

6593 Riverdale St. San Diego, CA 92120 619-727-4800

Structural Calculations

for

CBISC-06 Series

CBISCPRL** SERIES

Prepared for:

PROVENT / RRS

3847 Wabash Drive Mira Loma, CA 91725

Date: August 23, 2023 Project Number: PV2312

Vont	3847 WABASH DRIVE	SUBMITTED TO:	FORM NO:				
	MIRA LOMA, CA 91725	COMPANY:	CB-61				
	PHONE (951) 685-1101 FAX (619) 872-9799	EQUIPMENT:	DATE: 08/14/23	REV: 2	DRAWN BY: FMM		

6593 Riverdale St. San Diego, CA 92120 (619)727-4800 Page <u>1</u> of <u>8</u>

MO	JR G	ROU	D		6593 Rive San Diego, C (619)7
ENGINE	EERING +	DESIGN			Page <u>1</u>
Client: Project: Unit:	ProVent PV CBISC-06 Iso ZX/ZL 08-14; XX	2312 Curb CBISCPR 08-12; XYA7, ZYA	Upper L 7; ZY 07-12; XY 07-0	r curb rail 09	
Upper Curb Inform Hcurb upper =	nation 5.5 in	(Height d	of upper curb rail)		EQ
Lcurb = wcurb = WGTupper = # Clips long side =	81.75 in 53.5 in 221 lbs 2	(Length o (Width o (Weight # Clips short sig	of upper curb) f upper curb) of upper curb) de = 2		0.81
WGTunit = WGTunit = Wtmax = Hunit = Hcm = Lunit =	1318 lbs 395 lbs 264 lbs 48.56 in 24.28 in 87.18 in	(Weight (Maximu (Minimu (Height t (Length t	of Unit) Im corner weight) m corner weight) of unit above curb) to center of mass) of unit)		GTUNIT Wtmax Fh GTCURB
Wunit = <u>Seismic Loading - 2</u>	61.69 in	(Width o <u>c</u>	f unit)		✓ V C _{max}
Ss = Fa = Ip = Sms = Sds =	2.85 1.20 1.50 3.420 2.280	(Worst c (Default (Importa (Fa*Ss) (2/3*Sm	ase for majority of Site Class D - Table Ince Factor Categor s)	California) 2 11.4-1 ASCE 7-16) ry III Building) ap = 2.5 Rp = 2	
Fpmax = FpmaxASD = Wind Loading - 20	 5.130 Wp 4733 lbs (unit only) 21 IBC/2022 CBC) (0.4*ap* (0.7*Fpn	Sds*Ip)*Wp*3/Rp nax)	<=1.6*Sds*Ip*Wp FpmaxASD = 5527 lbs (unit + upper ra	il)
Kz = Kzt = Kd = Ke = V =	1.13 1.00 0.85 1.00 110	(For 60 f (Max. as (Directio (Ground (Wind ve	t roof height, Expos sumed topographic nality factor Table 2 Elevation Factor Ta elocity, mph for Occ	sure C - Table 26.10-1 ACSE 7-16) c factor) 26.6-1 ASCE 7-16) able 26.9-1 ASCE 7-16) cupancy Cat III-IV bldgs Exp. Cat C, Fig	26.5-1D - ASCE7-16)
GCF (horiz) = GCF(vert) = QZ F _h ASD trans = F _h ASD long = F _{vert} ASD =	1.3 1.5 2.29.8 psf 1110 lbs 786 lbs 1000 lbs	(Refer Se (Refer Se = 0.0025 = 0.6*qz = 0.6*qz = 0.6*qz	ect 29.4.1 ASCE 7-16 ect 29.4.1 ASCE 7-16 6*Kz*Kzt*Kd*Ke*V *GCr*Lunit*(Hunit- *GCr*Wunit*(Huni *GCr*Lunit*Wunit	6) 6) ⁷² (Eq. 26.10-1 ASCE 7-16) +Hcurb) (Eq. 29.4-2) it+Hcurb) (Eq. 29.4-3)	
Upper Curb Loadin	<u>ng</u>				
Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} = Tension _{WIND} =	= 3191 lbs = 2000 lbs = 478 lbs = 688 lbs	=[Fpmax =[Fpmax =[F _{h ASD tr =[F_{h ASD tr}}	ASD*Hcm+2*(1+0.: ASD*Hcm-2*(0.6-0 _{ans} *Hcm+2*0.6*Wt _{ans} *Hcm-2*0.6*Wt	14S _{DS})*Wtmax*wcurb]/wcurb).14S _{DS})*Wtmin*wcurb)]/wcurb tmax*wcurb-F _{vert ASD} *wcurb/2]/wcurb :min*wcurb+F _{vertASD} *wcurb/2]/wcurb	
Longitudinal: Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} = Tension _{WIND} =	> Negative val 2449 lbs 1258 lbs 208 lbs 417 lbs	ues indicate oppo =[Fpmax =[Fpmax =[F _{h ASD lo} =[F _{h ASD lo}	ASD*Hcm+2*(1+0.: ASD*Hcm-2*(0.6-0 _{ng} *Hcm+2*0.6*Wtr _{ng} *Hcm-2*0.6*Wtr	.14*S _{DS})*Wtmax*Lcurb]/Lcurb 0.14S _{DS})*Wtmin*Lcurb)]/Lcurb max*Lcurb-F _{vertASD} *Lcurb/2]/Lcurb min*Lcurb+F _{vertASD} *Lcurb/2]/Lcurb	
Governing Reaction Transverse: (on long edge)	> Negative val ns: Comp _{MAX} = Tens _{MAX} =	algo and a second and a second	> Along long > Along long	g edge of curb. g edge of curb.	
(on long cage)	· ····NAX				

Transverse:	Comp _{MAX} =	3191	IDS	> Along long edge of curb.
(on long edge)	Tens _{MAX} =	2000	lbs	> Along long edge of curb.
Longitudinal:	Comp _{MAX} =	2449	lbs	> Along short edge of curb.
(on short edge)	Tens _{MAX} =	1258	lbs	> Along short edge of curb.

---> Negative values indicate opposite load.

6593 Riverdale St. San Diego, CA 92120 (619)727-4800 Page 2 of 8

MOUR GROUP

g

Connection Unit to	Curb Clip		#10	SMS screw	/	Ω =	3.0		_
t1 =	0.0713 in	(clip thickne	ss)	t2/t1 =	1.0	Fu1 =	65	ksi	
t2 =	0.0713 in	、. (unit base ra	, il thickness	5)		Fu2 =	65	ksi	
d =	0.190 in	(screw diam	eter)	~/	dw =	0 375	in (nom wa	sher diameter)	
u -	0.150 m				aw -	0.575	in (noni. wa	sher didifictery	
For $t2/t1 \le 1.0$:	4.25 43.4	Pns =	2266 #	<u>F</u> (or t2/t1 ≥ 2.5:			▲⊤	
Shear: $P_{ns} =$	$4.2F_{u2}\sqrt{t_{2}^{3}a}$	2.27 k			Pns =	2377 #		t ₂	
Tension : P _{ns}	$= 2.7t_1 dF_{u1}$	2.38 k		$P_{ns} =$	$= 2.7t_1 dF_{u1}$	2.38	k		= <u>,</u> —
P_{ns}	$= 2.7t_2 dF_{u2}$	2.38 k		$P_{ns} =$	$= 2.7t_2 dF_{u2}$	2.38	k	t ₁	ľ
Pns/Ω =	755 #								
Pss/Ω =	540 # <-	Controls		Pm	$at = 0.85t_{c}d$	F_{u2}			<u>.</u>
Pnot =	0.748 k (:	screw pull-o	ut strength	ı) - <i>n</i>	$t_c = \min(t_1, t_2)$	$t_2)$			
Pnov =	2.607 k (screw pull-o	ver strengt	h) <i>P_n</i>	$v_{ov} = 1.5t_1d_w$	\tilde{F}_{u1}			M II
$Pts/\Omega =$	249 # <-	Controls							Ħ
$Pts/\Omega =$	820 #		(full tensile	e screw ca	apacity)			I	
	Shear (k)	# clips	V _{clip} (k)	V _{allow} (lb)	# screws	spacing			
Long side:	2.366	2	1.18	540 #	4	2.00 in			
Short side:	2.366	2	1.18	540 #	4	2.00 in			
clip	width (in) =	7.00	cli	p height =	2.5	in			
n	nin spacing = (0.57 in	edge	distance =	0.5	in (min. 1.5	d)		
Check Block shear r	upture: 0.I	к.	thinr	nest part =	0.0713	AISI BSR ap	plies		1.47 2.40
Fy =	50 ksi		Ω=	2.22	bolt/screw c	onnection	•		
Agv =	0.463 in ²		Anv =	0.416	5 in ²	Ant =	0.082	in ²	. a
$Rn/\Omega =$	8.674 k	R	$m = 0.6F_{v}A$	$A_{av} + F_{u}A$	$n_{t} \leq 0.6 F_{u} A_{n}$	$W_{nv} + F_{u}A_{nt}$		-	
	BSR O.K.			gr u	(AISI Sect	t. E5.3)		+	Т
	<u> </u>						-		
Curb Loads (copied	from above)				Loads at eac	in isolator	Type:		-
Transverse:	Comp _{MAX} =	4091 lbs			I ransverse l	oading:	Comp _{MAX} =	2045.7 Ibs	
(on long edge)	Tens _{MAX} =	2860 lbs			(on lon	g edge)	Tens _{MAX} =	1430.1 lbs	
	Shear _{MAX} =	5527 lbs			# isolators:	2	Shear _{MAX} =	690.8 lbs	
Longitudinal:	Comp _{MAX} =	3028 lbs			Longitudinal	loading:	Comp _{MAX} =	1514.2 lbs	
(on short edge)	Tens _{Max} =	1797 lbs			(on sho	rt edge)	Tens _{Max} =	898.6 lbs	
х о <i>у</i>	Shear	5527 lbs			# isolators	2	Shear =	690.8 lbs	
av compression force		2016k <	3176k (nк	ii isolators.	-	UTECH MAX	000.0 100	
May unlif	t on isolator: 1	1 1 3 0 k <	3176k (<u>о к</u>			6 () in		
Max shea	r on isolator:	1.430 k _ 1.691 k <	1 163 k (<u>о.к.</u>	*		0.0 111	/	
Forces on top bolt:			1.105 K <u>-</u>	<u></u>	2.0 in 🔾	1		\circ	
Tension =	1430 k		d. =	0 375	in				
Chase	1.450 K		u _b –	0.373			7.0 in		
Snear =	U.091 K	ipp:	er rall, t =	0.0/13	IN	A Cast: -			
Shear on curb rail:	$P_n = te$	r _u Loop le	Ω=	2.00	(Appendix	A, Section E	3.1 AISI)		
Snear U.K.	$Pn/\Omega = 2$	+.035 K	e=	1.U 2.22	III (Annondiv	A Soction F	2 2 11611		
iver section rupture	$P_n = A_n$	1080 k	12 = An -	2.22 0.116	in	A, Section E	5.Z AISI)		
		ок Ок	F - (($1 \pm 2d/$	c) E < E -	13 063	kci		
Bolt Rearing Streng	the $P_n = Cn$	n _e dtE.	$r_t = (0 = 0)$	2 50	$S r_u \leq r_u = $ (Section F	45.005 2 2 1 AISI)	KJI		
bon bearing streng	Pn/O = 2	2.086 k	d/t =	5.26	(50000000000000000000000000000000000000				
	Bearing	0.K.	с =	3.00	mf =	1.00			
Shear and tension in	n bolt:	, L	Annendix ∆	Section	F3.4 AISI)	2.00			
shear and tension in	$P_{mt} = A$, F., t	Fnt =	40.5	ksi	A _b =	0.1104	in ²	
Tension	Pnt/O = 1	שית 	It toncion (רא אר	-	O+ -	ר ב	 (Table F3 /1-1 AISI)	
	$P_{\text{max}} = 4$		Enver	24.0	kci	<u> </u>	2.23	(Table E2.4 - 1, AISI)	
Shear	$I_{nv} - A_{i}$	0 · nv	FNV =	24.0	к51	Ωv =	2.40	(Table E3.4-1, AISI)	
	$PNV/\Omega = 1$	1.104 k Bo	it snear O.	к.					
Combined Shear an	d tension in bolt	<u>.</u>	r.	42.05	l		6.25	h-i 0.11	
$F'_{nt} = 1$	$1.3F_{nt} - \frac{\Omega F_{nt}}{r} f_n$	$\phi \leq F_{nt}$	tt =	12.95	KSI	fv =	6.25	KSI O.K.	
	F _{nv}	Δ <i>Γ</i> /	Fint =	27.32	KSI	$FNV/\Omega =$	10.00	KSI	
	$P'_{nt} =$	A _b F ^{nt}	$P'nt/\Omega =$	1.341 K	NO GOOD - U	se weids	-	a ==	
Longitudinal weld lo	bading:	L =	1.5 _{P1}	$n_{0} = \frac{1}{2}$	$\left(1 - \frac{0.01L}{1}\right)_{I}$	$t_2 F_{1,2} > V_{2,2}$	Ω=	2.55	
If L/t < 25: L/t =	21.04	t =	0.0713	· 11 Ω (t_2	∠ u∠ — •re	⁴ Pn/Ω =	2.153 k	
ransverse weld loa	iaing:	t =	0.0713	$P_n/$	$c_0 = \frac{1}{C} t L F_u \ge$	Trea	Ω=	2.35	
L =	1	Fu =	65 k	ksi ⁽¹	<u>~ 12</u> ~ ~	2	$Pn/\Omega =$	1.972 k	

Client:	ProVent	PV2312		Base curb		
Project:	CBISC-06	Iso Curb	CBISCPRL			
Unit:	ZX/ZL 08-14;	XX 08-12;	XYA7, ZYA7; ZY 07-12; XY	07-09		
					`▲	
Base Curb Informat	<u>tion</u>	-			F0 Fv	FO
Hbase curb =	25	in	(Height of base curb)		Vunit	
Lcurb =	81.75	in	(Length of base curb)	*	(× Lunit)	_
wcurb =	53.5	in	(Width of base curb)			
WGTbase =	204	lbs	(Weight of base curb)		-	
# Springs long side =	2	# Spring	gs short side = 2	닅누	FP MAX	180
Unit Information				리	WtW	GTunur Wt
WGTunit =	1318	lbs	(Weight of Unit)	, Hc	V dmin	
Wt'max =	451	lbs	(Wtmax+1/4*WGTuppe	er)	<u> </u>	V
Wt'min =	319	IDS	(Wtmin+1/4*WGTuppe	r))	1.J - #	
Hunit =	48.56	in	(Height of unit above cl			&
H°CM =	34.28	in	(Hcm+10" (upper+spring	5)) 윈프 =	•	
Lunit =	87.18	in	(Length of unit)		W	GT _{CURB}
WUNIT =	61.69	in Ibe	(Width of unit)			▲
WGTunit+upper+base =	1/43		(Total Weight)	-	Image: width of the second s	
Seismic Loading - 2	021 IBC/2022	<u>CBC</u>	() A /		T max	C _{max}
SS =	2.85		(Worst case for majority	of California)	
Fa =	1.20		(Default Site Class D - 1a		DCE /-10)	
ip =	1.50		(Importance Factor Cate	egory III Bulla	ing)	
SIIIS =	3.420		$(rd^{2}35)$	ap = Bo =	2.5	
Sus =	Z.280	14/20	$(2/3^{\circ})$ (0.4*an*6dc*in)*(4/n*2)		۲ ۲۰۰۰ ۲۰۰۰ ۲	
Fpillax =	5.130	vvp lbc	$(0.4 \text{ ap } \text{ sus } \text{ p) } \text{ wp } \text{ s}_{3}$	r KP <=1.0 · Su	$s \cdot ip \cdot wp = 6250 \text{ lbs}$	
rpillaxASD =	(unit Lunnor	ius r rail)	(0.7 Fpillax)	F	unit uppor roll upoo	curb)
Wind Loading 202					(unit + upper rail + base	curby
VVIIIU LOduling - 202	1 12	<u>.DC</u>	(For 60 ft roof boight F		blo 26 10-1 ACSE 7-16)	
KZ =	1.13		(Max assumed topogra	posure C = 16	IDIE 20.10-1 ACSL 7-10)	
Kd -	1.00		(Niax. assumed topogra	hla 26 6-1 AS	CE 7-16)	
Ku = Ko =	1.00		(Ground Elevation Eact	or Table 26.0-1 AS	1 ASCE 7-16)	
V =	110		(Wind velocity mnh for		at III-IV hldgs Exp. Cat C. Fig	26 5-1D - ASCE7-16)
$GCr_{(h-r,r_{0})} =$	19		(Refer Sect 29 4 1 ASCE	7-16)		,20.3 10 ASELY 10,
GCr =	1.5		(Refer Sect 29 / 1 ASCE	7-16)		
CCI (vert)	1.5			(-10)	40.4.4005 7.40)	
qz F –	29.8	pst	= 0.00256*KZ*KZT*KO*K	.e*V (Eq. 26 unit+Hhaso ci	(10-1 ASCE 7-16)	
h ASD trans –	1710	lbs	= 0.6 q2 GCr Lunit (III	Junit Libaco /	110+10 (Eq. 29.4-2)	
h ASD long —	1214	lbs	= 0.6 qz GCr Wullit (r	iuiiit /Ea 20	/ulb+10)	
vert ASD -	1000	IDS		unit (Eq. 29.	4-3)	
Pace Curb Loading						
Transvorso:						
Compression	4730	lbs	=[FpmaxASD*H'cm+2*(1+0.145 ₅₆)*W	/t'max*wcurb1/wcurb	
Tension _{seismic} =	3362	lbs	=[FpmaxASD*H'cm-2*(().6-0.145pc)*\	Vt'min*wcurb)]/wcurb	
Compression _{wind} =	1140	lbs	=[F _{h ASD trans} *H'cm+2*0.6	5*Wt'max*wo	urb-F _{vert ASD} *wcurb/2]/wcur	.p
Tension _{wind} =	1217	lbs	=[F _{h ASD trans} *H'cm-2*0.6	*Wt'min*wc	urb+F _{vortAsp} *wcurb/2]/wcurl	þ
WIND	> Negative	values ind	licate opposite load			
Longitudinal:	i i i c Batili c					
Compression _{SEISMIC} =	3506	lbs	=[FpmaxASD*H'cm+2*(1+0.14*S _{DS})*	Wt'max*Lcurb]/Lcurb	
Tension _{SEISMIC} =	2138	lbs	=[FpmaxASD*H'cm-2*(0.6-0.14S _{DS})*\	Vt'min*Lcurb)]/Lcurb	
Compression _{WIND} =	550	lbs	=[F _{h ASD long} *H'cm+2*0.6	*Wt'max*Lcu	rb-F _{vertASD} *Lcurb/2]/Lcurb	
Tension _{WIND} =	627	lbs	=[F _{h ASD long} *H'cm-2*0.6	*Wt'min*Lcu	b+F _{vertASD} *Lcurb/2]/Lcurb	
	> Negative	e values ind	icate opposite load.			
Governing Reaction	ns:					
Transverse:	Comp _{MAX} =	4730	lbs> Along	ong edge of o	curb.	
(on long edge)	Tens _{MAX} =	3362	lbs> Along	ong edge of a	curb.	
Longitudinal	Comp =	3506	lbs> Along	short edge of	curb.	
(on chart adaa)	Tens -	2120		short adap of	curb	
(on short edge)	NISTER -	2130	ius> Along :	more eage of	curb.	
	> wegative	e values inc	icate opposite load.			

g MOUR GROUP ENGINEERING + DESIGN

Curb Loads (conied)	romunnor	ail calce)			Loads at each	Icolator	Tuno		
-				т		isolator	Type.		
<u>Transverse:</u>	Comp _{MAX} =	4091	lbs		I ransverse loa	ading:	Comp _{MAX} =	2045.7	lbs
(on long edge)	Tens _{MAX} =	2860	Ibs		(on long	edge)	Tens _{MAX} =	1430.1	lbs
	Shear _{MAX} =	5527	lbs	1	# isolators:	2	Shear _{MAX} =	690.8	lbs
Longitudinal:	Comp _{MAX} =	3028	lbs		Longitudinal l	oading:	Comp _{MAX} =	1514.2	lbs
(on short edge)	lens _{MAX} =	1797	lbs		(on short	edge)	Tens _{MAX} =	898.6	lbs
	Snear _{MAX} =	5527	Ibs	1	# isolators:	2	Snear _{MAX} =	690.8	lbs
Max compression force	on isolator:	2.046 k	≤ 3.176 k	<u>О.К.</u>					
Max uplift	on isolator:	1.430 k	≤ 3.176 k	<u>О.К.</u>	*		6.0 in		/
Max snear	on isolator:	0.691 K	≤ 1.163 K	<u>0.K.</u>	2.0 in				\bigcirc
Horces on bottom bo	0.5	in							•
$u_b =$	0.5	in					7 0 in		
Dase curb, t =	0.0715	lli k / holt					7.0 11	ta.	≜ I
Shoar -	0.715	k / bolt						·2~	₄
Shear on base curb.	0.345 P —	toF	0 =	2 00	(Annendix A	Section F		t ₁	
shear on base carb.	Pn/O =	4 635 k	Ω =	1.00	in		.5.1 Albij	· -•	
	She	ear O.K.	ι –	1.0					
Net section rupture:	P. =	A _m F _t	Ω =	2.22	(Appendix A	Section F	3.2 AISI)		
<u></u>	$Pn/\Omega =$	5.909 k	An =	0.107	in	.,			
	N.S	.R. O.K.	$F_t =$	(0.1 + 3d)	$(s)F_{u} \leq F_{u} =$	55.250	ksi		
Bolt Bearing Strength	$P_n =$	$Cm_f dtF_u$	Ω=	2.50	(Section E3.)	3.1 AISI)			
	 Pn/Ω =	2.781 k	d/t =	7.01	,	,			
	Bear	ing O.K.	C =	3.00	mf =	1.00			
Shear and tension in	bolt:	-	(Appendix	A, Section	E3.4 AISI)				
Tanaian	$P_{nt} =$	$A_b F_{nt}$	Fnt =	45.0 ksi	A _b =	0.1963	in ²	1	
Tension	$Pnt/\Omega =$	3.927 k	Bolt tensior	n O.K.	Ωt =	2.25		a	
Shoor	$P_{nv} =$	$A_b F_{nv}$	Fnv =	27.0 ksi	Ωv =	2.40			a (1)
Sileal	Pnv/Ω =	2.209 k	Bolt shear C	Э.К.	***(Table	E3.4-1, AIS	51)***	-	<
Combined Shear and	tension in b	olt:							↓ Τ
$F'_{nt} = 1$	$.3F_{nt} - \frac{\Omega F_n}{\pi}$	$\frac{t}{T}f_n \leq F_{nt}$	ft =	7.28	ksi	fv =	1.76	ksi	О.К.
110	F_{nv}		F'nt =	45.00	ksi	$Fnv/\Omega =$	11.25	ksi	
Connection of Curb I	P' _{nt}	$= A_b F_{nt}$	$P'nt/\Omega =$	3.927 k	Combined No	ot Applicab	ole -> F'nt = F	nt	
Connection of Curb i		0 6-0 145							
Transverse	SEISIVIIC:	Uplift -	$_{\rm DS}$ /D \pm 0.7E	lbc		5hoor -	2120	lbc	Т
<u>Transverse:</u>	0005	Upint _{MAX} -	- 0091	. IDS			3130	TUS	
Compression _{SEISMIC} =	8085	IDS	=[FpmaxASL	J*(H°CM+HI	base curb)+(1+0	J.14S _{DS})*W	/GI _{unit+upper+b}	ase [*] WCUrb/	2]/wcurb
Tension _{seismic} =	6691	lbs	=[FpmaxASI	D*(H'cm+HI	base curb)-(0.6-	-0.14S _{DS})*\	NGT _{unit+upper+}	base*wcurb	/2]/wcurb
Compression _{WIND} =	1924	lbs	=[F _{h ASD trans} *	'(H'cm+Hba	se curb)+0.6*V	VGT _{unit+uppe}	er+base*wcurb	/2-F _{vert ASD} *	'wcurb/2]/wcurb
Tension _{WIND} =	1878	lbs	=[F _{h ASD trans} *	'(H'cm+Hba	ise curb)-0.6*W	/GT _{unit+uppe}	_{r+base} *wcurb,	/2+F _{vertASD} *	wcurb/2]/wcurb
Longitudinal:		Uplift _{MAX} =	4294	lbs		Shear _{MAX} =	3130	lbs	
Compression _{SEISMIC} =	5688	lbs	=[FpmaxAS[D*(H'cm+Hl	base curb)+(1+(0.14S _{DS})*W	/GT _{unit+upper+b}	ase*Lcurb/2	2]/Lcurb
Tension _{SEISMIC} =	4294	lbs	=[FpmaxAS[D*(H'cm+Hl	base curb)-(0.6-	-0.14S _{DS})*\	NGT _{unit+upper+}	base*Lcurb/	/2]/Lcurb
Compression _{WIND} =	903	lbs	=[F _{h ASD long} *	(H'cm+Hba	se curb)+0.6*W	/GT _{unit+upper}	r+base *Lcurb/2	2-F _{vert ASD} *L	.curb/2]/Lcurb
Tension _{WIND} =	858	lbs	=[F _{h ASD long} *	(H'cm+Hba	se curb)-0.6*W	GT _{unit+upper}	+base*Lcurb/2	2+F _{vertASD} *L	curb/2]/Lcurb
Wood Attachment		1/4"ф x 4.	5" Simpson S	DS screws	w/ 2.75" thre	aded emb	(SGmin = 0.	43)	
		Tall _{metal} =	997	lbs	Vall _{metal} =	1097	lbs		
Transverse:		Tall _{wood} =	760	lbs	Vall _{wood} =	672	lbs		
# of S	crews Rea'd	for Unlift =	8.80)		LOADING	0.966	О.К.	
# of S	crews Rea'd	for Shear =	= 4.66		Rea'd Min	Spacing =	6.70	lin o.c.	
Tota	I # of screws	required =	= 12	.]		0		」	

Use 12 - 1/4" ϕ x 4.5" Simpson SDS screws @ 6.7 in o.c. along long side of curb w/ 2.75" threaded embed

MOUR GROUP

ENGINEERING + DESIGN

Longitudinal: # of Screws Req'd for Uplift = 5.65 COMBINED LOADING: 0.939 O.K. 6.50 in o.c. # of Screws Reg'd for Shear = 4.66 Screw Spacing = Total # of screws required = 8 Use 8 - 1/4" ox 4.5" Simpson SDS screws @ 6.5 in o.c. along short side of curb w/ 2.75" threaded embed Steel Deck Attachment: 1/2" ϕ A307 Bolts to steel angle below deck Tall_{bolt} = 3927 lbs Vall_{bolt} 2209 lbs 2192 lbs Transverse: Tall_{metal} = 2086 lbs Vall_{metal} = # of Bolts Req'd for Uplift = 3.21 COMBINED LOADING: 0.845 O.K. # of Bolts Reg'd for Shear = Bolt Spacing = 17.44 in o.c. 1.43 5 Total # of bolts required = Use 5 - 1/2" ϕ A307 Bolts to steel angle below deck @ 17.4 in o.c. along long side of curb Longitudinal: # of Bolts Req'd for Uplift = 2.06 COMBINED LOADING: 0.616 O.K. # of Bolts Req'd for Shear = 1.43 Bolt Spacing = 41.50 in o.c. Total # of bolts required = 2 Use 2 - 1/2" ϕ A307 Bolts to steel angle below deck @ 41.5 in o.c. along short side of curb For Concrete anchorage: SEISMIC (0.6-0.14S_{DS})D + 0.7Ω_o E Ωo = 2.5 Concrete Attachment: 0.625in & HAS rods in Hilti HIT-HY 200 V3 epoxy w/ 4in embed A_{Na} Epoxy: Hilti HIT-HY 200 V3 (ICC ESR 4868) 4000 psi f'c = CNa 6 in (concrete thickness, t_min = h_ef + 2do) О.К. h = 4 in (effective embedment) h_ef = 0.625 in (anchor diameter) 0.75 in (hole diameter) da : do = 5 (number of dummy anchors to check capacity with spacing effect) n = s = 10 in (initial spacing estimate) 1170 2220 psi (from ESR 4868, Table 14, Temp range B) τk.cr / uncr = τk,cr / uncr = multiply by $(f'_{c}/2500)^{0.1}$ 1226 2327 psi If $f'_c > 2500$, $c_{Na} = 10d_a \sqrt{\frac{\tau_{uncr}}{1100}}$ c_Na= 9.0625 in (min. edge distance for full capacity); $N_{ag} = \frac{A_{Na}}{A_{Nao}} \varphi_{ec,Na} \varphi_{ed,Na} \varphi_{cp,Na} N_{ba}$ Tension: (ACI318-14, 17, 4, 5, 1b) Bond strength $\varphi_{ec,Na}\varphi_{ed,Na}\varphi_{cp,Na} = 1.0$ CNa ***Bond strength A_{Na}= 1053.52 in² will govern over A_{Nao}= 328.52 in² CNa CNa × concrete breakout $N_{ba} =$ $N_{ba} = \lambda_a \tau_{cr} \pi d_a h_{ef} \alpha_{n,seismic}$ 9535 lbs $\alpha_{n.seismic} = 0.99$ 30578 lbs (group) $N_{ag} =$ $\lambda_a = 1.0$ CONTROLS $\lambda_a = 1.0$ for normal weight conc; 0.6 for lightwo $\phi N_{ag} =$ 14907 lbs (group) $\frac{A_{Nc}}{4}\varphi_{ec,N}\varphi_{ed,N}\varphi_{cp,N}N_b$ Breakout $N_{cbg} =$ $N_b = \lambda_a k_c \sqrt{f'_c} h_{ef}^{1.5}$ strength A_{Nco} 624 in² A_{Nc} = N_b = 8601 lbs 0.75 $\phi_{conc} =$ 144 in² kc = 17 A_{Nco} = 0.65 Ø_{bond} = N_{cbg} = 37273 lbs (group) Øseis = 0.75 20966 lbs (group) 0.65 ØN_{cbg} = Ø_{steel} = 7865 (from ESR4868, Table 11) Shear: Vsa,eq = 0.6 $\alpha_{v,seismic} =$ Steel strength 3067 øVsa,eq = Tall_{IRED} = 2981 lbs (anchor) Vall_{IRED} = $3067 \text{ lbs} \propto = (1 + 0.2SDS)D + 2.5E = 1.421$ $Tall_{ASD} = Tall_{LRFD} / \alpha =$ $Vall_{ASD} = Vall_{LRFD}/\alpha =$ 1795 lbs 1745 lbs D =0.758 $E \oplus 242 \propto = 1.709$ Uplift_{MAX} = Shear_{MAX} = 7824 lbs 8600 lbs Transverse =[Ωo*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*WGT_{unit+curb}*wcurb/2]/wcurb Compression_{SEISMIC} = 10042 lbs Tension_{SEISMIC} = 8600 lbs =[Ωo*FpmaxASD*(Hcm+Hcurb)-(0.6-0.14S_{DS})*WGT_{unit+curb}*wcurb/2]/wcurb Shear_{SEISMIC} = 7824 lbs =Ωo*FpmaxASD/2 4.93 spacing = Tapplied = Min Bolts Req'd Uplift = 17.44 in o.c. 1228.5 lbs Min Bolts Req'd Shear = 17.44 in o.c. Vapplied = 711.3 lbs 4.36 spacing = $\frac{T_{applied}}{+}$ + bolts Vapllied Try using O.K. COMBINED LOADING = ≤ 1.2 = 1.10 spaced at $\overline{T_{allow,ASD}} + \overline{V_{allow,ASD}}$ 11.63 in o.c Use 7 - 0.625in & HAS rods in Hilti HIT-HY 200 V3 epoxy @ 11.6 in o.c. max. along long side of curb w/ 4in embed Uplift_{MAX} = 5540 lbs Shear_{MAX} = 7824 lbs Longitudinal:

MOUR GROUP

Cor	npression _{seismic} =	698	3 lbs		=[$\Omega o^*FpmaxASD^*(Hcm+Hcurb)+(1+0.14S_{DS})^*WGT_{unit+curb}^*Lcurb/2]/Lcurb$						
	Tension _{SEISMIC} =	554	0 lbs		=[Ωo*FpmaxASD	ST _{unit+curb} *Lcur	b/2]/Lcur	.p			
	Shear _{seismic} =	782	4 lbs		=Ωo*FpmaxASD/	2					
	Min Bolts Red	q'd Uplift	=	3.18	spacing =	13.83 i	n o.c.		Tapplied =	1385.1	lbs
	Min Bolts Red	q'd Shear	=	4.36	spacing =	10.38 i	n o.c.		Vapplied =	711.3	lbs
	Try using	4	bolts				Tapplied	$V_{apllied}$	- < 1 2 -	1 10	0.K.
	spaced at	13.83	in o.c.		CONDINED LOAD		$T_{allow,ASD}$	Vallow,ASE	$- \le 1.2$ -	1.19	
	<u>Use 4 - 0.625in φ I</u>	HAS rods i	in Hilti H	IT-HY	200 V3 epoxy @	13.8 in c	o.c. max. along	g short side	of curb w/4	in embed	1

CURB DESIGN SUM	MARY:	CBISC-06	CBISCPRL		Unit:	ZX/ZL 08-14; XX 08-12; XYA7,			
UPPER CURB RAIL	THICKNESS:	0.0713 in	14 Gauge			ZYA7; ZY 07-12; XY 07-09			
UNIT CLIP	THICKNESS:	0.0713 in	14 Gauge						
# OF CLIPS (# OF CLIPS (LONG SIDE) - 2 clips with 4 - #10 SMS screws each clip								
WE	WEB STIFFENER: 16Ga x 3/4in x 7in (C-channel) stiffener at each clip								
# OF CLIPS (S	# OF CLIPS (SHORT SIDE) - 2 clips with 4 - #10 SMS screws each clip								
WEI	WEB STIFFENER: 16Ga x 3/4in x 7in (C-channel) stiffener at each clip								
VIBRATION ISO	LATOR TYPE:	CQA	Top stud	diameter:	3/8	(2) - CQA Isolators long side			
Anchor b	olt diameter:	1/2	Anchor ho	le diamter:	9/16	(2) - CQA Isolators short side			
BASE CURE	B THICKNESS:	0.0713 in	14 Gauge			***Must weld top of CQA***			
WEI	B STIFFENER:	16Ga x 1.5i	n x 7in (C-cha	nnel) stiffene	er at each cl	ip on base curb			
CORNER CO	ONNECTION:	Use minim	um 4 - 1/4" φ	SAE Grade 8	bolts w/ 1/4	4-20-UNC Threaded inserts			
CLIPR		WOOD		<u>Ste</u>	EL	CONCRETE			
	1/4"φ x 4.5'	' Simpson SE	OS screws w/	1/2" ф А307 Bolts to		0.625in φ HAS rods in Hilti HIT-HY			
ANCHORAGE	2.75" thre	aded embeo	d (SGmin =	steel angle l	pelow deck	200 V3 epoxy w/ 4in embed			
LONG DIRECTION	1	2 @ 6.7 in o	.c.	5@17.4	4 in o.c.	7 @ 11.63 in o.c.			
SHORT DIRECTION	8	3 @ 6.5 in o.	с.	2@41.	5 in o.c.	4 @ 13.83 in o.c.			