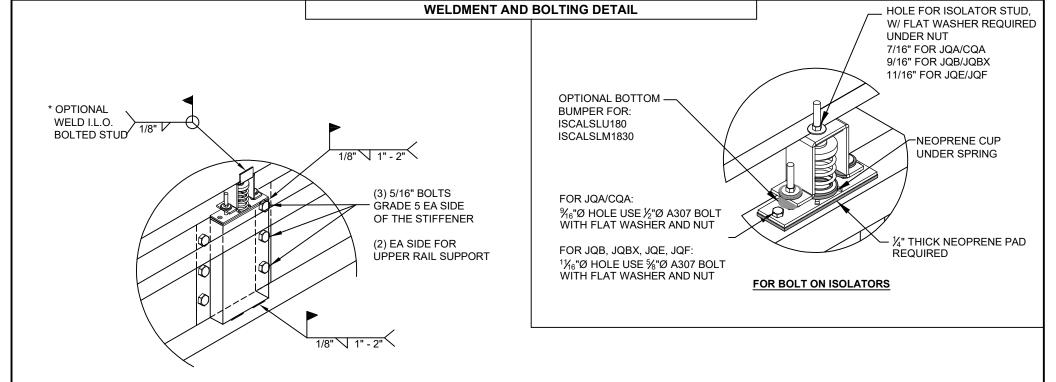


Structural Calculations for CBISC-04 Series

CBISCPRD3715** SERIES


Prepared for:

PROVENT / RRS

3847 Wabash Drive Mira Loma, CA 91725

Date: August 23, 2023

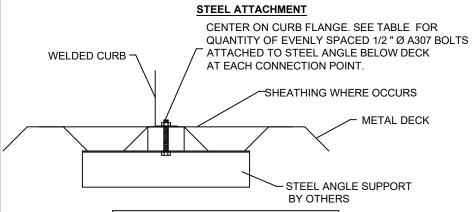
Project Number: PV2312

Note: * - INDICATES WELD REQUIRED I.L.O. BOLTED STUD FOR THE FOLLOWING CURBS:

BASE CURB SUPPORT

- -LXL (CBISC-02)
- -PRD3715 (CBISC-04)
- -SAV1518 (CBISC-12)
- -SAV2025 (CBISC-13)
- -SAV28 (CBISC-14)

3847 WABASH DRIVE MIRA LOMA, CA 91725


PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITTED TO:
COMPANY:
JOB NAME:
EQUIPMENT:
NOTES:

FORM NO: CB-61

 DATE:
 REV:
 DRAWN BY:

 08/14/23
 2
 FMM

	NO. OF ANCHORAGE BOLTS REQUIRED				
CURB	LONG SIDE	SHORT SIDE			
LXS	3 @ 19.25" O.C.	2 @ 23" O.C.			
LXL	3 @ 19.25" O.C.	2 @ 33" O.C.			
SUN3672	4 @ 21" O.C.	2 @ 27.25" O.C.			
PRD3715 PRS	6 @ 14.28" O.C.	3 @ 20.75" O.C.			
	4 @ 20.46" O.C.	2 @ 31.13" O.C.			
PRL	5 @ 17.44" O.C.	2 @ 41.5" O.C.			
SAV1518	6 @ 22.43" O.C	3 @ 35.56" O.C.			
SAV2025	7 @ 21.02" O.C	3 @ 35.56" O.C.			
SAV28	7 @ 23.75" O.C	3 @ 35.56" O.C.			

ASSUMES:

CONC SLAB
fc= 4000PSI MINIMUM
6" MIN THICKNESS
NORMAL WEIGHT CONCRETE
MIN. 9-1/8" EDGE DISTANCE.

Meets seismic requirements for the following codes: CBC 2022 IBC 2021 ROOF ANCHORAGE DETAIL
CBISC Series

LXS

LXL

SUN3672

PRD3715

PRS

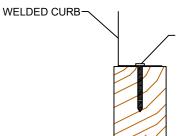
PRL

SAV1518

SAV2025

SAV28

CONCRETE ATTACHMENT


WELDED CURB

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 5/8" Ø THREADED ROD IN HILTI HIT-HY 200 V3 EPOXY WITH 4" EMBED

	NO. OF ANCHORAGE BOLTS REQUIRED				
CURB	LONG SIDE SHORT SIDE				
LXS	4 @ 12.83" O.C.	2 @ 23.0" O.C.			
LXL	4 @ 12.83" O.C.	3 @ 16.50" O.C.			
SUN3672	4 @ 21.0" O.C.	2 @ 27.25" O.C.			
PRD3715	9 @ 8.92" O.C.	6 @ 8.30" O.C.			
PRS	5 @ 15.34" O.C.	3 @ 15.56" O.C.			
PRL	7 @ 11.63" O.C.	4 @ 13.83" O.C.			
SAV1518	8 @ 16.02" O.C.	6 @ 14.23" O.C.			
SAV2025	9 @ 15.77" O.C.	6 @ 14.23" O.C.			
SAV28	10 @ 15.83" O.C.	6 @ 14.23" O.C.			

* SIX INCHES FROM EACH CORNER EVENLY SPACED.
** CENTERED.

WOOD ATTACHMENT

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED ¼" Ø x 4.5" SIMPSON SDS SCREWS W/ 2.75" THREADED EMBED (SGMIN=0.50)

	NO. OF ANCHORAGE SCREWS REQUIRED			
CURB	LONG SIDE	SHORT SIDE		
LXS	8 @ 6.07" O.C.	5 @ 6.75" O.C.		
LXL	7 @ 7.08" O.C.	7 @ 6.17" O.C.		
SUN3672	9 @ 8.38" O.C.	5 @ 7.81" O.C.		
PRD3715	15 @ 5.38" O.C.	10 @ 5.06" O.C.		
PRS	10 @ 7.26" O.C.	6 @ 7.03" O.C.		
PRL	12 @ 6.70" O.C.	8 @ 6.50" O.C.		
SAV1518	15 @ 8.29" O.C.	10 @ 8.35" O.C.		
SAV2025	18 @ 7.65" O.C.	10 @ 8.35" O.C.		
SAV28	20 @ 7.71" O.C.	10 @ 8.35" O.C.		

FOUR INCHES FROM EACH CORNER EVENLY SPACED

3847 WABASH DRIVE MIRA LOMA, CA 91752

PHONE (951) 685-1101 FAX (619) 872-9799

	1
SUBMITTED TO:	١.
COMPANY:	н
JOB NAME:	Н
EQUIPMENT:	H
NOTES:	L
NO 1201	Ι'

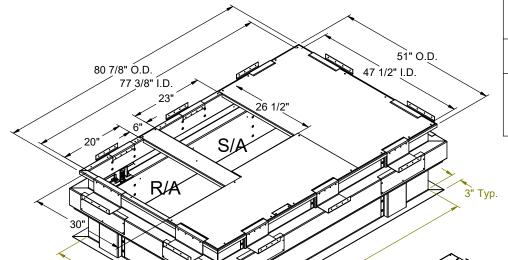
FORM NO: CB-62

 DATE:
 REV:
 DRAWN BY:

 6/28/2023
 4
 FMM

For wood, concrete and steel attachment see Roof Anchorage Detail, Form No. CB-62. Welded Isolation springs housingare standard. For bolted spring housing, neoprene pads and spring cups see Weldment and Bolting Detail, Form No. CB-61 **FEATURES** Roof curbs sides and ends are 14 ga. Fully welded construction. Gasketing package provided. Heat treated wood nailer provided. insulated deck pans provided. Pitched curbs and taller curbs are available. CalDyn OSHPd pre-approved seismic restraints. (OPM-0401-13), (CQA). **NOTES** Attach ductwork to roof curb. Flanges of duct rest on top of the curb, Support ductwork below the curb. Thru the curb utillities are available. Contact you York distributor or Provent directly. ATTACH TO CURB WITH (4) #10 TEK SCREWS EACH SIDE

STRUCTURALLY CALCULATED VIBRATION ISOLATION ROOF CURBS FOR PREDATOR (SUN PRO) UNITS


ZT, ZH, ZJ, ZR 037-150 ZF, XP, ZB 078-150

PROVENT P/N	Α	В	EST. WEIGHT
CBISCPRD371518**	8"	18"	365 Lbs
CBISCPRD371521**	11"	21"	387 Lbs
CBISCPRD371524**	14"	24"	410 Lbs

**Note: Spring configuration must be added to part number at time of order

Weight of upper portion supported by spring isolators= 243 Lbs.

Meets seismic requirements for the following codes:
CBC 2022
IBC 2021

ATTACH TO CURB WITH (4) #10
TEK SCREWS EACH SIDE

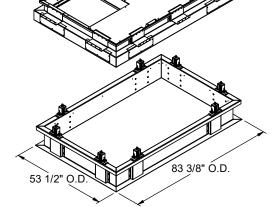
"B" TOTAL HEIGHT
(35" MAX WITH PITCH)

"A" BASE
CURB HEIGHT

WITH (4) #10 x 6" TEK SCREWS EACH CLIP

14 GA UNIT HOLD DOWN
(3) PER LONG SIDE
(2) PER SHORT SIDE

STIFFENER 16 GA x 7" x 3/4"
AT EACH HOLD DOWN


CQA ISOLATOR RESTRAINTS
(2) EACH LONG & SHORT SIDE

FULL PERIMETER
WOOD NAILER

STIFFENER 16 GA, 7" x 1-1/2"

47 1/2" I.D

UNIT BASE RAIL
ATTACH TO UNIT

Provent 3847 WABASH DRIVE MIRA LOMA, CA 91752

PHONE (951) 685-1101 FAX (619) 872-9799

14 GA. CURB

SUBMITED TO:

COMPANY:

JOB NAME:

EQUIPMENT:

NOTES:

77 3/8" Í.D

FORM NO: PART NUMBER: CBISC-04

CBISC-04
DATE: REV

DATE: **REV**: 8/14/2023 **5**

DRAWN BY: FMM

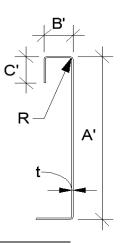
Client:	ProVent	PV2312		Upper curb rail
Project:	CBISC-04	Iso Curb	CBISCPRD3715	
Unit:	ZT.ZH. ZR.Z.	037-150: Z	F. XP. ZB 078-150	

Unit:	ZT,ZH, ZR,ZJ 037-	150; ZF, XP, ZB 078-150				
•					A	
Upper Curb Informa	ation_			FQ F	v EQ	
Hcurb upper =	5.5 in	(Height of upper curb rail)		EQ ,		
Lcurb =	80.875 in	(Length of upper curb)	 		: Lunit)	
wcurb =	51 in	(Width of upper curb)				
WGTupper =	243 lbs	(Weight of upper curb)				
# Clips long side =	3	# Clips short side = 2		F _{P MAX}		18.0
Unit Information		· <u></u>	Huit Huit		_	°
WGTunit =	1736 lbs	(Weight of Unit)	를 Wtm	in	WGT _{UNIT}	Wt _{max} F _h
Wtmax =	521 lbs	(Maximum corner weight)	- - ↓ ↓		•	↓ i⊸ →
Wtmin =	369 lbs	(Minimum corner weight)	│ 			
Hunit =	50.75 in	(Height of unit above curb)	_ [년 등 명			
Hcm =	25.375 in	(Height to center of mass)	Hcurb Hcurb- upper			
Lunit =	89 in	(Length of unit)	T		WGT _{CURB}	
Wunit =	59 in	(Width of unit)	1 -		WGTCURB	
Walle [33	(Width or dine)			•	
Seismic Loading - 20	121 IBC/2022CBC		~ ↓	max		C _{max}
Ss =	2.80	(Worst case for majority of C		max		Omax
53 - Fa =	1.20	(Default Site Class D - Table :		16)		
•		(Importance Factor Category		10)		
lp =	1.50	, ,	o,	2.5		
Sms =	3.360	(Fa*Ss)	ap =	2.5		
Sds =	2.240	(2/3*Sms)	Rp =	2		
Fpmax =	5.040 Wp	(0.4*ap*Sds*Ip)*Wp*3/Rp <	-	-		
FpmaxASD =	6125 lbs	(0.7*Fpmax)	Fpmax		182 lbs	
	(unit only)			(unit + up	oper rail)	
Wind Loading - 202						
Kz =	1.13	(For 60 ft roof height, Exposi		6.10-1 ACSE 7-1	6)	
Kzt =	1.00	(Max. assumed topographic	actor)			
Kd =	0.85	(Directionality factor Table 2	5.6-1 ASCE 7-1	L6)		
Ke =	1.00	(Ground Elevation Factor Tal	le 26.9-1 ASC	E 7-16)		
V =	110	(Wind velocity, mph for Occi	pancy Cat III-I	V bldgs Exp. Cat	C, Fig 26.5-1D -	ASCE7-16)
$GCr_{(horiz)} =$	1.9	(Refer Sect 29.4.1 ASCE 7-16				
GCr _(vert) =	1.5	(Refer Sect 29.4.1 ASCE 7-16				
qz	29.8 psf	= 0.00256*Kz*Kzt*Kd*Ke*V ²	(Fg. 26.10-1	ASCF 7-16)		
F _{h ASD trans} =	1179 lbs	= 0.6*qz*GCr*Lunit*(Hunit+				
F _{h ASD long} =	782 lbs	= 0.6*qz*GCr*Wunit*(Hunit		- ,		
F _{vert ASD} =	976 lbs	= 0.6*qz*GCr*Lunit*Wunit				
Vert A3D			(=4: =5:: 5)			
Upper Curb Loading	,					
Transverse:	1					
Compression _{SEISMIC} =	4416 lbs	=[FpmaxASD*Hcm+2*(1+0.1	4S _{5c})*Wtmax*	wcurbl/wcurb		
Tension _{SEISMIC} =	2836 lbs	=[FpmaxASD*Hcm-2*(0.6-0.)	
Compression _{WIND} =	723 lbs	= $[F_{h ASD trans}^* + Hcm + 2*0.6*Wtr$				
	632 lbs	$= [F_{h \text{ ASD trans}}^{\text{trans}} \text{ Hcm-2*0.6*Wtr}]$				
Tension _{WIND} =				TIMOU TOURD ! LIN		
	> ivegative valt	ues indicate opposite load.				
Longitudinal:	2200 lbs	=[FpmaxASD*Hcm+2*(1+0.1	1*S*\//tmax	/*Lcurh]/Lcurh		
Compression _{SEISMIC} =	3290 lbs 1710 lbs	=[FpmaxASD*Hcm-2*(0.6-0.	55,			
Tension _{SEISMIC} =			55,	,	urh	
Compression _{WIND} =	382 lbs	=[F _{h ASD long} *Hcm+2*0.6*Wtn				
Tension _{WIND} =	291 lbs	$= [F_{h \text{ ASD long}} * \text{Hcm-2*0.6*Wtm}]$	n Lcurb+F _{vert}	_{ASD} "LCUrb/2]/LCI	uro	
	•	ues indicate opposite load.				
Governing Reaction	S:					

Governing Reactions:

doverning neaction				
<u>Transverse:</u>	Comp _{MAX} =	4416	lbs	> Along long edge of curb.
(on long edge)	Tens _{MAX} =	2836	lbs	> Along long edge of curb.
Longitudinal:	Comp _{MAX} =	3290	lbs	> Along short edge of curb.
(on short edge)	Tens _{MAX} =	1710	lbs	> Along short edge of curb.

^{---&}gt; Negative values indicate opposite load.



Curb Design

Fy =	50 ksi	Fu =	65 ksi
E =	29500 ksi	t =	0.0713 14 Gauge

Calculate Section Properties of Curb

A'=	5.500	in	a =	5.144 in	= A'-(2r+t)
B'=	1.750	in	a'=	5.429 in	= A'-t
C'=	0.000	in (0 if no lips)	b =	1.572 in	$= B'-[r+t/2+\alpha(r+t/2)]$
α=	0.000	(0 - no Lip; 1 w/ lip)	b'=	1.714 in	$= B'-(t/2+\alpha t/2)$
R =	0.1069	(Inside bend radius)	c =	$0.000 \ in$	$= \alpha[C'-(r+t/2)]$
t =	0.0713	in	c'=	$0.000 \ in$	$= \alpha(C'-t/2)$
r'=	0.143	in = $R+t/2$	u =	0.224 in	= πr/2
x =	0.337	in (Distance between	centroid and web ce	nterline)	
lx =	2.687		rx =	2.08 in	
ly =	0.169	in ⁴	ry =	0.521 in	
A =	0.62	in ²	rmin =	0.521 in	

Axial Compression

Pa =	3.062 k	(Max Axial Comp)		$\Omega_c =$	1.80
Pn/Ωc =	11.798 k	162 - 11	$= \left(0.6 \operatorname{Fol}_{2}^{2} \right) =$	_	
Fe =	54.67 ksi		$F_n = \left(0.658^{\lambda_c^2}\right) F_y$	$_{\lambda}$ - $ F_{y} $	$E = \pi^2 E$
λc =	0.96	$\frac{\overline{\Omega_c}}{\Omega_c} \equiv \frac{1}{\Omega_c}$ If $\lambda_c > 1.5$	5; $F_n = \frac{0.877}{\lambda_c^2} F_y$	$\kappa_c - \sqrt{F_e}$	$r_e = \frac{1}{(kl/m)^2}$
Fn =	34.10 ksi	1, 1, 1, 1	λ_c^2	•	(77)
Ly =	47.50 in	Lateral unbraced length			
$k_y L_y / r_y =$	73	(assume k=0.8)			

Compression Check = O.K.

Check Web Crippling

h =	5.5 in	Check limits	:	C = 7.50	
t =	0.0713 in	h/t =	77.14 ≤ 260	$C_R = 0.08$ (See table C3.4.1-2, fastened to	
N =	7.00	N/t =	98.18 ≤ 210	C _N = 0.12 support, two flange, end loading)	
$\Omega_{\rm w}$ =	1.75	N/h =	$1.273 \le 2.0$	$C_h = 0.048$	
P _n =	1.947 k	R/t =	$1.50 \le 12.0$		
$P_n/\Omega_w =$	1.112 k		$P_n = 0$	$Ct^2F_y\sin(90)\left(1-C_R\sqrt{\frac{R}{t}}\right)\left(1+C_N\sqrt{\frac{N}{t}}\right)\left(1-C_h\sqrt{\frac{h}{t}}\right)$	
e: Pu _{Trans} =	1.472 k	web stiffener REQ'D	# clips = 3		
a. D	4 645 1.	b. stiffs DEOID	4 -1: 2		

Long side: Pu _{Trans} =	1.472 k	web stiffener REQ'D	# clips = 3
Short side: Pu _{Long} =	1.645 k	web stiffener REQ'D	# clips = 2

Check Web Stiffener	16Ga x 3/	4in x 7in (C-channel)	$P_n = 0.7$	$\left(P_{wc} + A_e F_y\right) \ge P_v$	NC
width of stiffener =	7.000 in	ts = 0	0.0566 16 Gauge	Pwc =	1.947 k	
web of stiff. w =	6.717 in	Rs = 0	0.0849 in	Pn =	14.669 k	
***Check w/ts ≤ 1.28	VE/Fys	$\Omega_{\rm c}$ =	1.70	Ae =	0.380 in ²	
i.						

w/ts = 118.675

 $Pn/\Omega_c =$ 1.28v(E/Fys) = 31.091 --> w/ts over limit Use C3.7.2 8.629 k <u>O.K.</u>

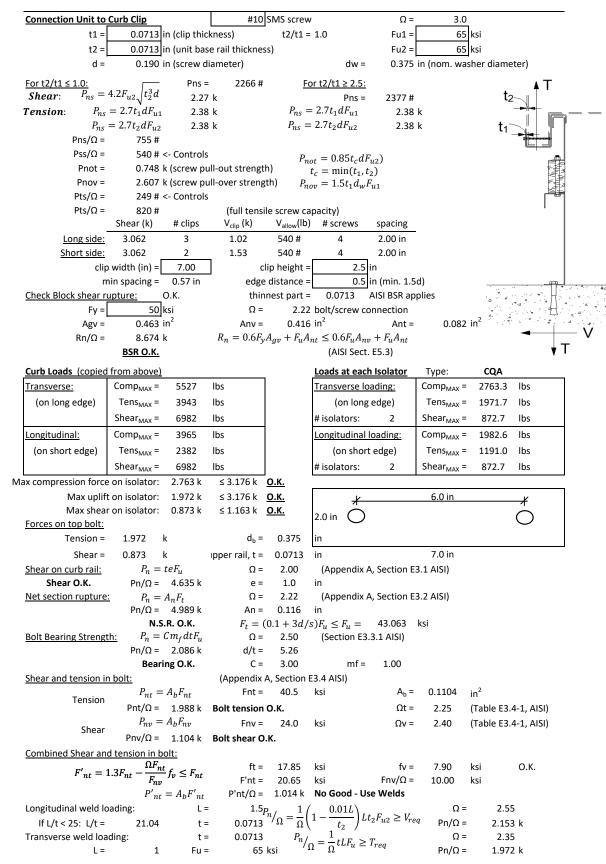
$1/4"\ \varphi$ SAE Grade 8 bolts w/ $1/4\mbox{-}20\mbox{-}UNC$ Threaded inserts **Corner Connections**

1745 lbs $Max(F_{pmaxASD}/4 - OR- Fh_{ASDtrans}/4 corner connections)$ Tcrnmax = 2208 lbs Max(Tens/2 -OR- Comp/2 corner connections per side) Vcrnmax = Bolt: Tall = 2480 lbs Vall = 1208 lbs Threaded Insert: Tall = 2860 lbs Vall = 1096 lbs

of Bolts required for Tension = 0.7 # of Bolts required for Shear = 2.0

of Bolts Used = 4.0 0.680 **O.K.** Check Combined Stress in Bolts & Inserts:

Check 1/8" welded connection

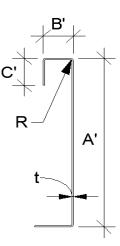

$$\Omega = 2.35$$

Assume L/t > 25:
$$25*t = 1.783$$
 in Lreg'd = 1.493 in

$$\frac{P_n}{\Omega} = \frac{1}{\Omega} 0.75t L F_u \ge V_{req} \qquad L_{req'd} = \frac{V_{req} \Omega}{0.75t F_u}$$

$$L_{req'd} = \frac{V_{req}\Omega}{0.75tF_u}$$

Client:	ProVent	PV2312		Base curb
Project:	CBISC-04	Iso Curb	CBISCPRD3715	
Unit:	ZT,ZH, ZR,ZJ	037-150; ZF,	, XP, ZB 078-150	


01111.	21,211, 21,23 037-130,	1, AF, ZB 078-130
Daga Courb Informati	·	Fv
Base Curb Informati Hbase curb =		FQ FQ
	25 in 83.375 in	(Height of base curb) Wunit
Lcurb =		(Length of base curb) (× Lunit)
wcurb =	53.5 in	(Width of base curb)
WGTbase =	167 lbs	(Weight of base curb)
# Springs long side =	2 # Sprii	ngs short side = 2
Unit Information		
WGTunit =	1736 lbs	(Weight of Offic)
Wt'max =	582 lbs	(Wtmax+1/4*WGTupper)
Wt'min =	430 lbs	(Wtmin+1/4*WGTupper))
Hunit =	50.75 in	(Height of unit above curb) (Hcm+10"(upper+spring))
H'cm =	35.375 in	(Hcm+10"(upper+spring))
Lunit =	89 in	(Length of unit)
Wunit =	59 in	(Width of unit)
WGTunit+upper+base =	2146 lbs	(Total weight)
Seismic Loading - 20	21 IBC/2022CBC	T _{max} C _{max}
Ss =	2.80	(Worst case for majority of California)
Fa =	1.20	(Default Site Class D - Table 11.4-1 ASCE 7-16)
Ip =	1.50	(Importance Factor Category III Building)
Sms =	3.360	(Fa*Ss) ap = 2.5
Sds =	2.240	(2/3*Sms) $Rp = 2$
Fpmax =	5.040 Wp	(0.4*ap*Sds*lp)*Wp*3/Rp <=1.6*Sds*lp*Wp
FpmaxASD =	6982 lbs	(0.7*Fpmax) FpmaxASD = 7571 lbs
•	(unit + upper rail)	(unit + upper rail + base curb)
Wind Loading - 2021		(unit i upper rail i base curb)
Kz =	1.13	(For 60 ft roof height, Exposure C - Table 26.10-1 ACSE 7-16)
Kzt =	1.00	(Max. assumed topographic factor)
Kd =	0.85	(Directionality factor Table 26.6-1 ASCE 7-16)
Ke =	1.00	(Ground Elevation Factor Table 26.9-1 ASCE 7-16)
V =	110	(Wind velocity, mph for Occupancy Cat III-IV bldgs Exp. Cat C, Fig 26.5-1D - ASCE7-16)
$GCr_{(horiz)} =$	1.9	(Refer Sect 29.4.1 ASCE 7-16)
$GCr_{(vert)} =$	1.5	(Refer Sect 29.4.1 ASCE 7-16)
qz	29.8 psf	= 0.00256*Kz*Kzt*Kd*Ke*V ² (Eq. 26.10-1 ASCE 7-16)
$F_{h ASD trans} =$	1798 lbs	= 0.6*qz*GCr*Lunit*(Hunit+Hbase curb+10") (Eq. 29.4-2)
F _{h ASD long} =	1192 lbs	= 0.6*qz*GCr*Wunit*(Hunit+Hbase curb+10")
$F_{\text{vert ASD}} =$	976 lbs	= 0.6*qz*GCr*Lunit*Wunit (Eq. 29.4-3)
Base Curb Loading		
Transverse:		
Compression _{SEISMIC} =	6144 lbs	=[FpmaxASD*H'cm+2*(1+0.14S _{DS})*Wt'max*wcurb]/wcurb
Tension _{SEISMIC} =	4370 lbs	=[FpmaxASD*H'cm-2*(0.6-0.14S _{DS})*Wt'min*wcurb)]/wcurb
Compression _{WIND} =	1398 lbs	=[F _{h ASD trans} *H'cm+2*0.6*Wt'max*wcurb-F _{vert ASD} *wcurb/2]/wcurb
Tension _{WIND} =	1161 lbs	=[F _{h ASD trans} *H'cm-2*0.6*Wt'min*wcurb+F _{vertASD} *wcurb/2]/wcurb
	> Negative values in	ndicate opposite load.
Longitudinal:	J	··
Compression _{SEISMIC} =	4490 lbs	=[FpmaxASD*H'cm+2*(1+0.14*S _{DS})*Wt'max*Lcurb]/Lcurb
Tension _{SEISMIC} =	2716 lbs	=[FpmaxASD*H'cm-2*(0.6-0.14S _{DS})*Wt'min*Lcurb)]/Lcurb
Compression _{WIND} =	715 lbs	=[F _{h ASD long} *H'cm+2*0.6*Wt'max*Lcurb-F _{vertASD} *Lcurb/2]/Lcurb
Tension _{WIND} =	478 lbs	=[F _{h ASD long} *H'cm-2*0.6*Wt'min*Lcurb+F _{vertASD} *Lcurb/2]/Lcurb
	> Negative values in	
Governing Reactions	=	and a production of the contract of the contra
Transverse:	Comp _{MAX} = 6144	lbs> Along long edge of curb.
(on long edge)	Tens _{MAX} = 4370	lbs> Along long edge of curb.
Longitudinal:	$Comp_{MAX} = 4490$	lbs> Along short edge of curb.
(on short edge)	Tens _{MAX} = 2716	lbs> Along short edge of curb.
	> Negative values in	dicate opposite load.

Calculate Section Properties of Curb

tion r	roperties or t	<u>curb</u>			
A'=	25.000	in	a =	24.644 in	= A'-(2r+t)
B'=	1.750	in	a'=	24.929 in	= A'-t
C'=	0.000	in (0 if no lips)	b =	1.572 in	$= B'-[r+t/2+\alpha(r+t/2)]$
α =	0.000	(0 - no Lip; 1 w/ lip)	b'=	1.714 in	$= B'-(t/2+\alpha t/2)$
R =	0.1069	(Inside bend radius)	c =	0.000 in	$= \alpha[C'-(r+t/2)]$
t =	0.0713	in	c'=	0.000 in	$= \alpha(C'-t/2)$
r'=	0.143	in = $R+t/2$	u =	0.224 in	= πr/2
x =	0.104	in (Distance between	centroid and web	centerline)	
Ix =	128.737	in	rx =	8.00 in	
ly =	0.218	in	ry =	0.329 in	
A =	2.01	in ²	rmin =	0.329 in	

Axial Compression

Pu =	3.491 k	(Max Axial Comp)	$\Omega_{c} =$	1.80
Pn/Ωc =	6.940 k	$(E_{\lambda}) < 1E_{\lambda} = (0.6E_{\lambda})^{2}$		
Fe =	7.08 ksi	$P_n = F_n A$ If $\lambda_c \le 1.5$; $F_n = \left(0.658^{\lambda_c^2}\right) F_y$	$_{\gamma}$ - $ F_{\gamma} $	$_{E}$ $_{-}$ $\pi^{2}E$
λc =	2.66	$\frac{\pi}{\Omega_c} = \frac{\pi}{\Omega_c} \qquad If \ \lambda_c > 1.5; F_n = \frac{0.877}{\lambda_c^2} F_y$	$\lambda_c = \sqrt{\frac{y}{F_e}}$	$r_e - \frac{1}{(kl/r)^2}$
Fn =	6.21 ksi	λ_c^2 1.5, λ_n^2 λ_c^2 1.7	•	(7r)
Ly =	83.38 in	Lateral unbraced length		
$k_y L_y / r_y =$	203	(assume k=0.8)		

Compression Check = O.K.

Check Web Crippling

h =	25 in	Check limi	its:	C = 4.00	
t =	0.0713 in	h/t =	350.63 ≤ 260	$C_R = 0.14$	(See table C3.4.1-2, fastened to
N =	7.00	N/t =	98.18 ≤ 210	C _N = 0.35	support, one flange, end loading)
$\Omega_{\rm w}$ =	1.75	N/h =	$0.28 \le 2.0$	$C_{h} = 0.02$	
$P_n =$	2.105 k	R/t =	1.50 ≤ 9.0	/ [\overline{D} / \overline{D} / \overline{D}
$P_n/\Omega_w =$	1.203 k		$P_n =$	$= Ct^2F_y\sin(90)\left(1 - C_R\right)^{\frac{1}{2}}$	$\left(\frac{R}{r}\right)\left(1+C_{N}\right)\left(1-C_{h}\right)\left(\frac{n}{r}\right)$
Long side: Pu _{Trans} =	3.072 k	web stiffener REQ'D	# clips = 2	, , , ,	t /
Short side: Pu _{Long} =	2.245 k	web stiffener REQ'D	# clips = 2	,	, , , , , ,

***h/t > 260; use web stiffeners

Chack Wah Stiffanor

Check Web Stiffener	160	Ga x 1.5in x 7in (C-cha	annel)	_	
width of stiffener =	7.000 in		ts =	0.0566	16 Gauge
web of stiff. w =	6.717 in		Rs =	0.0849	in
***Check w/ts ≤ 1.28	B√E/Fys		$\Omega_{\rm c}$ =	1.70	
w/ts =	118.675				
1.28√(E/Fys) =	31.091	> w/ts over limit	Use C3.7.2		
$P_n = 0.7(P_{wc} + A)$	$A_e F_y \ge P_{wc}$				
Pwc =	2.105 k	Ae =	0.380 in ²		

Pn = 14.780 k $Pn/\Omega_c =$ 8.694 k <u>O.K.</u>

1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts **Corner Connections**

Tcrnmax =	1893 lbs		Max(F _{pmaxASD} /4 -OR- Fh _{ASDtrans} /4 corner connections)					
Vcrnmax =	3072 lbs		Max(Tens/2	-OR-	Comp/2 co	rner cor	nnections p	er side)
	Bolt:	Tall =	2480	lbs		Vall =	1208	lbs
Threaded	Insert:	Tall =	2860	lbs		Vall =	1096	lbs
#	0.8							

of Bolts required for Shear = 2.8

of Bolts Used = 4.0 Check Combined Stress in Bolts & Inserts: 0.892 **O.K.**

Check 1/8" welded connection

Curb Loads (copied t	from upper rail calcs)		_	Loads at each	<u>Isolator</u>	Type:	CQA	
Transverse:	Comp _{MAX} = 5527	lbs		Transverse loa	ading:	Comp _{MAX} =	2763.3	lbs
(on long edge)	Tens _{MAX} = 3943	lbs		(on long	edge)	Tens _{MAX} =	1971.7	lbs
	Shear _{MAX} = 6982	lbs		# isolators:	2	Shear _{MAX} =	872.7	lbs
Longitudinal:	Comp _{MAX} = 3965	lbs	,	Longitudinal lo	oading:	Comp _{MAX} =	1982.6	lbs
(on short edge)	Tens _{MAX} = 2382	lbs		(on short	edge)	Tens _{MAX} =	1191.0	lbs
	Shear _{MAX} = 6982	lbs		# isolators:	2	Shear _{MAX} =	872.7	lbs
x compression force	on isolator: 2.763 k	≤ 3.176 k	O.K.					
Max uplift	on isolator: 1.972 k	≤ 3.176 k	<u>O.K.</u>	<u> </u>		6.0 in		
Max shear	on isolator: 0.873 k	≤ 1.163 k	<u>O.K.</u>	2.0 in				$\dot{\bigcirc}$
Forces on bottom bo	lts:			2.0 111				\cup
d _b =	0.5 in							
base curb, t =	0.0713 in					7.0 in		ΑT
Tension =	0.986 k / bolt						t ₂	J
Shear =	0.436 k / bolt							
Shear on base curb:	$P_n = teF_u$	Ω =	2.00	(Appendix A	, Section E	3.1 AISI)	t₁→	
	$Pn/\Omega = 4.635 \text{ k}$	e =	1.0	in			1	
	Shear O.K.							
Net section rupture:	$P_n = A_n F_t$	Ω =	2.22	(Appendix A	, Section E	3.2 AISI)		
	$Pn/\Omega = 5.909 \text{ k}$	An =	0.107	in				
	N.S.R. O.K.	$F_t =$	(0.1 + 3d)	$(s)F_u \le F_u =$	55.250	ksi		l
Bolt Bearing Strength	$\underline{n:} \qquad P_n = Cm_f dt F_u$	Ω =	2.50	(Section E3.3	3.1 AISI)			
	$Pn/\Omega = 2.781 \text{ k}$	d/t =	7.01					
	Bearing O.K.	C =	3.00	mf =	1.00			
Shear and tension in		(Appendix						
Tension	$P_{nt} = A_b F_{nt}$	Fnt =	45.0 ksi	$A_b =$	0.1963	in ²		
161131011	$Pnt/\Omega = 3.927 k$	Bolt tension	O.K.	Ωt =	2.25			\Box
Shear	$P_{nv} = A_b F_{nv}$	Fnv =	27.0 ksi		2.40			4
	$Pnv/\Omega = 2.209 k$	Bolt shear O	.K.	***(Table	E3.4-1, AI	SI)***	-	- ── ∨
Combined Shear and	tension in bolt:							↓ T
$F'_{nt} = 1$	$\overline{.3F_{nt} - \frac{\Omega F_{nt}}{F_{nv}} f_v} \le F_{nt}$	ft =	10.04	ksi	fv =		ksi	O.K.
- 110 -	100			ksi	Fnv/Ω =		ksi	
	$P'_{nt} = A_b F'_{nt}$	P'nt/Ω =	3.927 k	Combined No	t Applicat	ole -> F'nt = F	nt	

Connection of Curb to Supporting Structure

connection of carb to	Jupporting Structure			
Roof Loading	SEISMIC: (0.6-0.14S _D	s)D + 0.7E	WIND: 0.6D + W	
<u>Transverse:</u>	Uplift _{MAX} =	8237 lbs	Shear _{MAX} =	3786 lbs
Compression _{SEISMIC} =	9954 lbs	=[FpmaxASD*(H'cm+Hb	ase curb)+(1+0.14S _{DS})*WGT	_{unit+upper+base} *wcurb/2]/wcurb
Tension _{SEISMIC} =	8237 lbs	=[FpmaxASD*(H'cm+Hb	ase curb)-(0.6-0.14S _{DS})*WG	Γ _{unit+upper+base} *wcurb/2]/wcurb
$Compression_{WIND} =$	2184 lbs	=[F _{h ASD trans} *(H'cm+Hbas	se curb)+0.6*WGT _{unit+upper+bas}	se*wcurb/2-F _{vert ASD} *wcurb/2]/wcurb
Tension _{WIND} =	1873 lbs	=[F _{h ASD trans} *(H'cm+Hbas	se curb)-0.6*WGT _{unit+upper+bas}	_e *wcurb/2+F _{vertASD} *wcurb/2]/wcurb
<u>Longitudinal:</u>	Uplift _{MAX} =	5175 lbs	Shear _{MAX} =	3786 lbs
Compression _{SEISMIC} =	6892 lbs	=[FpmaxASD*(H'cm+Hb	ase curb)+(1+0.14S _{DS})*WGT	_{unit+upper+base} *Lcurb/2]/Lcurb
$Tension_{SEISMIC} =$	5175 lbs	=[FpmaxASD*(H'cm+Hb	ase curb)-(0.6-0.14S _{DS})*WG	Γ _{unit+upper+base} *Lcurb/2]/Lcurb
$Compression_{WIND} =$	1019 lbs	$=[F_{h ASD long}*(H'cm+Hbas$	e curb)+0.6*WGT _{unit+upper+bas}	e*Lcurb/2-F _{vert ASD} *Lcurb/2]/Lcurb
Tension _{WIND} =	707 lbs	=[F _{h ASD long} *(H'cm+Hbas	e curb)-0.6*WGT _{unit+upper+base}	*Lcurb/2+F _{vertASD} *Lcurb/2]/Lcurb
Wood Attachment:	1/4"ф x 4.5	" Simpson SDS screws	w/ 2.75" threaded emb (SG	6min = 0.43)

WOOU Attachin	ciii. 1/4 ψ λ 4.3	Jilipsoii 3	D3 SCIEWS	W/ 2./3 till	caucu ciiib	(3011111 - 0.43)	
	Tall _{metal} =	997	lbs	$Vall_{metal} =$	1097	lbs	
<u>Transverse:</u>	Tall _{wood} =	760	lbs	$Vall_{wood} =$	672	lbs	
# 0	of Screws Req'd for Uplift =	10.84	-	COMBINED	LOADING:	0.948 O.K.	
# 0	of Screws Req'd for Shear =	5.63	_	Req'd Mi	n Spacing =	5.38 in o.	С
Т	otal # of screws required =	15					

Use 15 - 1/4"φ x 4.5" Simpson SDS screws @ 5.4 in o.c. along long side of curb w/ 2.75" threaded embed

Longitudinal:

of Screws Req'd for Uplift = 6.81 COMBINED LOADING: 0.906 O.K. 5.63 Screw Spacing =

5.06 in o.c. # of Screws Reg'd for Shear = Total # of screws required = 10 Use 10 - 1/4" φ x 4.5" Simpson SDS screws @ 5.1 in o.c. along short side of curb w/ 2.75" threaded embed Steel Deck Attachment: 1/2" φ A307 Bolts to steel angle below deck Tall_{bolt} = 3927 lbs 2209 lbs 2192 lbs Transverse: $Tall_{metal} =$ 2086 lbs Vall_{metal} = # of Bolts Req'd for Uplift = 3.95 COMBINED LOADING: 0.850 O.K. # of Bolts Reg'd for Shear = Bolt Spacing = 14.28 in o.c. 1.73 Total # of bolts required = 6 Use 6 - 1/2" φ A307 Bolts to steel angle below deck @ 14.3 in o.c. along long side of curb Longitudinal: # of Bolts Req'd for Uplift = 2.48 COMBINED LOADING: 0.605 O.K. # of Bolts Req'd for Shear = 1.73 Bolt Spacing = 20.75 in o.c. Total # of bolts required = Use 3 - 1/2" φ A307 Bolts to steel angle below deck @ 20.8 in o.c. along short side of curb **For Concrete anchorage:** SEISMIC (0.6-0.14S_{DS})D + $0.7\Omega_o$ E Concrete Attachment: 0.625in & HAS rods in Hilti HIT-HY 200 V3 epoxy w/ 4in embed A_{Na} Epoxy: Hilti HIT-HY 200 V3 (ICC ESR 4868) 4000 psi f'c = 6 in (concrete thickness, t_min = h_ef + 2do) O.K. h = 4 in (effective embedment) h_ef : 0.625 in (anchor diameter) 0.75 in (hole diameter) da : do = 5 (number of dummy anchors to check capacity with spacing effect) n = s = 8 in (initial spacing estimate) 1170 2220 psi (from ESR 4868, Table 14, Temp range B) τk,cr / uncr = τk,cr / uncr = multiply by $(f'_c/2500)^{0.1}$ 1226 2327 psi If $f'_c > 2500$, $c_{Na} = 10d_a \sqrt{\frac{\tau_{uncr}}{1100}}$ c_Na= 9.0625 in (min. edge distance for full capacity); $N_{ag} = \frac{A_{Na}}{A_{Nao}} \varphi_{ec,Na} \varphi_{ed,Na} \varphi_{cp,Na} N_{ba}$ Tension: (ACI318-14, 17.4.5.1b) Bond strength $\varphi_{ec,Na}\varphi_{ed,Na}\varphi_{cp,Na} = 1.0$ CNa ***Bond strength A_{Na}= 908.52 in² will govern over A_{Nao}= 328.52 in² concrete breakout $N_{ba} =$ $N_{ba} = \lambda_a \tau_{cr} \pi d_a h_{ef} \alpha_{n,seismic}$ 9535 lbs $\alpha_{n.seismic} = 0.99$ 26369 lbs (group) $N_{ag} =$ $\lambda_a = 1.0$ $\lambda_a = 1.0$ for normal weight conc; 0.6 for lightwo ØN_{ag} = 12855 lbs (group) CONTROLS $\frac{A_{Nc}}{4}\varphi_{ec,N}\varphi_{ed,N}\varphi_{cp,N}N_b$ Breakout $N_{cbg} =$ $N_b = \lambda_a k_c \sqrt{f'_c} h_{ef}^{1.5}$ strength 528 in² $A_{Nc} =$ $N_b = 8601$ 0.75 144 in² kc = 17A_{Nco} = 0.65 $N_{cbg} =$ 31538 lbs (group) 0.75 $\phi N_{cbg} =$ 17740 lbs (group) 0.65 7865 (from ESR4868, Table 11) Shear: Vsa,eq = 0.6 Steel strength 3067 øVsa,eq = Tall_{IRED} = 2571 lbs (anchor) Vall_{IRFD} = 3067 lbs $\propto = (1 + 0.2SDS)D + 2.5E = 1.421$ $Tall_{ASD} = Tall_{LRFD}/\alpha =$ $Vall_{ASD} = Vall_{LRFD}/\alpha =$ 1805 lbs 1513 lbs D = 0.761E €.239 $\propto = 1.699$ $Uplift_{MAX} =$ 9464 lbs $Shear_{MAX} =$ 11208 lbs Transverse Compression_{SEISMIC} = 13069 lbs = $[\Omega o * FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*WGT_{unit+curb}*wcurb/2]/wcurb$ Tension_{SEISMIC} = 11208 lbs = $[\Omega o*FpmaxASD*(Hcm+Hcurb)-(0.6-0.14S_{DS})*WGT_{unit+curb}*wcurb/2]/wcurb$ Shear_{SEISMIC} = 9464 lbs =Ωo*FpmaxASD/2 Min Bolts Req'd Uplift = 7.41 spacing = 10.20 in o.c. Tapplied = 1245.4 lbs Min Bolts Req'd Shear = 14.28 in o.c. Vapplied = 630.9 lbs 5.24 spacing = bolts $T_{applied}$ $V_{apllied}$ Try using O.K. COMBINED LOADING = 8.92 $\overline{T_{allow,ASD}} + \overline{V_{allow,ASD}}$ spaced at in o.c Use 9 - 0.625in ϕ HAS rods in Hilti HIT-HY 200 V3 epoxy @ 8.9 in o.c. max. along long side of curb w/ 4in embed

 $Uplift_{MAX} =$

Longitudinal:

7073 lbs

9464 lbs

 $Shear_{MAX} =$

= $[\Omega o*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*WGT_{unit+curb}*Lcurb/2]/Lcurb$ Compression_{SEISMIC} = 8934 lbs $= \! [\Omega o^* FpmaxASD^*(Hcm + Hcurb) - (0.6 - 0.14S_{DS})^*WGT_{unit+curb}^* Lcurb/2] / Lcurb$ 7073 lbs $Tension_{SEISMIC} =$ $\mathsf{Shear}_{\mathsf{SEISMIC}} =$ 9464 lbs $=\Omega o*FpmaxASD/2$ Min Bolts Req'd Uplift = 4.67 spacing = 10.38 in o.c. Tapplied = 1178.8 lbs Min Bolts Req'd Shear = 8.30 in o.c. Vapplied = 630.9 lbs 5.24 spacing = $\frac{T_{applied}}{T_{allow,ASD}} + \frac{V_{apllied}}{V_{allow,ASD}}$ $V_{apllied} \le 1.2$ Try using bolts O.K. COMBINED LOADING = spaced at 8.30 in o.c.

Use 6 - 0.625in φ HAS rods in Hilti HIT-HY 200 V3 epoxy @ 8.3 in o.c. max. along short side of curb w/ 4in embed

CURB DESIGN SUMMARY:		CBISC-04	CBISCPRD37	15	Unit:	ZT,ZH, ZR,ZJ 037-150; ZF, XP, ZB			
UPPER CURB RAIL THICKNESS:		0.0713 in	14 Gauge			078-150			
UNIT CLIP	0.0713 in	14 Gauge							
# OF CLIPS (LONG SIDE) - 3 clips with 4 - #10 SMS screws each clip									
WEB STIFFENER: 16Ga x 3/4in x 7in (C-channel) stiffener at each clip									
# OF CLIPS (SHORT SIDE) - 2 clips with 4 - #10 SMS screws each clip									
WEB STIFFENER: 16Ga x 3/4in x 7in (C-channel) stiffener at each clip									
VIBRATION ISOLATOR TYPE: CQA Top stud diameter: 3/8 (2) - CQA Isolators long side						(2) - CQA Isolators long side			
Anchor bolt diameter: 1/2 Anchor hole diamter: 9/16 (2) - CQA Isolators short side						(2) - CQA Isolators short side			
BASE CURB THICKNESS: 0.0713 in 14 Gauge					***Must weld top of CQA***				
WEB STIFFENER: 16Ga x 1.5in x 7in (C-channel) stiffener at each clip on base curb									
CORNER CONNECTION: Use minimum 4 - 1/4" ϕ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts									
CURB		<u>WOOD</u>		<u>STEEL</u>		<u>CONCRETE</u>			
II	1/4"φ x 4.5" Simpson SDS screws w/ 2.75" threaded embed (SGmin =		1/2" φ A307 Bolts to		0.625in φ HAS rods in Hilti HIT-HY				
ANCHORAGE			steel angle below deck		200 V3 epoxy w/ 4in embed				
LONG DIRECTION	15 @ 5.38 in o.c.		6 @ 14.28 in o.c.		9 @ 8.92 in o.c.				
SHORT DIRECTION	TION 10 @ 5.06 in o.c.		3 @ 20.75 in o.c.		6 @ 8.3 in o.c.				