ 16.02" O.C. 6 @ 14.23" O.C.			
SAV2025	9 @ 15.77" O.C. 6 @ 14.23" O.C.			
SAV28	10 @ 15.83" O.C.	6 @ 14.23" O.C.		

* SIX INCHES FROM EACH CORNER EVENLY SPACED.
** CENTERED.

WOOD ATTACHMENT

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED ¼" Ø x 4.5" SIMPSON SDS SCREWS W/ 2.75" THREADED EMBED (SGMIN=0.50)

	NO. OF ANCHORAGE SCREWS REQUIRED			
CURB	LONG SIDE	SHORT SIDE		
LXS	8 @ 6.07" O.C.	5 @ 6.75" O.C.		
LXL	7 @ 7.08" O.C.	7 @ 6.17" O.C.		
SUN3672	9 @ 8.38" O.C.	5 @ 7.81" O.C.		
PRD3715	15 @ 5.38" O.C.	10 @ 5.06" O.C.		
PRS	10 @ 7.26" O.C.	6 @ 7.03" O.C.		
PRL	12 @ 6.70" O.C.	8 @ 6.50" O.C.		
SAV1518	15 @ 8.29" O.C.	10 @ 8.35" O.C.		
SAV2025	18 @ 7.65" O.C.	10 @ 8.35" O.C.		
SAV28	20 @ 7.71" O.C.	10 @ 8.35" O.C.		

FOUR INCHES FROM EACH CORNER EVENLY SPACED

3847 WABASH DRIVE MIRA LOMA, CA 91752

PHONE (951) 685-1101 FAX (619) 872-9799

	1
SUBMITTED TO:	١.
COMPANY:	н
JOB NAME:	Н
EQUIPMENT:	H
NOTES:	L
NO 1201	Ι'

FORM NO: CB-62

 DATE:
 REV:
 DRAWN BY:

 6/28/2023
 4
 FMM

For wood, concrete and steel attachment see Roof Anchorage Detail, Form No. CB-62.

Welded Isolation springs housingare standard. For bolted spring housing, neoprene pads and spring cups see Weldment and Bolting Detail, Form No. CB-61

STRUCTURALLY CALCULATED VIBRATION ISOLATION **ROOF CURB FOR LX SERIES LARGE CHASSIS UNITS**

P***B CABINET

PROVENT P/N	Α	В	EST. WEIGHT
CBISCLXL18**	8"	18"	205 Lbs.
CBISCLXL21**	11"	21"	224 Lbs.
CBISCLXL24**	14"	24"	239 Lbs.

part number at time of order

codes:

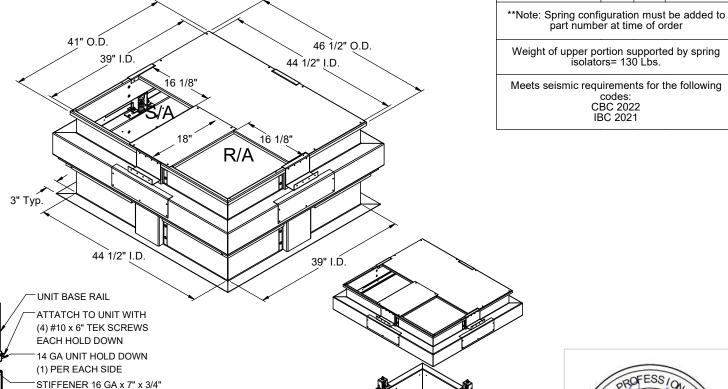
CBC 2022 IBC 2021

FEATURES

- Roof curbs sides and ends are 14 ga.
- Fully welded construction.
- Gasketing package provided.
- Heat treated wood nailer provided.
- insulated deck pans provided.
- Pitched curbs and taller curbs are available.
- CalDyn OSHPd pre-approved seismic restraints. (OPM-0401-13), (CQA).

NOTES

- Attach ductwork to roof curb. Flanges of duct rest on top of the curb, Support ductwork below the curb.
- Thru the curb utillities are available. Contact you York distributor or Provent directly.


B" TOTAL HEIGHT

(35" MAX WITH PITCH)

(4) #10 TEK SCREWS-

14 GA UPPER RAIL

A" BASE **CURB HEIGHT**

PROFILE DETAIL

3847 WABASH DRIVE MIRA LOMA, CA 91752

AT EACH ISOLATOR 14 GA. CURB

AT EACH HOLD DOWN **CQA ISOLATOR RESTRAINTS** (1) PER EACH SHORT SIDE (1) PER EACH LONG SIDE

FULL PERIMETER WOOD NAILER STIFFENER 16 GA x 7" x 1 1/2"

PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITED TO:	
COMPANY:	
JOB NAME:	H
EQUIPMENT:	
NOTES:	

50 1/2" O.D.

FORM NO: CBISC-02

DATE: 8/14/2023

45" O.D.

PART NUMBER:

REV: 5

REGISTERED

DRAWN BY: **FMM**

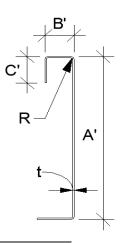
Client: ProVent

PV2312

---> Negative values indicate opposite load.

Project:	CBISC-02 Iso Curb	CBISCLXL	- 1-1-					
•	ALL P***B CABINET							
					1	A		
Upper Curb Informa	ation_					F _V		
Hcurb upper =	5.5 in	(Height of u	per curb rail)		EC	*	EQ.	†
Lcurb =	46.5 in	(Length of u	pper curb)			Wui (×Lu		
wcurb =	41 in	(Width of up	per curb)	1			'	
WGTupper =	130 lbs	(Weight of u			}			}
# Clips long side =		lips short side =	1		F	P MAX		18.0
Unit Information				Ħ T				[0]
WGTunit =	656 lbs	(Weight of U	Init)		Wt _{min}	1	WGT _{UNIT}	Wt _{max} F _h
Wtmax =	197 lbs		orner weight)	=	. ↓	•		↓
Wtmin =	139 lbs	•	orner weight)	++	∔, ₹			Y ,
Hunit =	55 in	•	nit above curb)	A_				
Hcm =	27.5 in	, ,	enter of mass)	Hcurb Hcurb	: 🛅			
Lunit =	51.25 in	(Length of u	•	=		•	WOT	
Wunit =	45.75 in	(Width of ur		1			WGT _{CURB}	
wunt –	43.73	(width of di	111)		_	•		♣
Colomic Loading 2	021 IPC/2022CPC			-	▼ T _{max}			V C _{max}
Seismic Loading - 20		(Marst see	for majority of C	alifornia				Omax
Ss =	2.85		for majority of C					
Fa =	1.20	•	Class D - Table 2		,			
Ip =	1.50		Factor Category		0,			
Sms =	3.420	(Fa*Ss)		ap =				
Sds =	2.280	(2/3*Sms)	*! **\ *2/5	Rp =				
Fpmax =	5.130 Wp		*Ip)*Wp*3/Rp <					
FpmaxASD =	2356 lbs	(0.7*Fpmax)		۲	pmaxASD =	2823		
	(unit only)				((unit + uppe	er rail)	
Wind Loading - 202								
Kz =	1.13	•	of height, Exposi		able 26.10-1	ACSE 7-16)		
Kzt =	1.00	•	ed topographic	•				
Kd =	0.85		ty factor Table 2					
Ke =	1.00	•	ation Factor Tal					
V =	110	(Wind veloc	ty, mph for Occı	upancy C	at III-IV bldgs	Exp. Cat C,	Fig 26.5-1D -	- ASCE7-16)
$GCr_{(horiz)} =$	1.9	(Refer Sect 2	9.4.1 ASCE 7-16)				
$GCr_{(vert)} =$	1.5	(Refer Sect 2	9.4.1 ASCE 7-16)				
qz	29.8 psf	= 0.00256*k	z*Kzt*Kd*Ke*V ²	(Eq. 26	.10-1 ASCE 7-	-16)		
F _{h ASD trans} =	730 lbs	= 0.6*qz*G0	r*Lunit*(Hunit+	Hcurb)	(Eq. 29.4-2)	,		
F _{h ASD long} =	652 lbs	= 0.6*qz*G0	r*Wunit*(Hunit	+Hcurb)				
F _{vert ASD} =	436 lbs	= 0.6*qz*G0	r*Lunit*Wunit	(Eq. 29.	4-3)			
Upper Curb Loading	2							
Transverse:	•							
Compression _{SEISMIC} =	2099 lbs	=[FpmaxASE	*Hcm+2*(1+0.1	45 _{DS})*W	tmax*wcurb]/wcurb		
Tension _{SEISMIC} =	1502 lbs	=[FpmaxASE	*Hcm-2*(0.6-0.	145 _{DS})*W	Vtmin*wcurb)]/wcurb		
Compression _{WIND} =	508 lbs		Hcm+2*0.6*Wtr				urb	
Tension _{WIND} =	541 lbs		Hcm-2*0.6*Wtn					
	> Negative values in					-		
Longitudinal:								
Compression _{SEISMIC} =	1912 lbs	=[FpmaxASE	*Hcm+2*(1+0.1	4*S _{DS})*V	Vtmax*Lcurb]/Lcurb		
Tension _{SEISMIC} =	1315 lbs		*Hcm-2*(0.6-0.	55,				
Compression _{WIND} =	404 lbs		lcm+2*0.6*Wtm)	
Tension _{WIND} =	436 lbs		lcm-2*0.6*Wtm					
*****	> Negative values in	_						
Governing Reaction	•							
Transverse:	Comp _{MAX} = 2099	lbs	> Along long	edge of o	curb.			
			> Along long	-				
(on long edge)	Tens _{MAX} = 1502	lbs						
Longitudinal:	$Comp_{MAX} = 1912$	lbs	> Along short	•				
(on short edge)	Tens _{MAX} = 1315	lbs	> Along short	edge of	curb.			
	> Negative values in	dicate opposite	load					

Upper curb rail



Curb Design

Fy =	50 ksi	Fu =	65 ksi
E =	29500 ksi	t =	0.0713 14 Gauge

Calculate Section Properties of Curb

A'=	5.500	in	a =	5.144 in = A'-(2r+t)
B'=	1.000	in	a'=	5.429 in = A'-t
C'=	0.000	in (0 if no lips)	b =	0.822 in = B'-[r+t/2+ α (r+t/2)]
α=	0.000	(0 - no Lip; 1 w/ lip)	b'=	0.964 in = B'-($t/2+\alpha t/2$)
R =	0.1069	(Inside bend radius)	c =	0.000 in = $\alpha[C'-(r+t/2)]$
t =	0.0713	in	c'=	0.000 in = $\alpha(C'-t/2)$
r'=	0.143	in = $R+t/2$	u =	$0.224 \text{ in } = \pi r/2$
x =	0.129	in (Distance between co	entroid and web ce	nterline)
Ix =	1.899		rx =	1.92 in
ly =	0.034	in ⁴	ry =	0.257 in
A =	0.52	in ²	rmin =	0.257 in

Axial Compression

III PI CSSIOII					
Pa =	1.178 k	(Max Axial Comp)		$\Omega_c =$	1.80
Pn/Ωc =	4.964 k	I63 -	$= (0.650\lambda_c^2)E$	_	
Fe =	19.75 ksi		$\leq 1.5; F_n = \left(0.658^{\lambda_c^2}\right) F_y$	$_{\lambda}$ - $ F_{y} $	$_{F}$ $ \pi^{2}E$
λc =	1.59	$\frac{\overline{\Omega_c}}{\Omega_c} = \frac{\overline{\Omega_c}}{\Omega_c}$ If $\lambda_c > 0$	$> 1.5; F_n = \frac{0.877}{\lambda^2} F_y$	$\kappa_c - \sqrt{F_e}$	$r_e = \frac{1}{(kl/m)^2}$
Fn =	17.32 ksi	-) No -	λ_c^2	,	(71)
Ly =	39.00 in	Lateral unbraced length			
$k_y L_y / r_y =$	121	(assume k=0.8)			

Compression Check = O.K.

Check Web Crippling

h =	5.5 in	Check limits:		C = 7.50
t =	0.0713 in	h/t =	77.14 ≤ 260	C _R = 0.08 (See table C3.4.1-2, fastened to
N =	7.00	N/t =	$98.18 \le 210$	$C_N = 0.12$ support, two flange, end loading)
$\Omega_{\rm w}$ =	1.75	N/h =	$1.273 \le 2.0$	$C_h = 0.048$
P _n =	1.947 k	R/t =	1.50 ≤ 12.0	$\left(\begin{array}{c} \Gamma_{P} \\ \Gamma_{N} \end{array}\right) \left(\begin{array}{c} \Gamma_{N} \\ \Gamma_{N} \end{array}\right) \left(\begin{array}{c} \Gamma_{N} \\ \Gamma_{N} \end{array}\right)$
$P_n/\Omega_w =$	1.112 k		P_n :	$= Ct^2 F_y \sin(90) \left(1 - C_R \sqrt{\frac{R}{t}}\right) \left(1 + C_N \sqrt{\frac{N}{t}}\right) \left(1 - C_h \sqrt{\frac{h}{t}}\right)$
Long side: Pu _{Trans} =	2.099 k	web stiffener REQ'D #	clips = 1	
Charteida, D	1.013.1	b -4:ff BEOID #	L-1! 4	

Short side: Pu _{Long} =	1.912 k	web stiffener REQ'D	# clips = 1
Check Weh Stiffener	1	6Ga x 3/4in x 7in (C-char	nel)

Check Web Stiffener	16Ga x 3/4	lin x 7in (C-chann	el)	$P_n = 0.7$	$\left(P_{wc} + A_e F_y\right) \ge$	P_{wc}
width of stiffener =	7.000 in	ts =	0.0566 16 Gauge	Pwc =	1.947 k	
web of stiff. w =	6.717 in	Rs =	0.0849 in	Pn =	14.669 k	
***Check w/ts ≤ 1.28	VE/Fys	$\Omega_{\rm c}$ =	1.70	Ae =	0.380 in^2	
/*-	110 675					

w/ts = 118.675

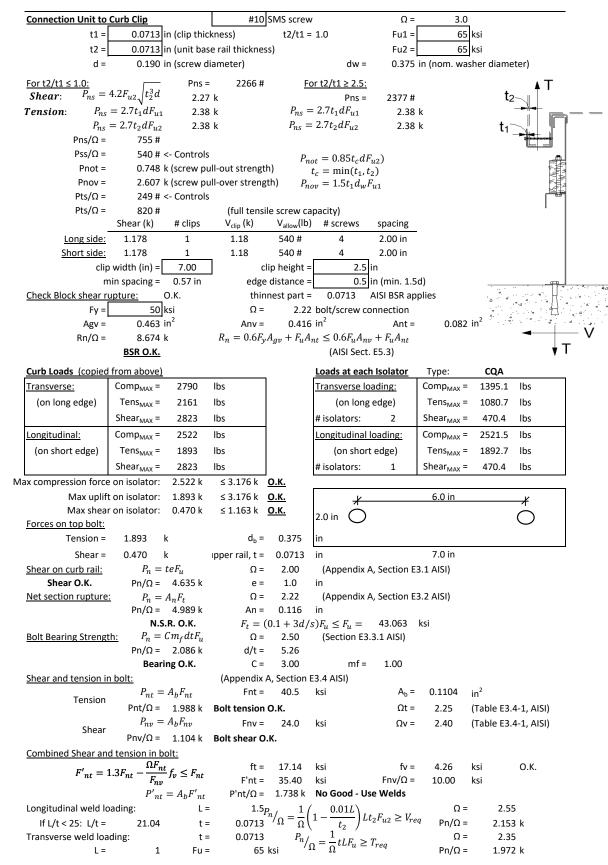
 $Pn/\Omega_c =$ 1.28v(E/Fys) = 31.091 --> w/ts over limit Use C3.7.2 8.629 k <u>O.K.</u>

1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts **Corner Connections**

 $Max(F_{pmaxASD}/4 - OR- Fh_{ASDtrans}/4 corner connections)$ Tcrnmax = 706 lbs 1050 lbs Max(Tens/2 -OR- Comp/2 corner connections per side) Vcrnmax = Tall = Bolt: 2480 lbs Vall = 1208 lbs Threaded Insert: Tall = 2860 lbs Vall = 1096 lbs

of Bolts required for Tension = 0.3 # of Bolts required for Shear = 1.0 # of Bolts Used = 2.0

0.621 **O.K.** Check Combined Stress in Bolts & Inserts:


Check 1/8" welded connection

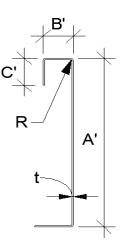
Assume L/t > 25: 25*t =1.783 in Lreg'd = 0.710 in

$$\frac{P_n}{\Gamma_0} = \frac{1}{\Omega} 0.75t L F_u \ge V_{req} \qquad L_{req'd} = \frac{V_{req} \Omega}{0.75t F_u}$$

$$L_{req'd} = \frac{V_{req}\Omega}{0.75tF_u}$$

Client:	ProVent	PV2312		Base curb
Project:	CBISC-02	Iso Curb	CBISCLXL	
Unit:	ALL P***B C	ABINET		

0	7.22.7 2 07.2.112.1				l			
Base Curb Informat	tion					F _v		
Hbase curb =	25 in	(Height of base curb)			EQ		EQ	!
Lcurb =	50.5 in	(Length of base curb)				Wur		
wcurb =		(Width of base curb)	Ť			(× Lu		
WGTbase =		(Weight of base curb)						
# Springs long side =		orings short side = 1			F _{P N}	1AX		<u>=</u>
Unit Information	2 #3p	illigs short side – 1	- Truit	1	 	→ •		[8]
WGTunit =	656 lbs	(Maight of Unit)		٤	Wt _{min}	1	WGT _{UNIT}	Wtmax
		(Weight of Unit) (Wtmax+1/4*WGTupper)		문	1	₹		F _h
Wt'max =		, , , , , ,		\downarrow	<u> </u>			V
Wt'min =		(Wtmin+1/4*WGTupper))		1	r1			
Hunit =		(Height of unit above curb) 발 모	Hcurb- upper				3
H'cm =		(Hcm+10"(upper+spring))	윈	Ι ⊃		•		
Lunit =		(Length of unit)	1			•	WGT _{CURB}	
Wunit =		(Width of unit)				•		A
WGTunit+upper+base =		(Total weight)		-	← ∨			⊸ ∨
Seismic Loading - 2					▼ T _{max}			C _{max}
Ss =		(Worst case for majority o			•			
Fa =		(Default Site Class D - Tabl			,			
lp =		(Importance Factor Catego	•		0,			
Sms =		(Fa*Ss)		p=	2.5			
Sds =		(2/3*Sms)		}p =	2			
Fpmax =	5.130 Wp	(0.4*ap*Sds*Ip)*Wp*3/R	p <=1.6	*Sd	s*Ip*Wp			
FpmaxASD =	2823 lbs	(0.7*Fpmax)		F	pmaxASD =	3214		
	(unit + upper rail)				(unit + upp	er rail + ba	ise curb)	
Wind Loading - 202	1 IBC/2022 CBC							
Kz =	1.13	(For 60 ft roof height, Exp	osure C	- Ta	able 26.10-1 AC	SE 7-16)		
Kzt =	1.00	(Max. assumed topograph	nic facto	r)				
Kd =	0.85	(Directionality factor Table	e 26.6-1	L AS	CE 7-16)			
Ke =	1.00	(Ground Elevation Factor	Table 2	6.9-	1 ASCE 7-16)			
V =	110	(Wind velocity, mph for O	ccupan	су С	at III-IV bldgs E	xp. Cat C,	Fig 26.5-1D	- ASCE7-16)
$GCr_{(horiz)} =$	1.9	(Refer Sect 29.4.1 ASCE 7-	16)					
GCr _(vert) =	1.5	(Refer Sect 29.4.1 ASCE 7-	16)					
qz		= 0.00256*Kz*Kzt*Kd*Ke*	*V² (Fa	. 26	10-1 ASCF 7-1	6)		
F _{h ASD trans} =	· .	= 0.6*qz*GCr*Lunit*(Hun						
F _{h ASD long} =		= 0.6*qz*GCr*Wunit*(Hu				,		
F _{vert ASD} =		= 0.6*qz*GCr*Lunit*Wuni			•			
Base Curb Loading								
Transverse:								
Compression _{SEISMIC} =	2957 lbs	=[FpmaxASD*H'cm+2*(1+	0.14S _{DS})*W	t'max*wcurb],	/wcurb		
Tension _{SEISMIC} =	2256 lbs	=[FpmaxASD*H'cm-2*(0.6	5-0.14S _c	ر _{اد} ر)*۱	Nt'min*wcurb)]/wcurb		
Compression _{WIND} =		=[F _{h ASD trans} *H'cm+2*0.6*\	Wt'max	*wc	urb-F _{vert ASD} *wo	curb/2]/w	curb	
Tension _{WIND} =	917 lbs	=[F _{h ASD trans} *H'cm-2*0.6*V						
		indicate opposite load.						
Longitudinal:	· meganire ranges	marcate opposite road.						
Compression _{SEISMIC} =	2701 lbs	=[FpmaxASD*H'cm+2*(1+	·0.14*S _r	ر ا×(ء	Wt'max*Lcurb]	/Lcurb		
Tension _{SEISMIC} =		=[FpmaxASD*H'cm-2*(0.6	-					
Compression _{WIND} =		=[F _{h ASD long} *H'cm+2*0.6*V			,-	-	b	
Tension _{WIND} =		=[F _{h ASD long} *H'cm-2*0.6*W						
- · · · · · · · · · · · · · · · · · · ·		indicate opposite load.			vertabl =301	. "		
Governing Reaction	=	maleute opposite load.						
Transverse:		7 lbs> Along lor	ng edge	of r	curb.			
		_						
(on long edge)	Tens _{MAX} = 225	•						
Longitudinal:	$Comp_{MAX} = 270$	1 lbs> Along sho	ort edge	e of	curb.			
(on short edge)	Tens _{MAX} = 199	9 lbs> Along sho	ort edge	e of	curb.			
	> Negative values	indicate opposite load.						



Fy =	50 ksi	Fu =	65 ksi
E =	29500 ksi	t =	0.0713 14 Gauge

Calculate Section Properties of Curb

tion P	roperties of t	<u>curb</u>			
A'=	25.000	in	a =	24.644 in =	A'-(2r+t)
B'=	1.750	in	a'=	24.929 in =	A'-t
C'=	0.000	in (0 if no lips)	b =	1.572 in =	$B'\text{-}[r\text{+}t/2\text{+}\alpha(r\text{+}t/2)]$
α =	0.000	(0 - no Lip; 1 w/ lip)	b'=	1.714 in =	$B'-(t/2+\alpha t/2)$
R =	0.1069	(Inside bend radius)	c =	0.000 in =	α [C'-(r+t/2)]
t =	0.0713	in	c'=	0.000 in =	α(C'-t/2)
r'=	0.143	in = $R+t/2$	u =	0.224 in =	πr/2
x =	0.104	in (Distance between	centroid and web	centerline)	
Ix =	128.737	in	rx =	8.00 in	
ly =	0.218	in	ry =	0.329 in	
A =	2.01	in ²	rmin =	0.329 in	

Axial Compression

Pu =	1.411 k	(Max Axial Comp)	Ω_{c} =	1.80
Pn/Ωc =	18.917 k	$If \lambda < 15, E = \left(0.650\lambda^2\right)E$	_	
Fe =	19.29 ksi	$\frac{P_n}{P_n} = \frac{F_n A}{F_n}$ If $\lambda_c \le 1.5$; $F_n = \left(0.658^{\lambda_c^2}\right) F_y$		$_{E}$ $_{-}$ $\pi^{2}E$
λc =	1.61	$\frac{\Omega_c}{\Omega_c} = \frac{\Omega_c}{\Omega_c} \qquad \text{If } \lambda_c > 1.5; F_n = \frac{0.877}{\lambda^2} F_y$	$\Lambda_c = \sqrt{\frac{G}{F_e}}$	$r_e = \frac{1}{(kl/l_e)^2}$
Fn =	16.91 ksi	λ_c^2 λ_c^2	•	(77)
Ly =	50.50 in	Lateral unbraced length		
$k_y L_y / r_y =$	123	(assume k=0.8)		

Compression Check = O.K.

Check Web Crippling

h =	25 in	Check limi	its:	C = 4.00]
t =	0.0713 in	h/t =	350.63 ≤ 260	$C_R = 0.14$	(See table C3.4.1-2, fastened to
N =	7.00	N/t =	98.18 ≤ 210	$C_N = 0.35$	support, one flange, end loading)
$\Omega_{\rm w}$ =	1.75	N/h =	0.28 ≤ 2.0	$C_h = 0.02$	J
$P_n =$	2.105 k	R/t =	$1.50 \le 9.0$	/	$\lceil p \rceil / \lceil p \rceil / \lceil p \rceil$
$P_n/\Omega_w =$	1.203 k		$P_n =$	$= Ct^2F_y\sin(90) \left(1 - C_R\right)$	$\left(\frac{R}{t}\right)\left(1+C_N\sqrt{\frac{N}{t}}\right)\left(1-C_h\sqrt{\frac{h}{t}}\right)$
Long side: Pu _{Trans} =	1.479 k	web stiffener REQ'D	# clips = 2	, , , \	t / (
Short side: Pu _{Long} =	2.701 k	web stiffener REQ'D	# clips = 1	,	,

***h/t > 260; use web stiffeners

Check Web Stiffener 16Ga x 1.5in x 7in (C-channel)

width of stiffener =	7.000 in		ts =	0.0566 16 Gauge
web of stiff. w =	6.717 in		Rs =	0.0849 in
***Check w/ts ≤ 1.2	8√E/Fys		$\Omega_{\rm c}$ =	1.70
w/ts =	118.675			
1.28v(E/Fys) =	31.091	> w/ts over limit l	Jse C3.7.2	
$P_n = 0.7(P_{wc} + 1)$	$A_e F_y \ge P_{wc}$			
Pwc =	2.105 k	Ae =	0.380 in ²	
Pn =	14.780 k			

<u>O.K.</u>

Corner Connections 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts

Check Combined Stress in Bolts & Inserts:

8.694 k

Tcrnmax =	803 lbs		Max(F _{pmaxASE}	/4 -OF	R- Fh _{ASDtra}	_{ns} /4 corne	r connection	s)
Vcrnmax =	1479 lbs		Max(Tens/2	-OR- (Comp/2 c	orner con	nections per	side)
	Bolt:	Tall =	2480	lbs		Vall =	1208 lbs	5
Threade	d Insert:	Tall =	2860	lbs		Vall =	1096 lbs	5
	# of Bolts re	quired 1	for Tension =	- "	0.3	-		
	# of Bolts	require	d for Shear =		1.3			
		# of	Polts Head -		2 0			

Check 1/8" welded connection

 $Pn/\Omega_c =$

1/8" welded connection	< US	E WELD	Ω =	2.35
Assume L/t > 25: 25*t =	1.783 in	$P_{n}/ = 1_{0.75+1.5}$	~ I/	$L_{req'd} = \frac{V_{req}\Omega}{0.75tF_u}$
Lreq'd =	1.000 in	$\Omega = \frac{1}{\Omega} 0.75 L L r_u$	$\leq v_{req}$	$L_{req'd} = \frac{1}{0.75tF_u}$

0.558 **O.K.**

Curb Loads (copied	from upper ra	il calcs)			Loads at each	Isolator	Type:	CQA	
Transverse:	Comp _{MAX} =	2790	lbs	•	Transverse lo	•	Comp _{MAX} =		lbs
(on long edge)	Tens _{Max} =	2161	lbs		(on long		Tens _{MAX} =		lbs
(611.161.18 6486)	Shear _{MAX} =	2823	lbs		# isolators:	2	Shear _{MAX} =		lbs
Longitudinal:	Comp _{MAX} =	2522	lbs	·	Longitudinal I	oading:	Comp _{MAX} =		lbs
(on short edge)	Tens _{MAX} =	1893	lbs		(on short		Tens _{MAX} =		lbs
'	Shear _{MAX} =	2823	lbs		# isolators:	1	Shear _{MAX} =	470.4	lbs
ax compression force	on isolator:	2.522 k	≤ 3.176 k	О.К.	L		ı		
Max uplift	on isolator:	1.893 k	≤ 3.176 k		V		6.0 in		V
Max shear	on isolator:	0.470 k	≤ 1.163 k	О.К.					<u></u>
Forces on bottom bo	olts:				2.0 in (\cup
d _b =	0.5 ir	า							
base curb, t =	0.0713 ir	า					7.0 in		ΔT
Tension =	0.946 k	/ bolt						t ₂	ı Ī '
Shear =	0.235 k	/ bolt							
Shear on base curb:	$P_n = t$	eF_u	Ω =	2.00	(Appendix A	, Section E	3.1 AISI)	t_1	
	$Pn/\Omega =$	4.635 k	e =	1.0	in			†	
	Shea	ar O.K.							
Net section rupture:	$P_n = A$	$A_n F_t$	Ω =	2.22	(Appendix A	, Section E	3.2 AISI)		
	Pn/Ω =	5.909 k	An =	0.107	in				
		R. O.K.	$F_t = 0$	(0.1 + 3d)	$(s)F_u \le F_u =$	55.250	ksi		I
Bolt Bearing Strength	$P_n = C$	$m_f dt F_u$	Ω =	2.50	(Section E3.	3.1 AISI)			
	$Pn/\Omega =$	2.781 k	d/t =	7.01					
	Bearin	ng O.K.	C =	3.00	mf =	1.00			
Shear and tension in			(Appendix	-	•				
Tension	$P_{nt} = I$	A_bF_{nt}	Fnt =	45.0 ksi	$A_b =$	0.1963	in ²		
10131011	$Pnt/\Omega =$	3.927 k	Bolt tension	O.K.	Ωt =	2.25		0 00	$A \sim A$
Shear	$P_{nv} = I$			27.0 ksi	Ωv =	2.40		* *	
	•		Bolt shear O	.K.	***(Table	E3.4-1, AIS	SI)***	-	•
Combined Shear and			_						ψ⊤
F' = 1	$3F_{nt} - \frac{\Omega F_{nt}}{}$	f < F.	ft =	9.64	ksi	fv =	1.20	ksi	O.K.

$$F'_{nt} = 1.3F_{nt} - \frac{\Omega F_{nt}}{F_{nv}} f_v \le F_{nt}$$
$$P'_{nt} = A_h F'_{nt}$$

ksi $Fnv/\Omega = 11.25$ ksi

$F'_{nt} = 1.3F_{nt} - \frac{\Omega F_{nt}}{F_{nv}} f_v \le F_{nt} \qquad \begin{array}{ccccc} \text{ft} = & 9.64 & \text{ksi} & \text{fv} = & 1.20 & \text{ksi} \\ \text{F'nt} = & 45.00 & \text{ksi} & \text{Fnv}/\Omega = & 11.25 & \text{ksi} \\ P'_{nt} = A_b F'_{nt} & \text{P'nt}/\Omega = & 3.927 \text{ k} & \textbf{Combined Not Applicable} -> \textbf{F'nt} = \textbf{Fnt} \end{array}$

Connection of Curb to Supporting Structure

connection of cars	to supporting structure				
Roof Loading	SEISMIC: (0.6-0.14S _{DS}	_s)D + 0.7E	WIND: 0.6D + W		
<u>Transverse:</u>	Uplift _{MAX} =	4338 lbs	Shear _{MAX} =	1607 lbs	l
Compression _{SEISMIC} =	5054 lbs	=[FpmaxASD*(H'cm+Hb	ase curb)+(1+0.14S _{DS})*WGT	unit+upper+base*wcurb/2]/wcurb
Tension _{SEISMIC} =	4338 lbs	=[FpmaxASD*(H'cm+Hb	ase curb)-(0.6-0.14S _{DS})*WG ⁻	T _{unit+upper+base} *wcurb/2	2]/wcurb
$Compression_{WIND} =$	1559 lbs	=[F _{h ASD trans} *(H'cm+Hbas	se curb)+0.6*WGT _{unit+upper+bas}	_{se} *wcurb/2-F _{vert ASD} *w	/curb/2]/wcurb
Tension _{WIND} =	1458 lbs	=[F _{h ASD trans} *(H'cm+Hbas	se curb)-0.6*WGT _{unit+upper+bas}	_{se} *wcurb/2+F _{vertASD} *w	curb/2]/wcurb
Longitudinal:	Uplift _{MAX} =	3852 lbs	Shear _{MAX} =	1607 lbs	İ
$Compression_{SEISMIC} =$	4568 lbs	=[FpmaxASD*(H'cm+Hb	ase curb)+(1+0.14S _{DS})*WGT	unit+upper+base*Lcurb/2]	/Lcurb
Tension _{SEISMIC} =	3852 lbs	=[FpmaxASD*(H'cm+Hb	ase curb)-(0.6-0.14S _{DS})*WG	$T_{unit+upper+base}$ *Lcurb/2]/Lcurb
$Compression_{WIND} =$	1251 lbs	=[F _{h ASD long} *(H'cm+Hbase	e curb)+0.6*WGT _{unit+upper+bas}	_e *Lcurb/2-F _{vert ASD} *Lci	urb/2]/Lcurb
Tension _{WIND} =	1150 lbs	= $[F_{h ASD long}^*(H'cm+Hbas)]$	e curb)-0.6*WGT _{unit+upper+base}	*Lcurb/2+F _{vertASD} *Lcu	urb/2]/Lcurb
				-	

Wood Attach	ıment: 1/4"φ x 4.5	" Simpson S	DS screws	w/ 2.75" thr	eaded emb	(SGm	iin = 0.43)
	Tall _{metal} =	997	lbs	$Vall_{metal} =$	1097	lbs	
Transverse:	Tall _{wood} =	760	lbs	Vall _{wood} =	672	lbs	
	# of Screws Req'd for Uplift =	5.71	='	COMBINED	LOADING:		0.986 O.K.
	# of Screws Req'd for Shear =	2.39		Req'd Mi	n Spacing =		7.08 in o.d
	Total # of screws required =	7			•		

Use 7 - 1/4" φ x 4.5" Simpson SDS screws @ 7.1 in o.c. along long side of curb w/ 2.75" threaded embed

Longitudinal:

of Screws Req'd for Uplift = 5.07 COMBINED LOADING: 0.895 O.K.
of Screws Req'd for Shear = 2.39 Screw Spacing = 6.17 in o.c.

Total # of screws required = Use 7 - 1/4" \$\phi\$ x 4.5" Simpson SDS screws @ 6.2 in o.c. along short side of curb w/ 2.75" threaded embed Steel Deck Attachment: 1/2" φ A307 Bolts to steel angle below deck Tall_{bolt} = 3927 lbs 2209 lbs 2192 lbs Transverse: $Tall_{metal} =$ 2086 lbs Vall_{metal} = # of Bolts Req'd for Uplift = 2.08 COMBINED LOADING: 0.840 O.K. # of Bolts Reg'd for Shear = Bolt Spacing = 19.25 in o.c. 0.73 3 Total # of bolts required = Use 3 - 1/2" φ A307 Bolts to steel angle below deck @ 19.3 in o.c. along long side of curb Longitudinal: # of Bolts Req'd for Uplift = 1.85 COMBINED LOADING: # of Bolts Req'd for Shear = 0.73 Bolt Spacing = 33.00 in o.c. Total # of bolts required = Use 2 - 1/2" φ A307 Bolts to steel angle below deck @ 33 in o.c. along short side of curb **For Concrete anchorage:** SEISMIC (0.6-0.14S_{DS})D + $0.7\Omega_o$ E Concrete Attachment: 0.625in & HAS rods in Hilti HIT-HY 200 V3 epoxy w/ 4in embed A_{Na} Epoxy: Hilti HIT-HY 200 V3 (ICC ESR 4868) 4000 psi f'c = 6 in (concrete thickness, t_min = h_ef + 2do) O.K. h = 4 in (effective embedment) h_ef = 0.625 in (anchor diameter) 0.75 in (hole diameter) da : do = 5 (number of dummy anchors to check capacity with spacing effect) n = 14 in (initial spacing estimate) s = 1170 2220 psi (from ESR 4868, Table 14, Temp range B) tk.cr / uncr = τk,cr / uncr = multiply by $(f'_c/2500)^{0.1}$ 1226 2327 psi If $f'_c > 2500$, $c_{Na} = 10d_a \sqrt{\frac{\tau_{uncr}}{1100}}$ c_Na= 9.0625 in (min. edge distance for full capacity); $N_{ag} = \frac{A_{Na}}{A_{Nao}} \varphi_{ec,Na} \varphi_{ed,Na} \varphi_{cp,Na} N_{ba}$ Tension: (ACI318-14, 17.4.5.1b) Bond strength $\varphi_{ec,Na}\varphi_{ed,Na}\varphi_{cp,Na}=1.0$ CNa ***Bond strength $A_{Na}=$ 1343.52 in² will govern over A_{Nao}= 328.52 in² concrete breakout $N_{ba} =$ $N_{ba} = \lambda_a \tau_{cr} \pi d_a h_{ef} \alpha_{n,seismic}$ 9535 lbs $\alpha_{n.seismic} = 0.99$ 38995 lbs (group) $N_{ag} =$ $\lambda_a = 1.0$ CONTROLS $\lambda_a = 1.0$ for normal weight conc; 0.6 for lightwo ØN_{ag} = 19010 lbs (group) $\frac{A_{Nc}}{4}\varphi_{ec,N}\varphi_{ed,N}\varphi_{cp,N}N_b$ Breakout $N_{cbg} =$ $N_b = \lambda_a k_c \sqrt{f'_c} h_{ef}^{1.5}$ strength 816 in² A_{Nc} = $N_b = 8601$ 0.75 144 in² kc = 17A_{Nco} = 0.65 $N_{cbg} =$ 48741 lbs (group) 0.75 27417 lbs (group) 0.65 $\phi N_{cbg} =$ 7865 (from ESR4868, Table 11) Shear: Vsa,eq = 0.6 Steel strength 3067 øVsa,eq = Tall_{IRED} = 3802 lbs (anchor) Vall_{IRFD} = 3067 lbs $\propto = (1 + 0.2SDS)D + 2.5E = 1.421$ $Tall_{ASD} = Tall_{LRFD}/\alpha =$ $Vall_{ASD} = Vall_{LRFD}/\alpha =$ 2225 lbs 1795 lbs D = 0.758 $E \oplus .242 \propto = 1.709$ $Uplift_{MAX} =$ $Shear_{MAX} =$ 4017 lbs 5751 lbs Transverse: =[Ωo*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*WGT_{unit+curb}*wcurb/2]/wcurb Compression_{SEISMIC} = 6485 lbs Tension_{SEISMIC} = 5751 lbs = $[\Omega o*FpmaxASD*(Hcm+Hcurb)-(0.6-0.14S_{DS})*WGT_{unit+curb}*wcurb/2]/wcurb$ Shear_{SEISMIC} = 4017 lbs =Ωo*FpmaxASD/2 2.58 spacing = Min Bolts Req'd Uplift = 19.25 in o.c. Tapplied = 1437.9 lbs Min Bolts Req'd Shear = 19.25 in o.c. Vapplied = 573.9 lbs 2.24 spacing = $\frac{T_{applied}}{T_{allow,ASD}} + \frac{V_{apllied}}{V_{allow,ASD}}$ bolts Try using O.K. COMBINED LOADING = ≤ 1.2 spaced at 12.83 in o.c Use 4 - 0.625in ϕ HAS rods in Hilti HIT-HY 200 V3 epoxy @ 12.8 in o.c. max. along long side of curb w/ 4in embed

 $Uplift_{MAX} =$

Longitudinal:

5111 lbs

 $Shear_{MAX} =$

4017 lbs

= $[\Omega o*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*WGT_{unit+curb}*Lcurb/2]/Lcurb$ Compression_{SEISMIC} = 5845 lbs $= \! [\Omega o^* FpmaxASD^*(Hcm + Hcurb) - (0.6 - 0.14S_{DS})^*WGT_{unit + curb}^* Lcurb/2] / Lcurb$ $Tension_{SEISMIC} =$ 5111 lbs $\mathsf{Shear}_{\mathsf{SEISMIC}} =$ 4017 lbs $=\Omega o*FpmaxASD/2$ Min Bolts Req'd Uplift = 2.30 spacing = 16.50 in o.c. Tapplied = 1703.7 lbs Min Bolts Req'd Shear = 16.50 in o.c. Vapplied = 573.9 lbs 2.24 spacing = $\frac{T_{applied}}{T_{allow,ASD}} + \frac{V_{apllied}}{V_{allow,ASD}}$ $V_{apllied} \le 1.2$ O.K. Try using bolts COMBINED LOADING = spaced at 16.50 in o.c.

Use 3 - 0.625in φ HAS rods in Hilti HIT-HY 200 V3 epoxy @ 16.5 in o.c. max. along short side of curb w/ 4in embed

CURB DESIGN SUM	MARY:	CBISC-02	CBISCLXL		Unit:	ALL P***B CABINET	
UPPER CURB RAIL	THICKNESS:	0.0713 in	14 Gauge				
UNIT CLIP	THICKNESS:	0.0713 in	14 Gauge				
# OF CLIPS (LONG SIDE) - 1 clips with 4 - #10 SMS screws each clip							
WEB STIFFENER: 16Ga x 3/4in x 7in (C-channel) stiffener at each clip							
# OF CLIPS (SHORT SIDE) - 1 clips with 4 - #10 SMS screws each clip							
WEB STIFFENER: 16Ga x 3/4in x 7in (C-channel) stiffener at each clip							
VIBRATION ISOI	LATOR TYPE:	CQA	Top stud	l diameter:	3/8	(2) - CQA Isolators long side	
Anchor bolt diameter: 1/2 Anchor hole diamter: 9/16 (1) - CQA Isolators short side							
BASE CURB THICKNESS: 0.0713 in 14 Gauge *** Must weld top of CQA***				***Must weld top of CQA***			
WEB STIFFENER: 16Ga x 1.5in x 7in (C-channel) stiffener at each clip on base curb							
CORNER CONNECTION: Use minimum 3 - 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts							
CURB		WOOD		STE	EL	<u>CONCRETE</u>	
ANCHORAGE	1/4"¢ x 4.5'	Simpson SE	mpson SDS screws w/		7 Bolts to	0.625in φ HAS rods in Hilti HIT-HY	
ANCHORAGE	2.75" thre	aded embed	d (SGmin =	steel angle	below deck	200 V3 epoxy w/ 4in embed	
LONG DIRECTION	7	7 @ 7.08 in o.c.		3 @ 19.25 in o.c.		4 @ 12.83 in o.c.	
SHORT DIRECTION	7	@ 6.17 in o.	.c.	2 @ 33	in o.c.	3 @ 16.5 in o.c.	