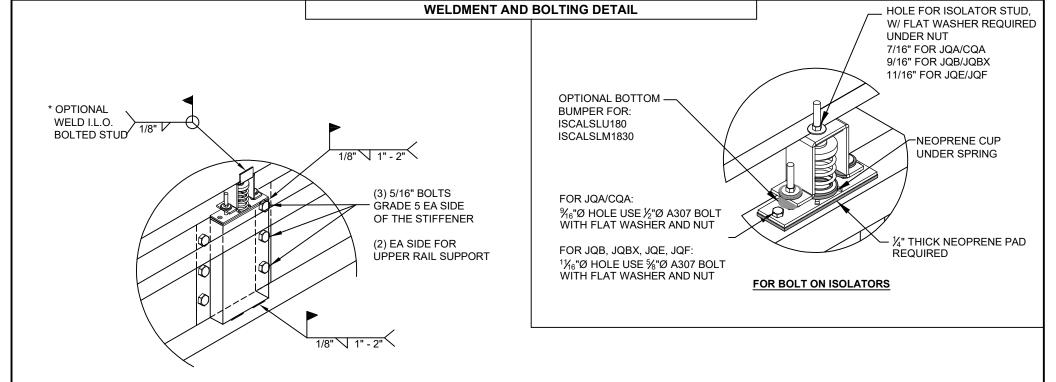


Structural Calculations for CBISC-01 Series

CBISCLXS** SERIES


Prepared for:

PROVENT / RRS

3847 Wabash Drive Mira Loma, CA 91725

Date: August 23, 2023

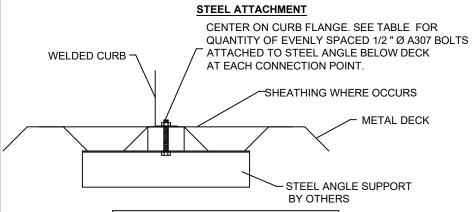
Project Number: PV2312

Note: * - INDICATES WELD REQUIRED I.L.O. BOLTED STUD FOR THE FOLLOWING CURBS:

BASE CURB SUPPORT

- -LXL (CBISC-02)
- -PRD3715 (CBISC-04)
- -SAV1518 (CBISC-12)
- -SAV2025 (CBISC-13)
- -SAV28 (CBISC-14)

3847 WABASH DRIVE MIRA LOMA, CA 91725


PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITTED TO:
COMPANY:
JOB NAME:
EQUIPMENT:
NOTES:

FORM NO: CB-61

 DATE:
 REV:
 DRAWN BY:

 08/14/23
 2
 FMM

	NO. OF ANCHORAGE BOLTS REQUIRED				
CURB	LONG SIDE	SHORT SIDE			
LXS	3 @ 19.25" O.C.	2 @ 23" O.C.			
LXL	3 @ 19.25" O.C.	2 @ 33" O.C.			
SUN3672	4 @ 21" O.C.	2 @ 27.25" O.C.			
PRD3715	6 @ 14.28" O.C.	3 @ 20.75" O.C.			
PRS	4 @ 20.46" O.C.	2 @ 31.13" O.C.			
PRL	5 @ 17.44" O.C.	2 @ 41.5" O.C.			
SAV1518	6 @ 22.43" O.C	3 @ 35.56" O.C.			
SAV2025	7 @ 21.02" O.C	3 @ 35.56" O.C.			
SAV28	7 @ 23.75" O.C	3 @ 35.56" O.C.			

ASSUMES:

CONC SLAB
fc= 4000PSI MINIMUM
6" MIN THICKNESS
NORMAL WEIGHT CONCRETE
MIN. 9-1/8" EDGE DISTANCE.

Meets seismic requirements for the following codes: CBC 2022 IBC 2021 ROOF ANCHORAGE DETAIL
CBISC Series

LXS

LXL

SUN3672

PRD3715

PRS

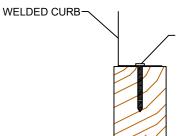
PRL

SAV1518

SAV2025

SAV28

CONCRETE ATTACHMENT


WELDED CURB

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 5/8" Ø THREADED ROD IN HILTI HIT-HY 200 V3 EPOXY WITH 4" EMBED

	NO. OF ANCHORAGE BOLTS REQUIRED				
CURB	LONG SIDE	SHORT SIDE			
LXS	4 @ 12.83" O.C.	2 @ 23.0" O.C.			
LXL	4 @ 12.83" O.C.	3 @ 16.50" O.C.			
SUN3672	4 @ 21.0" O.C.	2 @ 27.25" O.C.			
PRD3715	9 @ 8.92" O.C.	6 @ 8.30" O.C.			
PRS	5 @ 15.34" O.C.	3 @ 15.56" O.C.			
PRL	7 @ 11.63" O.C.	4 @ 13.83" O.C.			
SAV1518	8 @ 16.02" O.C.	6 @ 14.23" O.C.			
SAV2025	9 @ 15.77" O.C.	6 @ 14.23" O.C.			
SAV28	10 @ 15.83" O.C.	6 @ 14.23" O.C.			

* SIX INCHES FROM EACH CORNER EVENLY SPACED.
** CENTERED.

WOOD ATTACHMENT

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED ¼" Ø x 4.5" SIMPSON SDS SCREWS W/ 2.75" THREADED EMBED (SGMIN=0.50)

	NO. OF ANCHORAGE SCREWS REQUIRED			
CURB	LONG SIDE	SHORT SIDE		
LXS	8 @ 6.07" O.C.	5 @ 6.75" O.C.		
LXL	7 @ 7.08" O.C.	7 @ 6.17" O.C.		
SUN3672	9 @ 8.38" O.C.	5 @ 7.81" O.C.		
PRD3715	15 @ 5.38" O.C.	10 @ 5.06" O.C.		
PRS	10 @ 7.26" O.C.	6 @ 7.03" O.C.		
PRL	12 @ 6.70" O.C.	8 @ 6.50" O.C.		
SAV1518	15 @ 8.29" O.C.	10 @ 8.35" O.C.		
SAV2025	18 @ 7.65" O.C.	10 @ 8.35" O.C.		
SAV28	20 @ 7.71" O.C.	10 @ 8.35" O.C.		

FOUR INCHES FROM EACH CORNER EVENLY SPACED

3847 WABASH DRIVE MIRA LOMA, CA 91752

PHONE (951) 685-1101 FAX (619) 872-9799

	1
SUBMITTED TO:	١.
COMPANY:	н
JOB NAME:	Н
EQUIPMENT:	H
NOTES:	L
NO 1201	Ι'

FORM NO: CB-62

 DATE:
 REV:
 DRAWN BY:

 6/28/2023
 4
 FMM

For wood, concrete and steel attachment see Roof Anchorage Detail, Form No. CB-62.

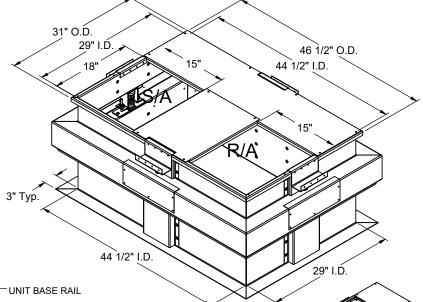
Welded Isolation springs housingare standard. For bolted spring housing, neoprene pads and spring cups see Weldment and Bolting Detail, Form No. CB-61

STRUCTURALLY CALCULATED VIBRATION ISOLATION ROOF CURB FOR LX SERIES SMALL CHASSIS UNITS

EST. PROVENT P/N В Α WEIGHT 8" 18" CBISCLXS18* 180 Lbs. CBISCLXS21** 21" 11" 195 Lbs. 14" 24" CBISCLXS24** 210 Lbs.

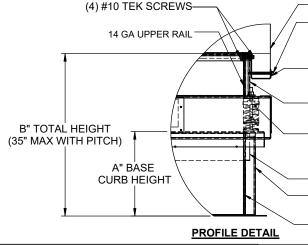
**Note: Spring configuration must be added to

part number at time of order


P***A CABINET

FEATURES

- Roof curbs sides and ends are 14 ga.
- · Fully welded construction.
- Gasketing package provided.
- Heat treated wood nailer provided.
- · insulated deck pans provided.
- Pitched curbs and taller curbs are available.
- CalDyn OSHPd pre-approved seismic restraints. (OPM-0401-13), (CQA).


NOTES

- Attach ductwork to roof curb. Flanges of duct rest on top of the curb, Support ductwork below the curb.
- Thru the curb utillities are available. Contact you York distributor or Provent directly.

Weight of upper portion supported by spring isolators= 111 Lbs.

Meets seismic requirements for the following codes:
CBC 2022
IBC 2021

-ATTATCH TO UNIT WITH

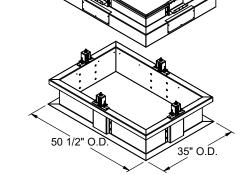
(4) #10 x 6" TEK SCREWS

EACH HOLD DOWN

-14 GA UNIT HOLD DOWN

(1) PER EACH SIDE

STIFFENER 16 GA x 7" x 3/4"


AT EACH HOLD DOWN
CQA ISOLATOR RESTRAINTS

- (1) PER EACH SHORT SIDE
- (1) I ER ERON ONOR OBE
- (1) PER EACH LONG SIDE

FULL PERIMETER WOOD NAILER
STIFFENER 16 GA x 7" x 1 1/2"

14 GA. CURB

AT EACH ISOLATOR

3847 WABASH DRIVE MIRA LOMA, CA 91752

PHONE (951) 685-1101 FAX (619) 872-9799 NOTES:

FORM NO: CBISC-01

7/28/2023

PART NUMBER:

DATE:

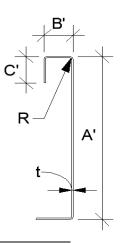
REV: DRAWN BY: 5 JG

Client: ProVent

PV2312

---> Negative values indicate opposite load.

		V2312	001001110	Оррсі	curbia	4			
•		so Curb	CBISCLXS			4			
Unit:	ALL P***A CA	BINET							
								A	
Upper Curb Inform	<u>ation</u>						F _V	EQ	
Hcurb upper =	5.5 i	n	(Height of u	pper curb rail)		1		*	
Lcurb =	46.5 i	n	(Length of u	pper curb)		+		unit unit)	
wcurb =	31 i		(Width of up						
				-		ļ			
WGTupper =	111		(Weight of u				P MAX		[_]
# Clips long side =	1	# Cli	ps short side =	1	重		FWAA	•	18.0
Unit Information						Wt _{min}		WGT _{UNIT}	Wt _{max}
WGTunit =	521 II	bs	(Weight of L	Jnit)	HCM	VVImin	,	WGTUNIT	VV (max Fh
Wtmax =	156 II	bs	(Maximum o	corner weight)		. ↓		•	↓ ¬ —
Wtmin =	111	bs	(Minimum c	orner weight)	++				 1
Hunit =	49 i		•	nit above curb)	<u>{</u>	. 8			
Hcm =	24.5 i				Hcurb Hcurb				—— 1
				enter of mass)	포 ㅗ -	´		•	
Lunit =	51.25 i		(Length of u				,	WGT _{CURB}	
Wunit =	35.75 i	n	(Width of ur	nit)	*	Ī		7	<u> </u>
						⋖			⊸ √
Seismic Loading - 2	021 IBC/20220	CBC				▼ T _{max}			C _{max}
Ss =	2.85		(Worst case	for majority of	California				•
Fa =	1.20			Class D - Table					
			•			,			
Ip =				Factor Categor	•	0,			
Sms =	3.420		(Fa*Ss)		ap =				
Sds =	2.280		(2/3*Sms)		Rp =	2			
Fpmax =	5.130 V	Vр	(0.4*ap*Sds	*Ip)*Wp*3/Rp	<=1.6*Sd	ls*Ip*Wp			
FpmaxASD =	1871 II	bs	(0.7*Fpmax)			FpmaxASD =	227	0 lbs	
	(unit only)		(======================================				(unit + upp		
Wind Landing 202							(unit i upp	er ranj	
Wind Loading - 202		<u></u>	/= co.s.	c					
Kz =	1.13			of height, Expos		abie 26.10-1	ACSE 7-16)		
Kzt =	1.00		(Max. assum	ned topographic	factor)				
Kd =	0.85		(Directionali	ty factor Table :	26.6-1 AS	SCE 7-16)			
Ke =	1.00		(Ground Ele	vation Factor Ta	ble 26.9	-1 ASCE 7-16)		
V =	110		Wind veloci	ity, mph for Occ	cupancy (Cat III-IV bldg	rs Exp. Cat (Fig 26.5-1D	- ASCE7-16)
GCr _(horiz) =	1.9			29.4.1 ASCE 7-16			,	.,	
. ,									
$GCr_{(vert)} =$	1.5		•	29.4.1 ASCE 7-16	•				
qz	29.8 p	osf	= 0.00256*K	z*Kzt*Kd*Ke*V	′ ² (Eq. 26	5.10-1 ASCE 7	7-16)		
F _{h ASD trans} =	658 I	bs	= 0.6*qz*GC	r*Lunit*(Hunit-	+Hcurb)	(Eq. 29.4-2)			
F _{h ASD long} =	459 II	hs		cr*Wunit*(Huni					
F _{vert ASD} =	341 II			Cr*Lunit*Wunit					
vert ASD —	341 1	D3	- 0.0 qz dc	a Luint Waint	(Lq. 23	.4-3)			
Upper Curb Loading	g								
<u>Transverse:</u>			_						
Compression _{SEISMIC} =	1891 I	bs)*Hcm+2*(1+0.:					
Tension _{SEISMIC} =	1416 I	bs	=[FpmaxASE)*Hcm-2*(0.6-0	.14S _{DS})*\	Ntmin*wcur	b)]/wcurb		
Compression _{WIND} =	537 I	bs	=[F _{h ASD trans} *	Hcm+2*0.6*Wt	max*wcı	urb-F _{vert ASD} *	wcurb/2]/w	curb	
Tension _{WIND} =	557 II			Hcm-2*0.6*Wt					
. =WIND						· vertasu •	/ - J/ W		
1 - 2 2 2	> Negative	values inc	iicate opposite	iodu.					
Longitudinal:			re		4446 1	4.	11/1		
Compression _{SEISMIC} =	1398 I)*Hcm+2*(1+0.:					
$Tension_{SEISMIC} =$	924 I	bs	=[FpmaxASE)*Hcm-2*(0.6-0	.14S _{DS})*\	Ntmin*Lcurk)]/Lcurb		
Compression _{WIND} =	259 I	bs	=[F _{h ASD long} *I	lcm+2*0.6*Wtr	max*Lcui	rb-F _{vertASD} *Lc	urb/2]/Lcui	rb	
Tension _{WIND} =	279 II	bs		Hcm-2*0.6*Wtr					
***************************************	> Negative		_			VC. 0130			
Caucamin - D	•	vaiues iil	irate opposite	ioau.					
Governing Reaction		1004	II	1 - 41- 1		l-			
<u>Transverse:</u>	Comp _{MAX} =	1891	lbs	> Along long	edge of	curb.			
(on long edge)	Tens _{MAX} =	1416	lbs	> Along long	edge of	curb.			
					•				
Longitudinal:	Comp _{MAX} =	1398	lbs	> Along shor					
(on short edge)	Tens _{MAX} =	924	lbs	> Along shor	t edge of	f curb.			
•	·		licate onnosite						


Upper curb rail

Curb Design

Calculate Section Properties of Curb

A'=	5.500	in	a =	5.144 in = A'-(2r+t)
B'=	1.000	in	a'=	5.429 in = A'-t
C'=	0.000	in (0 if no lips)	b =	0.822 in = B'-[r+t/2+ α (r+t/2)]
α=	0.000	(0 - no Lip; 1 w/ lip)	b'=	$0.964 \text{ in } = B'-(t/2+\alpha t/2)$
R =	0.1069	(Inside bend radius)	c =	0.000 in = $\alpha[C'-(r+t/2)]$
t =	0.0713	in	c'=	0.000 in = $\alpha(C'-t/2)$
r'=	0.143	in = $R+t/2$	u =	$0.224 \text{ in } = \pi r/2$
x =	0.129	in (Distance between centi	roid and web	centerline)
Ix =	1.899	in ⁴	rx =	1.92 in
ly =	0.034	in ⁴	ry =	0.257 in
A =	0.52	in ²	rmin =	0.257 in

Axial Compression

III DI COOIOII			
Pa =	0.935 k	(Max Axial Comp)	$\Omega_{\rm c}$ = 1.80
$Pn/\Omega c =$	7.976 k	(E) < 15, $E = (0.656)$	$\rho \lambda_c^2 \rangle_E$
Fe =	35.72 ksi	$P_n = F_n A \qquad If \ \lambda_c \le 1.5; \ F_n = \left(0.658\right)$	
λc =	1.18	$\frac{n}{\Omega_c} = \frac{n}{\Omega_c}$ If $\lambda_c > 1.5$; $F_n = \frac{0.877}{\lambda_c^2}$	$\lambda_c = \sqrt{\frac{F_y}{F_e}} \qquad F_e = \frac{\pi^2 E}{(kl/r)^2}$
Fn =	27.83 ksi	λ_c^2	· (//)
Ly =	29.00 in	Lateral unbraced length	
$k_y L_y / r_y =$	90	(assume k=0.8)	

Compression Check = O.K.

Check Web Crippling

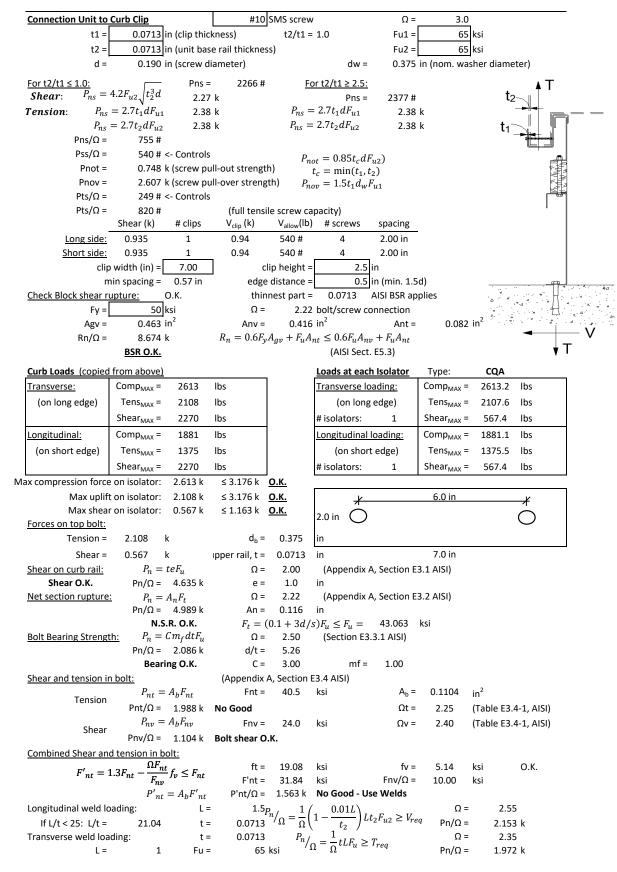
h =	5.5 in	Check limits:		C = 7.50
t =	0.0713 in	h/t =	77.14 ≤ 260	$C_R = 0.08$ (See table C3.4.1-2, fastened to
N =	7.00	N/t =	$98.18 \le 210$	$C_N = 0.12$ support, two flange, end loading)
$\Omega_{\rm w}$ =	1.75	N/h =	$1.273 \le 2.0$	$C_h = 0.048$
P _n =	1.947 k	R/t =	1.50 ≤ 12.0	
$P_n/\Omega_w =$	1.112 k		$P_n =$	$=Ct^{2}F_{y}\sin(90)\left(1-C_{R}\sqrt{\frac{R}{t}}\right)\left(1+C_{N}\sqrt{\frac{N}{t}}\right)\left(1-C_{h}\sqrt{\frac{h}{t}}\right)$
Long side: Pu _{Trans} =	1.891 k	web stiffener REQ'D #	clips = 1	
Short side: Pu _{Long} =	1.398 k	web stiffener REQ'D #	clips = 1	

Check Web Stiffener	16Ga x 3/4	lin x 7in (C-chanr	iel)	$P_n = 0.7$	$\left(P_{wc} + A_e F_y\right) \ge$	P_{wc}
width of stiffener =	7.000 in	ts =	0.0566 16 Gauge	Pwc =	1.947 k	
web of stiff. w =	6.717 in	Rs =	0.0849 in	Pn =	14.669 k	
***Check w/ts ≤ 1.28\	/E/Fys	$\Omega_{\rm c}$ =	1.70	Ae =	0.380 in ²	

w/ts = 118.675

 $Pn/\Omega_c =$ 1.28v(E/Fys) = 31.091 --> w/ts over limit Use C3.7.2 8.629 k <u>O.K.</u>

$1/4"\ \varphi$ SAE Grade 8 bolts w/ $1/4\mbox{-}20\mbox{-}UNC$ Threaded inserts **Corner Connections**


567 lbs $Max(F_{pmaxASD}/4 - OR- Fh_{ASDtrans}/4 corner connections)$ Tcrnmax = Max(Tens/2 -OR- Comp/2 corner connections per side) 946 lbs Vcrnmax = 1208 lbs Bolt: Tall = 2480 lbs Vall = Threaded Insert: Tall = 2860 lbs Vall = 1096 lbs

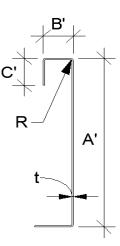
of Bolts required for Tension = 0.2 # of Bolts required for Shear = 0.9 # of Bolts Used = 2.0

0.546 **O.K.** Check Combined Stress in Bolts & Inserts:

Check 1/8" welded connection

Client:	ProVent	PV2312		Base curb
Project:	CBISC-01	Iso Curb	CBISCLXS	
Unit:	ALL P***A	CABINET		

Unit:	ALL P***A CABINE			
Base Coult Informat	ion			♣ Fv
Base Curb Informat Hbase curb =	25 in	(Height of base curb)	EQ	EQ EQ
Lcurb =	50.5 in	(Length of base curb)		Wunit
wcurb =	35 in	(Width of base curb)		(× Lunit)
WGTbase =	128 lbs	(Weight of base curb)		
			FPN	XAILX
# Springs long side =	1 # S	orings short side = 1	Hunit	14X
Unit Information	F21 lbs	(Maight of Unit)	3.574	WGT _{UNIT} Wt _{max}
WGTunit =	521 lbs	(Weight of Unit)	E Wt _{min}	Fh Fh
Wt'max =	184 lbs	(Wtmax+1/4*WGTupper)	<u> </u>	<u>V</u>
Wt'min =	138 lbs	(Wtmin+1/4*WGTupper))	ام از	
Hunit =	49 in	(Height of unit above curb	Hcurb Hcurb (d	
H'cm =	34.5 in	(Hcm+10"(upper+spring))	외프	•
Lunit =	51.25 in	(Length of unit)		WGT _{CURB}
Wunit =	35.75 in	(Width of unit)		`
WGTunit+upper+base =	760 lbs	(Total weight)	⋖ ↓_ ∨	⊸ ∨
Seismic Loading - 20		, , , , , , , , , , , , , , , , , , ,	▼ T _{max}	C _{max}
Ss =	2.85	(Worst case for majority o	·	
Fa =	1.20	(Default Site Class D - Tabl		
Ip =	1.50	(Importance Factor Catego		
Sms =	3.420	(Fa*Ss)	ap = 2.5	
Sds =	2.280	(2/3*Sms)	Rp = 2	
Fpmax =	5.130 Wp	(0.4*ap*Sds*Ip)*Wp*3/Rp	• •	
FpmaxASD =	2270 lbs	(0.7*Fpmax)	FpmaxASD =	2729 lbs
	(unit + upper rail)		(unit + upp	er rail + base curb)
Wind Loading - 202				
Kz =	1.13	(For 60 ft roof height, Exp		CSE 7-16)
Kzt =	1.00	(Max. assumed topograph	•	
Kd =	0.85	(Directionality factor Table	· · · · · · · · · · · · · · · · · · ·	
Ke =	1.00	(Ground Elevation Factor	•	
V =	110			xp. Cat C, Fig 26.5-1D - ASCE7-16)
$GCr_{(horiz)} =$	1.9	(Refer Sect 29.4.1 ASCE 7-	16)	
$GCr_{(vert)} =$	1.5	(Refer Sect 29.4.1 ASCE 7-	16)	
qz	29.8 psf	= 0.00256*Kz*Kzt*Kd*Ke*	*V ² (Eq. 26.10-1 ASCE 7-1	6)
F _{h ASD trans} =	1014 lbs	= 0.6*qz*GCr*Lunit*(Hun	it+Hbase curb+10") (Eq. 2	29.4-2)
F _{h ASD long} =	707 lbs	= 0.6*qz*GCr*Wunit*(Hu	nit+Hbase curb+10")	
F _{vert ASD} =	341 lbs	= 0.6*qz*GCr*Lunit*Wuni	it (Eq. 29.4-3)	
Base Curb Loading				
Transverse:				
Compression _{SEISMIC} =	2723 lbs	=[FpmaxASD*H'cm+2*(1+	0.14S _{DS})*Wt'max*wcurb],	/wcurb
Tension _{SEISMIC} =	2159 lbs	=[FpmaxASD*H'cm-2*(0.6	-0.14S _{DS})*Wt'min*wcurb)]/wcurb
Compression _{WIND} =	1050 lbs	=[F _{h ASD trans} *H'cm+2*0.6*\	Wt'max*wcurb-F _{vert ASD} *wo	curb/2]/wcurb
Tension _{WIND} =	1004 lbs	=[F _{h ASD trans} *H'cm-2*0.6*V	Vt'min*wcurb+F _{vertASD} *wc	urb/2]/wcurb
	> Negative value	s indicate opposite load.		
Longitudinal:	.0			
Compression _{SEISMIC} =	2036 lbs	=[FpmaxASD*H'cm+2*(1+	0.14*S _{DS})*Wt'max*Lcurb]	/Lcurb
Tension _{SEISMIC} =	1473 lbs	=[FpmaxASD*H'cm-2*(0.6	-0.14S _{DS})*Wt'min*Lcurb)]	/Lcurb
Compression _{WIND} =	534 lbs	=[F _{h ASD long} *H'cm+2*0.6*V		
Tension _{WIND} =	487 lbs	=[F _{h ASD long} *H'cm-2*0.6*W		
		s indicate opposite load.	***************************************	
Governing Reaction	=			
Transverse:	Comp _{MAX} = 27	23 lbs> Along lor	ng edge of curb.	
	Tens _{MAX} = 21	· ·	ng edge of curb.	
(on long edge)		•		
Longitudinal:	$Comp_{MAX} = 203$	_	ort edge of curb.	
(on short edge)	Tens _{MAX} = 14	73 lbs> Along sho	ort edge of curb.	
	> Negative value	s indicate opposite load.		



Fy =	50 ksi	Fu =	65 ksi
E =	29500 ksi	t =	0.0713 14 Gauge

Calculate Section Properties of Curb

tion P	roperties of t	<u>urb</u>			
A'=	25.000	in	a =	24.644 in	= A'-(2r+t)
B'=	1.750	in	a'=	24.929 in	= A'-t
C'=	0.000	in (0 if no lips)	b =	1.572 in	= B'-[r+t/2+ α (r+t/2)]
α =	0.000	(0 - no Lip; 1 w/ lip)	b'=	1.714 in	$= B'-(t/2+\alpha t/2)$
R =	0.1069	(Inside bend radius)	c =	0.000 in	$= \alpha[C'-(r+t/2)]$
t =	0.0713	in	c'=	0.000 in	$= \alpha(C'-t/2)$
r'=	0.143	in = $R+t/2$	u =	0.224 in	= πr/2
x =	0.104	in (Distance between	centroid and web c	enterline)	
lx =	128.737	in	rx =	8.00 in	
ly =	0.218	in	ry =	0.329 in	
A =	2.01	in ²	rmin =	0.329 in	

Axial Compression

Pu =	1.135 k	(Max Axial Comp)	$\Omega_c =$	1.80
Pn/Ωc =	18.917 k	$If \lambda < 1E, E = (0.6E0\lambda_c^2)E$	_	
Fe =	19.29 ksi	$P_n F_n A If \lambda_c \le 1.5; F_n = \left(0.658^{\lambda_c^2}\right) F_y$	$\lambda_{-} = \left \frac{F_{y}}{F_{y}} \right $	$_{E}$ $_{-}$ $\pi^{2}E$
λc =	1.61	$\frac{\kappa}{\Omega_c} = \frac{\kappa}{\Omega_c} \qquad If \ \lambda_c > 1.5; F_n = \frac{0.877}{\lambda_c^2} F_y$	$\kappa_c - \sqrt{\overline{F_e}}$	$r_e = \frac{1}{(kl/1)^2}$
Fn =	16.91 ksi	λ_c^2 λ_c^2	1	(7r)
Ly =	50.50 in	Lateral unbraced length		

Compression Check = O.K.

123

Check Web Crippling

 $k_y L_y / r_y =$

h =	25 in	Check limi	its:	C = 4.00	
t =	0.0713 in	h/t =	350.63 ≤ 260	$C_R = 0.14$	(See table C3.4.1-2, fastened to
N =	7.00	N/t =	98.18 ≤ 210	$C_{N} = 0.35$	support, one flange, end loading)
$\Omega_{\rm w}$ =	1.75	N/h =	$0.28 \le 2.0$	$C_{h} = 0.02$	
$P_n =$	2.105 k	R/t =	$1.50 \le 9.0$	/ [$\overline{R} \setminus (\overline{N} \setminus \overline{N})$
$P_n/\Omega_w =$	1.203 k		$P_n =$	$= Ct^2F_y\sin(90)\left(1 - C_R\right)$	$\left(\frac{R}{L}\right)\left(1+C_N\left \frac{R}{L}\right \right)\left(1-C_h\left \frac{R}{L}\right \right)$
Long side: Pu _{Trans} =	2.723 k	web stiffener REQ'D	# clips = 1	, , , ,	$t = \frac{t}{t}$
Short side: Pulong =	2.036 k	web stiffener REQ'D	# clips = 1	`	, , , , , , , , , , , , , , , , , , , ,

***h/t > 260; use web stiffeners

(assume k=0.8)

Check Web Stiffener

16Ga x 1.5in x 7in (C-channel) 0.0566 16 Gauge width of stiffener = 7.000 in ts = 6.717 in 0.0849 in web of stiff. w = Rs = ***Check w/ts ≤ 1.28√E/Fys $\Omega_c =$ 1.70

w/ts = 118.675

1.28 V(E/Fys) =31.091 --> w/ts over limit Use C3.7.2

 $P_n = 0.7(P_{wc} + A_e F_y) \ge P_{wc}$

0.380 in² Pwc = 2.105 k Ae =

Pn = 14.780 k

 $Pn/\Omega_c =$ 8.694 k <u>O.K.</u>

1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts **Corner Connections**

 $Max(F_{pmaxASD}/4 - OR- Fh_{ASDtrans}/4 corner connections)$ Tcrnmax = 682 lbs Vcrnmax = 1361 lbs Max(Tens/2 -OR- Comp/2 corner connections per side) Bolt: Tall = 2480 lbs Vall = 1208 lbs 1096 lbs

Threaded Insert: Tall = 2860 lbs Vall =

of Bolts required for Tension = 0.3

of Bolts required for Shear = 1.2 # of Bolts Used = 3.0

Check Combined Stress in Bolts & Inserts: 0.506 **O.K.**

Check 1/8" welded connection

Curb Loads (copied	from upper rail calcs)			Loads at each Isolat	<u>or</u> Type:	CQA
<u>Transverse:</u>	Comp _{MAX} = 2613	lbs		Transverse loading:	Comp _{MAX} =	2613.2 lbs
(on long edge)	Tens _{MAX} = 2108	lbs		(on long edge)	Tens _{MAX} =	2107.6 lbs
	Shear _{MAX} = 2270	lbs		# isolators: 1	Shear _{MAX} =	567.4 lbs
Longitudinal:	Comp _{MAX} = 1881	lbs		Longitudinal loading	Comp _{MAX} =	1881.1 lbs
(on short edge)	Tens _{MAX} = 1375	lbs		(on short edge)	Tens _{MAX} =	1375.5 lbs
	Shear _{MAX} = 2270	lbs		# isolators: 1	Shear _{MAX} =	567.4 lbs
lax compression force	on isolator: 2.613 k	≤ 3.176 k	<u>О.К.</u>		•	
Max uplift	t on isolator: 2.108 k	≤ 3.176 k	<u>О.К.</u>	<u> </u>	6.0 in	¥
Max shear	on isolator: 0.567 k	≤ 1.163 k	<u>О.К.</u>	2.0 in		$\stackrel{\uparrow}{\frown}$
Forces on bottom be	olts:			2.0 111		\cup
d _b =	0.5 in					
base curb, t =	0.0713 in				7.0 in	
Tension =	1.054 k / bolt					t ₂
Shear =	0.284 k / bolt					
Shear on base curb:	$P_n = teF_u$	Ω =	2.00	(Appendix A, Secti	on E3.1 AISI)	t ₁
	$Pn/\Omega = 4.635 \text{ k}$	e =	1.0	in		
	Shear O.K.					
Net section rupture:	$P_n = A_n F_t$	Ω =	2.22	(Appendix A, Secti	on E3.2 AISI)	
	$Pn/\Omega = 5.909 \text{ k}$	An =	0.107	in		
	N.S.R. O.K.	$F_t = ($	0.1 + 3d	$(s)F_u \le F_u = 55.25$	50 ksi	
Bolt Bearing Strengt	$P_n = Cm_f dt F_u$	Ω =	2.50	(Section E3.3.1 AIS	51)	
	$Pn/\Omega = 2.781 k$	d/t =	7.01			
	Bearing O.K.	C =	3.00	mf = 1.00)	
Shear and tension in	n bolt:	(Appendix A	A, Section	E3.4 AISI)		
Tension	$P_{nt} = A_b F_{nt}$	Fnt =	45.0 ksi	$A_b = 0.196$	63 in²	
161131011	$Pnt/\Omega = 3.927 k$	Bolt tension	О.К.	$\Omega t = 2.25$	5	
Shear	$P_{nv} = A_b F_{nv}$	Fnv =	27.0 ksi			
Jileai	$Pnv/\Omega = 2.209 k$	Bolt shear O.	K.	***(Table E3.4-1	, AISI)***	→ V
Combined Shear and	d tension in bolt:					↓ T
	O.F.	c.				

 $F'_{nt} = 1.3F_{nt} - \frac{\Omega F_{nt}}{F_{nv}} f_v \leq F_{nt} \qquad \begin{array}{c} \text{ft =} \quad 10.73 \quad \text{ksi} \\ \text{F'nt =} \quad 45.00 \quad \text{ksi} \\ P'_{nt} = A_b F'_{nt} \qquad \qquad \text{P'nt}/\Omega = \quad 3.927 \text{ k} \quad \text{Com} \\ \text{Connection of Curb to Supporting Structure} \end{array}$

776 lbs

Tension_{WIND} =

Roof Loading	SEISMIC: (0.6-0.14S _{DS}	s)D + 0.7E	WIND: 0.6D + W	
<u>Transverse:</u>	Uplift _{MAX} =	4533 lbs	Shear _{MAX} =	1365 lbs
Compression _{SEISMIC} =	5141 lbs	=[FpmaxASD*(H'cm+Hb	ase curb)+(1+0.14S _{DS})*WGT _u	nit+upper+base*wcurb/2]/wcurb
Tension _{SEISMIC} =	4533 lbs	=[FpmaxASD*(H'cm+Hb	ase curb)-(0.6-0.14S _{DS})*WGT	unit+upper+base*wcurb/2]/wcurb
$Compression_{WIND} =$	1781 lbs	=[F _{h ASD trans} *(H'cm+Hbas	se curb)+0.6*WGT _{unit+upper+base}	wcurb/2-F _{vert ASD} *wcurb/2]/wcu
Tension _{WIND} =	1666 lbs	=[F _{h ASD trans} *(H'cm+Hbas	se curb)-0.6*WGT _{unit+upper+base}	*wcurb/2+F _{vertASD} *wcurb/2]/wcu
Longitudinal:	Uplift _{MAX} =	3109 lbs	Shear _{MAX} =	1365 lbs
Compression _{SEISMIC} =	3717 lbs	=[FpmaxASD*(H'cm+Hb	ase curb)+(1+0.14S _{DS})*WGT _u	_{nit+upper+base} *Lcurb/2]/Lcurb
Tension _{SEISMIC} =	3109 lbs	=[FpmaxASD*(H'cm+Hb	ase curb)-(0.6-0.14S _{DS})*WGT	unit+upper+base*Lcurb/2]/Lcurb
$Compression_{WIND} =$	891 lbs	$=[F_{h ASD long}*(H'cm+Hbas$	e curb)+0.6*WGT _{unit+upper+base}	*Lcurb/2-F _{vert ASD} *Lcurb/2]/Lcurb

1.44

 $Fnv/\Omega = 11.25$

 $= [F_{h \; ASD \; long}*(H'cm + Hbase \; curb) - 0.6*WGT_{unit+upper+base}*Lcurb/2 + F_{vertASD}*Lcurb/2]/Lcurb$

 $P'nt/\Omega = 3.927 k$ Combined Not Applicable -> F'nt = Fnt

O.K.

Wood Attach	ment: 1/4"φ x 4.5	" Simpson S	DS screws	w/ 2.75" thre	eaded emb	(SGmin = 0.43)
	Tall _{metal} =	997	lbs	$Vall_{metal} =$	1097	Ibs
Transverse:	Tall _{wood} =	760	lbs	Vall _{wood} =	672	Ibs
	# of Screws Req'd for Uplift =	5.96		COMBINED	LOADING:	0.902 O.K.
;	# of Screws Req'd for Shear =	2.03	_	Req'd Mi	n Spacing =	6.07 in o.c.
	Total # of screws required =	8				.

Use 8 - 1/4" ϕ x 4.5" Simpson SDS screws @ 6.1 in o.c. along long side of curb w/ 2.75" threaded embed

Longitudinal:

of Screws Req'd for Uplift = 4.09 COMBINED LOADING: 0.974 O.K. 2.03 Screw Spacing =

6.75 in o.c. # of Screws Reg'd for Shear = Total # of screws required = 5 Use 5 - 1/4" ox 4.5" Simpson SDS screws @ 6.8 in o.c. along short side of curb w/ 2.75" threaded embed Steel Deck Attachment: 1/2" φ A307 Bolts to steel angle below deck Tall_{bolt} = 3927 lbs 2209 lbs 2192 lbs Transverse: $Tall_{metal} =$ 2086 lbs Vall_{metal} = # of Bolts Req'd for Uplift = 2.17 COMBINED LOADING: 0.849 O.K. # of Bolts Reg'd for Shear = Bolt Spacing = 19.25 in o.c. 0.62 3 Total # of bolts required = Use 3 - 1/2" φ A307 Bolts to steel angle below deck @ 19.3 in o.c. along long side of curb Longitudinal: # of Bolts Req'd for Uplift = 1.49 COMBINED LOADING: # of Bolts Req'd for Shear = 0.62 Bolt Spacing = 23.00 in o.c. Total # of bolts required = Use 2 - 1/2" φ A307 Bolts to steel angle below deck @ 23 in o.c. along short side of curb **For Concrete anchorage:** SEISMIC (0.6-0.14S_{DS})D + $0.7\Omega_o$ E Concrete Attachment: 0.625in & HAS rods in Hilti HIT-HY 200 V3 epoxy w/ 4in embed A_{Na} Epoxy: Hilti HIT-HY 200 V3 (ICC ESR 4868) 4000 psi f'c = 6 in (concrete thickness, t_min = h_ef + 2do) O.K. h = 4 in (effective embedment) h_ef = 0.625 in (anchor diameter) 0.75 in (hole diameter) da : do = 5 (number of dummy anchors to check capacity with spacing effect) n = 14 in (initial spacing estimate) s = 1170 2220 psi (from ESR 4868, Table 14, Temp range B) tk.cr / uncr = τk,cr / uncr = multiply by $(f'_c/2500)^{0.1}$ 1226 2327 psi If $f'_c > 2500$, $c_{Na} = 10d_a \sqrt{\frac{\tau_{uncr}}{1100}}$ c_Na= 9.0625 in (min. edge distance for full capacity); $N_{ag} = \frac{A_{Na}}{A_{Nao}} \varphi_{ec,Na} \varphi_{ed,Na} \varphi_{cp,Na} N_{ba}$ Tension: (ACI318-14, 17.4.5.1b) Bond strength $\varphi_{ec,Na}\varphi_{ed,Na}\varphi_{cp,Na}=1.0$ CNa ***Bond strength $A_{Na}=$ 1343.52 in² will govern over A_{Nao}= 328.52 in² concrete breakout $N_{ba} =$ $N_{ba} = \lambda_a \tau_{cr} \pi d_a h_{ef} \alpha_{n,seismic}$ 9535 lbs $\alpha_{n.seismic} = 0.99$ 38995 lbs (group) $N_{ag} =$ $\lambda_a = 1.0$ CONTROLS $\lambda_a = 1.0$ for normal weight conc; 0.6 for lightwo ØN_{ag} = 19010 lbs (group) $\frac{A_{Nc}}{4}\varphi_{ec,N}\varphi_{ed,N}\varphi_{cp,N}N_b$ Breakout $N_{cbg} =$ $N_b = \lambda_a k_c \sqrt{f'_c} h_{ef}^{1.5}$ strength 816 in² A_{Nc} = $N_b = 8601$ 0.75 144 in² kc = 17A_{Nco} = 0.65 $N_{cbg} =$ 48741 lbs (group) 0.75 27417 lbs (group) 0.65 $\phi N_{cbg} =$ 7865 (from ESR4868, Table 11) Shear: Vsa,eq = 0.6 Steel strength 3067 øVsa,eq = Tall_{IRED} = 3802 lbs (anchor) Vall_{IRFD} = 3067 lbs $\propto = (1 + 0.2SDS)D + 2.5E = 1.421$ $Tall_{ASD} = Tall_{LRFD}/\alpha =$ $Vall_{ASD} = Vall_{LRFD}/\alpha =$ 2225 lbs 1795 lbs D = 0.758 $E \oplus .242 \propto = 1.709$ $Uplift_{MAX} =$ $Shear_{MAX} =$ 3411 lbs 5489 lbs Transverse: =[Ωo*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*WGT_{unit+curb}*wcurb/2]/wcurb Compression_{SEISMIC} = 6078 lbs Tension_{SEISMIC} = 5489 lbs = $[\Omega o*FpmaxASD*(Hcm+Hcurb)-(0.6-0.14S_{DS})*WGT_{unit+curb}*wcurb/2]/wcurb$ Shear_{SEISMIC} = 3411 lbs =Ωo*FpmaxASD/2 Min Bolts Req'd Uplift = 2.47 spacing = 19.25 in o.c. Tapplied = 1372.3 lbs Min Bolts Req'd Shear = 38.50 in o.c. Vapplied = 568.6 lbs 2.00 spacing = $\frac{T_{applied}}{T_{allow,ASD}} + \frac{V_{apllied}}{V_{allow,ASD}}$ bolts Try using O.K. COMBINED LOADING = ≤ 1.2 spaced at 12.83 in o.c Use 4 - 0.625in ϕ HAS rods in Hilti HIT-HY 200 V3 epoxy @ 12.8 in o.c. max. along long side of curb w/ 4in embed

 $Uplift_{MAX} =$

Longitudinal:

3773 lbs

 $Shear_{MAX} =$

3411 lbs

= $[\Omega o*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*WGT_{unit+curb}*Lcurb/2]/Lcurb$ Compression_{SEISMIC} = 4362 lbs $= \! [\Omega o^* FpmaxASD^*(Hcm + Hcurb) - (0.6 - 0.14S_{DS})^*WGT_{unit + curb}^* Lcurb/2] / Lcurb$ $Tension_{SEISMIC} =$ 3773 lbs $\mathsf{Shear}_{\mathsf{SEISMIC}} =$ 3411 lbs $=\Omega o*FpmaxASD/2$ Min Bolts Req'd Uplift = 1.70 spacing = 11.50 in o.c. Tapplied = 1886.4 lbs 23.00 in o.c. Vapplied = 568.6 lbs Min Bolts Req'd Shear = 2.00 spacing = $V_{apllied} \le 1.2$ $\frac{T_{applied}}{T_{allow,ASD}} + \frac{V_{apllied}}{V_{allow,ASD}}$ Try using bolts O.K. COMBINED LOADING = spaced at 23.00 in o.c.

Use 2 - 0.625in φ HAS rods in Hilti HIT-HY 200 V3 epoxy @ 23 in o.c. max. along short side of curb w/ 4in embed

CURB DESIGN SUM	MARY:	CBISC-01	CBISCLXS		Unit:	ALL P***A CABINET
UPPER CURB RAIL	THICKNESS:	0.0713 in	14 Gauge			
UNIT CLIP	THICKNESS:	0.0713 in	14 Gauge			
# OF CLIPS (I	# OF CLIPS (LONG SIDE) - 1 clips with 4 - #10 SMS screws each clip					
WEE	STIFFENER:	16Ga x 3/4i	n x 7in (C-cha	nnel) stiffen	er at each cl	ip
# OF CLIPS (SI	HORT SIDE) -	1 clips with	4 - #10 SMS	crews each	clip	
WEE	STIFFENER:	16Ga x 3/4i	n x 7in (C-cha	nnel) stiffen	er at each cl	ip
VIBRATION ISOLATOR TYPE: CQA Top stud dia			l diameter:	3/8	(1) - CQA Isolators long side	
Anchor bolt diameter: 1/2 Anchor hole diamter				le diamter:	9/16	(1) - CQA Isolators short side
BASE CURB THICKNESS: 0.0713 in 14 Gauge ***Must weld top o					***Must weld top of CQA***	
WEE	STIFFENER:	16Ga x 1.5i	n x 7in (C-cha	nnel) stiffen	er at each cl	ip on base curb
CORNER CO	ONNECTION:	Use minimu	ım 3 - 1/4" φ	SAE Grade 8	bolts w/ 1/4	4-20-UNC Threaded inserts
CURB		WOOD		STE	EL	<u>CONCRETE</u>
ANCHORAGE	1/4"¢ x 4.5'	' Simpson SE	OS screws w/	1/2" ф A30	7 Bolts to	0.625in φ HAS rods in Hilti HIT-HY
ANCHORAGE	2.75" thre	aded embed	d (SGmin =	steel angle below deck		200 V3 epoxy w/ 4in embed
LONG DIRECTION	8	@ 6.07 in o.	.c.	3 @ 19.25 in o.c.		4 @ 12.83 in o.c.
SHORT DIRECTION 5 @ 6.75 in o.c.			2 @ 23	in o.c.	2 @ 23 in o.c.	