

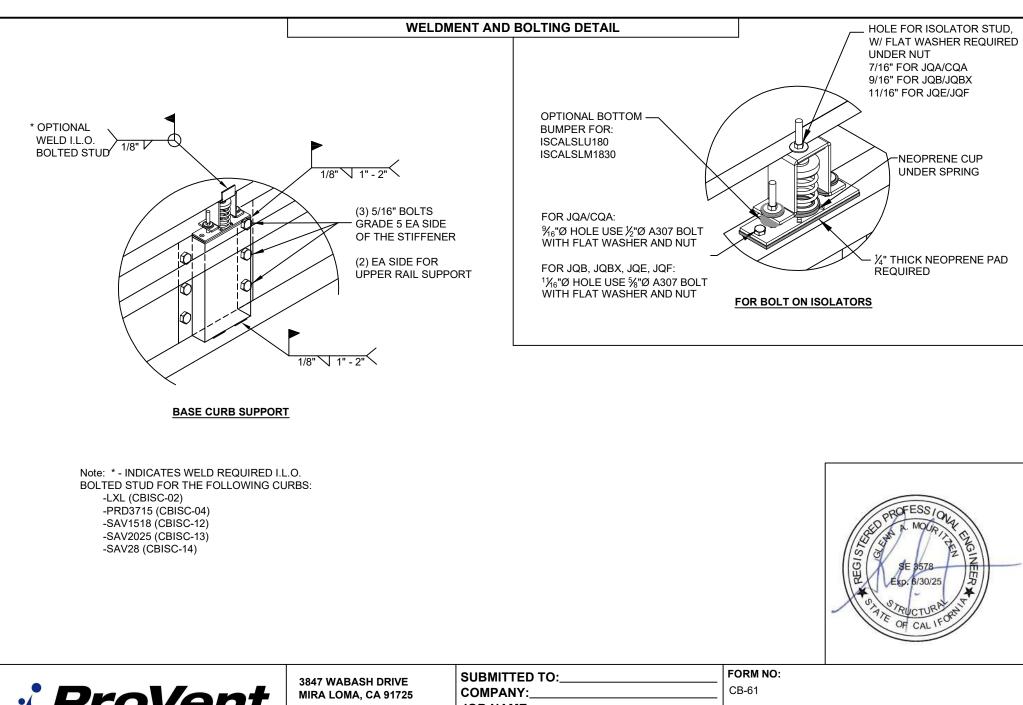
6593 Riverdale St. San Diego, CA 92120 619-727-4800

Structural Calculations

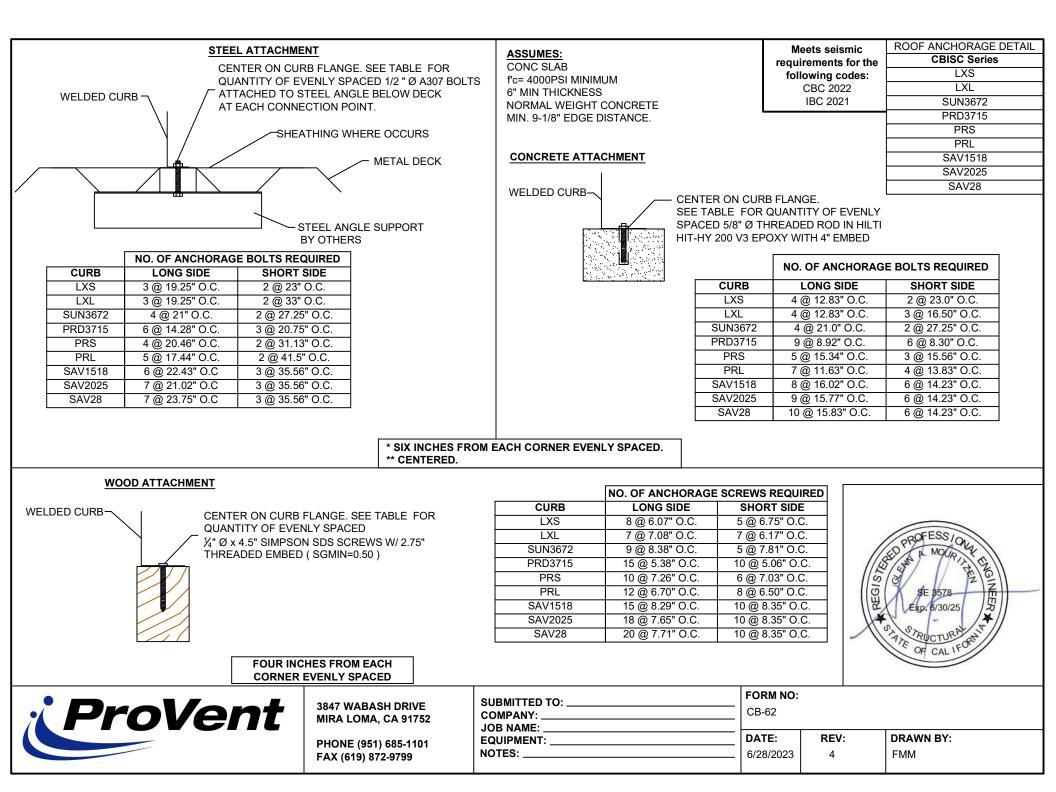
for

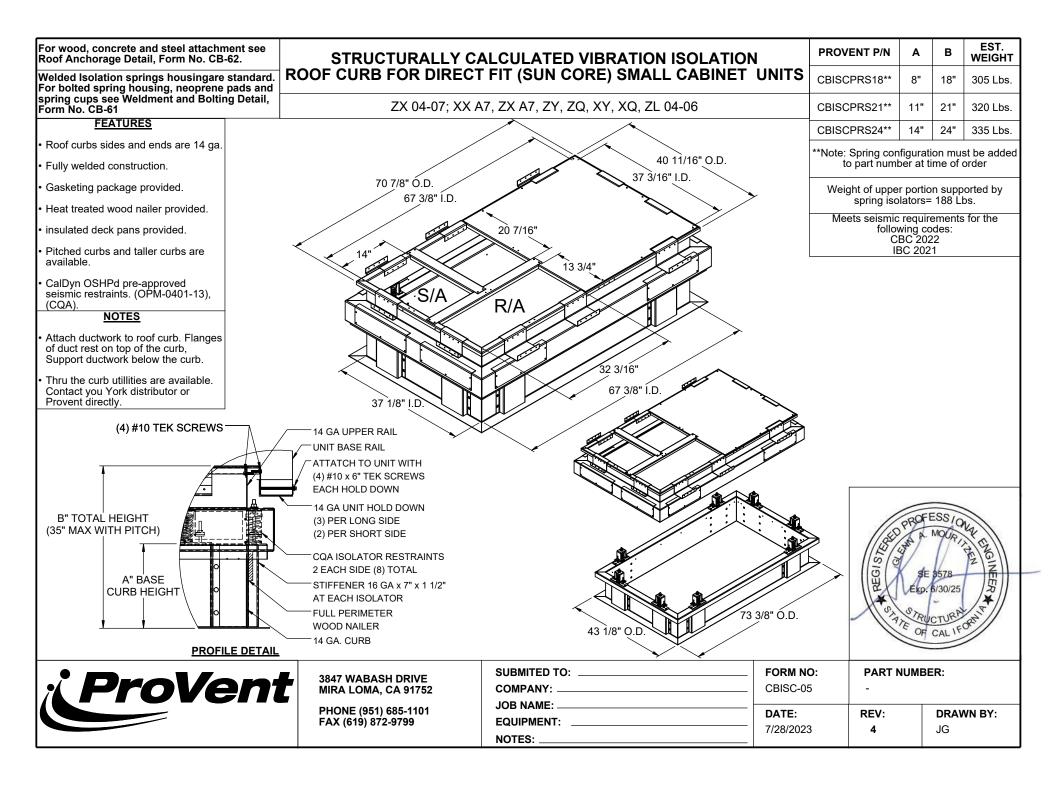
CBISC-05 Series

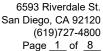
CBISCPRS** SERIES

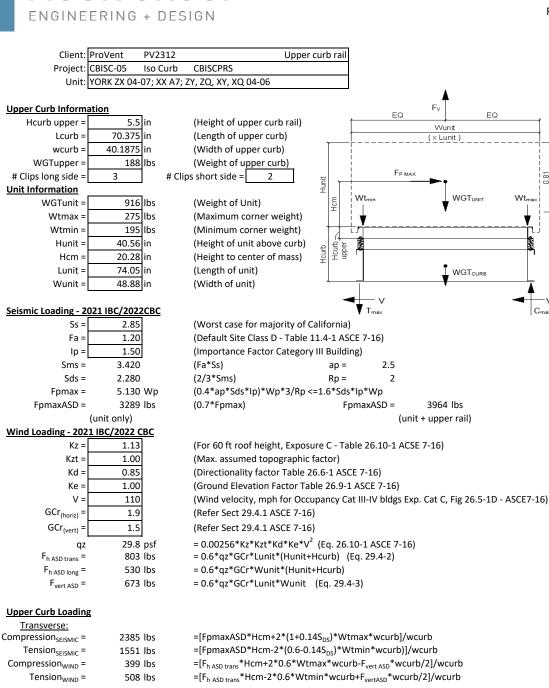


Prepared for:


PROVENT / RRS


3847 Wabash Drive Mira Loma, CA 91725


Date: August 23, 2023 Project Number: PV2312


oVent	3847 WABASH DRIVE MIRA LOMA, CA 91725	SUBMITTED TO: COMPANY:	FORM NO CB-61	:	
	PHONE (951) 685-1101 FAX (619) 872-9799	JOB NAME: EQUIPMENT: NOTES:	DATE: 08/14/23	REV: 2	DRAWN BY: FMM

F۳

---> Negative values indicate opposite load.

1673 lbs	=[FpmaxASD*Hcm+2*(1+0.14*S _{DS})*Wtmax*Lcurb]/Lcurb
839 lbs	=[FpmaxASD*Hcm-2*(0.6-0.14S _{DS})*Wtmin*Lcurb)]/Lcurb
146 lbs	=[F _{h ASD long} *Hcm+2*0.6*Wtmax*Lcurb-F _{vertASD} *Lcurb/2]/Lcurb
256 lbs	=[F _{h ASD long} *Hcm-2*0.6*Wtmin*Lcurb+F _{vertASD} *Lcurb/2]/Lcurb

---> Negative values indicate opposite load.

MOUR GROUP

Governing Reactions:

Longitudinal:

Compression_{SEISMIC} = Tension_{SEISMIC} =

Compression_{WIND} =

Tension_{WIND} =

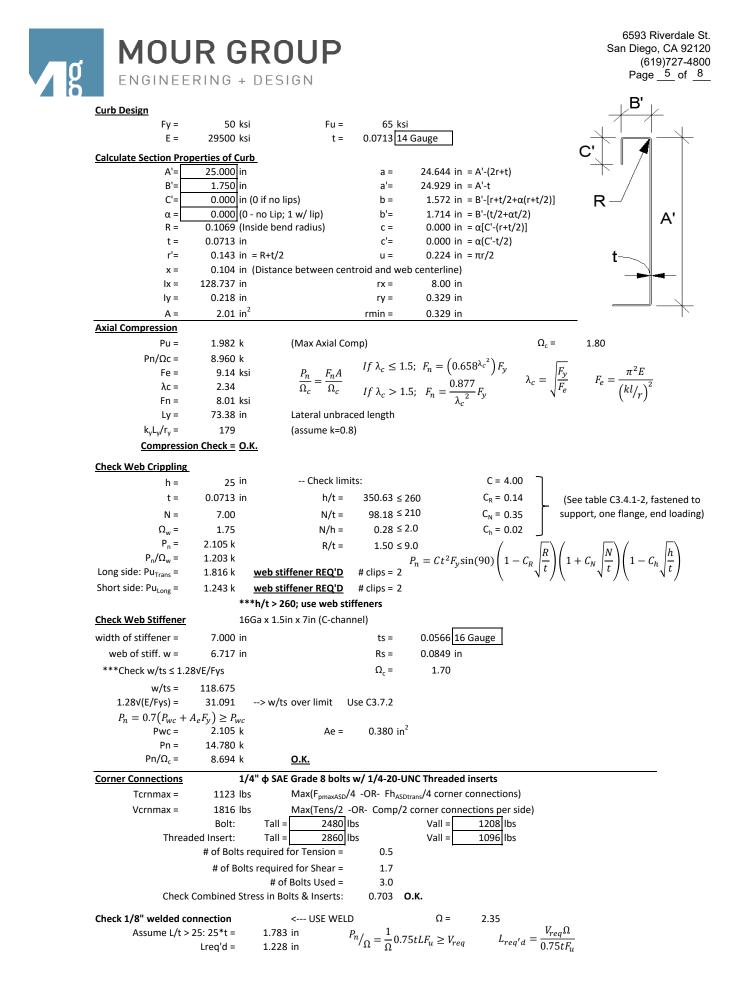
doverning neaction	J.			
Transverse:	Comp _{MAX} =	2385	lbs	> Along long edge of curb.
(on long edge)	Tens _{MAX} =	1551	lbs	> Along long edge of curb.
Longitudinal:	Comp _{MAX} =	1673	lbs	> Along short edge of curb.
(on short edge)	Tens _{MAX} =	839	lbs	> Along short edge of curb.
-	> Nogativo y	aluar ing	dicato o	nnosito load

---> Negative values indicate opposite load.

MOUR GROUP San Diego, CA 92120 (619)727-4800 Page 2 of 8 ENGINEERING + DESIGN Curb Design 50 ksi Fy = Fu = 65 ksi 29500 ksi 0.0713 14 Gauge E = t = B **Calculate Section Properties of Curb** 5.144 in = A'-(2r+t) A'= 5.500 in a = B'= 1.750 in a'= 5.429 in = A'-t 0.000 in (0 if no lips) C'= b = 1.572 in = B'-[$r+t/2+\alpha(r+t/2)$] 0.000 (0 - no Lip; 1 w/ lip) b'= 1.714 in = B'-($t/2 + \alpha t/2$) α= 0.1069 (Inside bend radius) 0.000 in = α [C'-(r+t/2)] R = c = t = 0.0713 in c'= 0.000 in = α (C'-t/2) A' r'= 0.143 in = R+t/2u = 0.224 in $= \pi r/2$ 0.337 in (Distance between centroid and web centerline) x = 2.687 in⁴ Ix = 2.08 in rx = 0.169 in⁴ 0.521 in ly = rv = 0.62 in² 0.521 in A = rmin = Axial Compression $\Omega_c =$ Pa = 1.645 k (Max Axial Comp) 1.80 $Pn/\Omega c =$ 13.768 k $\begin{array}{l} If \ \lambda_c \leq 1.5; \ \ F_n = \left(0.658^{\lambda_c^2}\right) F_y \\ If \ \lambda_c > 1.5; \ \ F_n = \frac{0.877}{\lambda_c^2} F_y \end{array} \qquad \lambda_c = \sqrt{\frac{F_y}{F_e}} \end{array}$ $\frac{P_n}{\Omega_c} = \frac{F_n A}{\Omega_c}$ $F_e = \frac{\pi^2 E}{\left(\frac{kl}{r}\right)^2}$ 91.64 ksi F_nA Fe = 0.74 λc = Fn = 39.79 ksi Ly = 36.69 in Lateral unbraced length $k_y L_y / r_y =$ 56 (assume k=0.8) Compression Check = O.K. **Check Web Crippling** -- Check limits: 5.5 in C = 7.50 h = 77.14 ≤ 200 t = 0.0713 in h/t = $C_{R} = 0.08$ (See table C3.4.1-2, fastened to N/t = 98.18 ≤ 210 $C_{N} = 0.12$ N = 7.00 support, two flange, end loading) Ω_w = N/h =1.273 ≤ 2.0 $C_{h} = 0.048$ 1.75 1.947 k R/t =1.50 ≤ 12.0 P_n = $P_n = Ct^2 F_y \sin(90) \left(1 - C_R \sqrt{\frac{R}{t}} \right) \left(1 + C_N \sqrt{\frac{N}{t}} \right) \left(1 - C_h \sqrt{\frac{h}{t}} \right)$ $P_n/\Omega_w =$ 1.112 k Long side: Pu_{Trans} = 0.795 k <u>O.K.</u> # clips = 3 Short side: PuLong = 0.836 k <u>О.К.</u> # clips = 2 **Check Web Stiffener** N/A $P_n = 0.7 \left(P_{wc} + A_e F_y \right) \ge P_{wc}$ width of stiffener = 7.000 in ts = 0.0566 16 Gauge Pwc = 1.947 k 6.717 in web of stiff. w = 0.0849 in Pn = 14.669 k Rs =1.70 ***Check w/ts ≤ 1.28VE/Fys $\Omega_c =$ Ae = 0.380 in² w/ts = 118,675 $Pn/\Omega_c =$ 1.28V(E/Fys) = --> w/ts over limit Use C3.7.2 8.629 k 31.091 Not Req'd 1/4" ϕ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts Corner Connections 991 lbs Max(F_{pmaxASD}/4 -OR- Fh_{ASDtrans}/4 corner connections) Tcrnmax = Max(Tens/2 -OR- Comp/2 corner connections per side) 1192 lbs Vcrnmax = Tall = 2480 lbs Vall = Bolt: 1208 lbs Threaded Insert: Tall = 2860 lbs Vall = 1096 lbs 0.4

6593 Riverdale St.

of Bolts required for Tension = # of Bolts required for Shear = 1.1 # of Bolts Used = 3.0 Check Combined Stress in Bolts & Inserts: 0.496 <u>0.K.</u> Check 1/8" welded connection <--- USE WELD Ω= 2.35 $V_{reg}\Omega$ Assume L/t > 25: 25*t = 1.783 in $P_n/\Omega = \frac{1}{\Omega} 0.75 t L F_u \ge V_{req}$ $L_{req'd} = \frac{v_{req^{2d}}}{0.75tF_u}$ 0.806 in Lreg'd =


MOUR GROUP

g

Connection Unit to		#10 SMS scre		Ω=	3.0
t1 =	0.0713 in (clip thi	,	. = 1.0	Fu1 =	65 ksi
t2 =	0.0713 in (unit ba	,		Fu2 =	65 ksi
d =	0.190 in (screw)	diameter)	dw =	0.375 in (nom	. washer diameter)
<u>For t2/t1 ≤ 1.0:</u>	Pns	= 2266 #	For t2/t1 ≥ 2.5:		АT
Shear : $P_{ns} =$	$4.2F_{u2}\sqrt{t_2^3d}$ 2.2			2377 #	t₂∽_∥
Tension : P _{ns}	$= 2.7t_1^{*}dF_{u1}$ 2.3	8 k <i>P_{ns}</i>	$= 2.7t_1 dF_{u1}$	2.38 k	
P _{ns}	$= 2.7t_2 dF_{u2}$ 2.3	8 k <i>P_{ns}</i>	$= 2.7t_2 dF_{u2}$	2.38 k	t ₁
Pns/Ω =	755 #				
Pss/Ω =	540 # <- Control	s j	$P_{not} = 0.85t_c dF_{u2})$		
Pnot =	0.748 k (screw p	ull-out strength)	$t_c = \min(t_1, t_2)$		
Pnov =	2.607 k (screw p	ull-over strength)	$P_{nov} = 1.5t_1 d_w F_{u1}$		
Pts/Ω =	249 # <- Control	S			
Pts/Ω =	820 #	(full tensile screw	capacity)		
	Shear (k) # clips	V _{clip} (k) V _{allow} (I	b) # screws sp	acing	
Long side:	1.645 3	0.55 540 #	4 2.	00 in	
Short side:	1.645 2	0.82 540 #		00 in	
	width (in) = 7.00	clip height			
	nin spacing = 0.57 in	edge distance	· · ·	nin. 1.5d)	
Check Block shear r			t = 0.0713 AISI		
Fy =	50 ksi		22 bolt/screw conne		2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Agv =	0.463 in ²		16 in ²		.082 in ²
Rn/Ω =	8.674 k	$R_n = 0.6F_y A_{gv} + F_u$			ΥT
	<u>BSR O.K.</u>		(AISI Sect. E5.	וכ	¥ 1
Curb Loads (copied	from above)		Loads at each Iso	lator Type:	CQA
Transverse:	Comp _{MAX} = 3271	lbs	Transverse loadir	<u>ng:</u> Comp _№	_{MAX} = 1635.7 lbs
(on long edge)	Tens _{MAX} = 2388	lbs	(on long edg	e) Tens _№	_{AAX} = 1194.1 lbs
	Shear _{MAX} = 3964	lbs	# isolators:	2 Shear _N	_{AAX} = 495.6 lbs
Longitudinal:	Comp _{MAX} = 2180	lbs	Longitudinal load	ing: Comp _N	_{AAX} = 1090.2 lbs
(on short edge)	Tens _{MAX} = 1297	lbs	(on short edg		
(Shear _{MAX} = 3964	lbs	# isolators:	2 Shear _N	
ax compression force		≤ 3.176 k <u>O.K.</u>	# 150101013.		1AX 433.0 103
•	t on isolator: 1.194 k	≤3.176 k <u>O.K.</u> ≤3.176 k O.K.		6.0 i	n
	r on isolator: 0.496 k	≤ 3.176 k <u>O.K.</u> ≤ 1.163 k O.K.	$\overset{*}{\frown}$	0.01	<u> </u>
Forces on top bolt:		- 1.100 K <u>VIII</u>	2.0 in		\bigcirc
Tension =	1.194 k	d _b = 0.375	in		
Shear =	0.496 k	pper rail, t = 0.0713		7.0 i	n
Shear on curb rail:	$P_n = teF_u$	$\Omega = 2.00$, III (Appendix A, Se		
Shear O.K.	$Pn/\Omega = 4.635 k$	e = 1.0	in		
Net section rupture	-	$\Omega = 2.22$	(Appendix A, Se	ction E3.2 AISI)	
	$Pn/\Omega = 4.989 k$	An = 0.116		- /	
	N.S.R. O.K.	$F_t = (0.1 + 3a)$	$l/s)F_u \le F_u = 43$	3.063 ksi	
Bolt Bearing Streng		Ω = 2.50	(Section E3.3.1	AISI)	
	Pn/Ω = 2.086 k	d/t = 5.26			
		C = 3.00	mf = 1	00	
	Bearing O.K.				
Shear and tension in	<u>n bolt:</u>	(Appendix A, Sectio			
Shear and tension in Tension	$P_{nt} = A_b F_{nt}$	(Appendix A, Section Fnt = 40.5	n E3.4 AISI) ksi	A _b = 0.110	
	<u>n bolt:</u> $P_{nt} = A_b F_{nt}$ Pnt/Ω = 1.988 k	(Appendix A, Sectio		$A_b = 0.110$ $\Omega t = 2.25$	
Tension	$P_{nt} = A_b F_{nt}$ $Pnt/\Omega = 1.988 \text{ k}$ $P_{nv} = A_b F_{nv}$	(Appendix A, Section Fnt = 40.5 Bolt tension O.K. Fnv = 24.0			5 (Table E3.4-1, AISI)
	<u>n bolt:</u> $P_{nt} = A_b F_{nt}$ Pnt/Ω = 1.988 k	(Appendix A, Section Fnt = 40.5 Bolt tension O.K. Fnv = 24.0	ksi	Ωt = 2.25	5 (Table E3.4-1, AISI)
Tension Shear <u>Combined Shear an</u>	$P_{nt} = A_b F_{nt}$ $P_{nt} = A_b F_{nt}$ $P_{nt} = A_b F_{nv}$ $P_{nv} = A_b F_{nv}$ $P_{nv} = 1.104 \text{ k}$ d tension in bolt:	(Appendix A, Section Fnt = 40.5 Bolt tension O.K. Fnv = 24.0 Bolt shear O.K.	ksi	Ωt = 2.25	5 (Table E3.4-1, AISI)
Tension Shear <u>Combined Shear an</u>	$P_{nt} = A_b F_{nt}$ $P_{nt} = A_b F_{nt}$ $P_{nt} = A_b F_{nv}$ $P_{nv} = A_b F_{nv}$ $P_{nv} = 1.104 \text{ k}$ d tension in bolt:	(Appendix A, Sectio Fnt = 40.5 Bolt tension O.K. Fnv = 24.0 Bolt shear O.K. ft = 10.81	ksi ksi	$\Omega t = 2.25$ $\Omega v = 2.40$ fv = 4.45	(Table E3.4-1, AISI) (Table E3.4-1, AISI)
Tension Shear <u>Combined Shear an</u>	$P_{nt} = A_b F_{nt}$ $P_{nt} = A_b F_{nt}$ $P_{nv} = A_b F_{nv}$ $P_{nv} = A_b F_{nv}$ $P_{nv} = 1.104 \text{ k}$ $\frac{d \text{ tension in bolt:}}{1.3F_{nt} - \frac{\Omega F_{nt}}{F_{nv}}} f_v \leq F_{nt}$	(Appendix A, Sectio Fnt = 40.5 Bolt tension O.K. Fnv = 24.0 Bolt shear O.K. ft = 10.81 F'nt = 34.48	ksi ksi ksi ksi F	Ωt = 2.25 Ωv = 2.40	G (Table E3.4-1, AISI) O (Table E3.4-1, AISI) O ksi O.K.
Tension Shear <u>Combined Shear an</u> $F'_{nt} = T$	$P_{nt} = A_b F_{nt}$ $P_{nt} = A_b F_{nt}$ $P_{nv} = A_b F_{nv}$ $P_{nv} = A_b F_{nv}$ $P_{nv} / \Omega = 1.104 \text{ k}$ $\frac{d \text{ tension in bolt:}}{1.3F_{nt} - \frac{\Omega F_{nt}}{F_{nv}}} f_v \leq F_{nt}$ $P'_{nt} = A_b F'_{nt}$	$\begin{array}{rcl} (Appendix A, Section \\ Fnt = & 40.5 \\ \hline \mbox{Bolt tension O.K.} \\ Fnv = & 24.0 \\ \hline \mbox{Bolt shear O.K.} \\ \hline \mbox{ft} = & 10.81 \\ F'nt = & 34.48 \\ P'nt/\Omega = & 1.692 \\ \end{array}$	ksi ksi ksi F ksi F Combined O.K.	Ωt = 2.25 Ωv = 2.40 fv = 4.49 nv/Ω = 10.0	G (Table E3.4-1, AISI) O (Table E3.4-1, AISI) O ksi O.K. O ksi
Tension Shear Combined Shear an $F'_{nt} = T$ Longitudinal weld k	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} P_{nt} = A_b F_{nt} \\ \end{array} \\ Pnt/\Omega = & 1.988 \\ P_{nv} = A_b F_{nv} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} Pnv/\Omega = & 1.104 \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \begin{array}{l} \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} $	$\begin{array}{rcl} (Appendix A, Section \\ Fnt = & 40.5 \\ \hline \mbox{Bolt tension O.K.} \\ Fnv = & 24.0 \\ \hline \mbox{Bolt shear O.K.} \\ \hline \mbox{ft} = & 10.81 \\ F'nt = & 34.48 \\ P'nt/\Omega = & 1.692 \\ \end{array}$	ksi ksi ksi F ksi F Combined O.K.	Ωt = 2.25 Ωv = 2.40 fv = 4.49 nv/Ω = 10.0	5 (Table E3.4-1, AISI) 0 (Table E3.4-1, AISI) 9 ksi Ο.Κ. 0 ksi Ω = 2.55
Tension Shear <u>Combined Shear an</u> $F'_{nt} = T$	$P_{nt} = A_b F_{nt}$ $P_{nt} = A_b F_{nt}$ $P_{nv} = A_b F_{nv}$ $P_{nv} = A_b F_{nv}$ $P_{nv} / \Omega = 1.104 \text{ k}$ $\frac{d \text{ tension in bolt:}}{1.3F_{nt} - \frac{\Omega F_{nt}}{F_{nv}}} f_v \leq F_{nt}$ $P'_{nt} = A_b F'_{nt}$	(Appendix A, Sectio Fnt = 40.5 Bolt tension O.K. Fnv = 24.0 Bolt shear O.K. ft = 10.81 F'nt = 34.48 P'nt/ Ω = 1.6921 = 1.5 p_n/Ω = $\frac{1}{\Omega}$	ksi ksi ksi ksi F	$\Omega t = 2.25$ $\Omega v = 2.40$ $fv = 4.49$ $nv/\Omega = 10.0$ $_{2} \ge V_{req} \qquad Pn,$	G (Table E3.4-1, AISI) O (Table E3.4-1, AISI) O ksi O.K. O ksi

Client	ProVent	PV2312		Bac	e curb	٦						
		Iso Curb	CBISCPRS	Das	ecuib	_						
· · ·	YORK ZX 04-0			0 04-06		_						
[,,.										
Base Curb Informat	ion								Fv			
Hbase curb =	25	in	(Height of	base curb)		1		EQ	3.0.6	-	EQ	
Lcurb =	73.375	in	(Length of	base curb)		-			(× Li			-
wcurb =	43.125	in	(Width of b	base curb)		—;						
WGTbase =	147	lbs	(Weight of	base curb)								
# Springs long side =	2	# Spring	gs short side	= 2	÷,			FP MAX	_			- 18.0
Unit Information					Hunit					[
WGTunit =	916	lbs	(Weight of	Unit)	Hcm	W	∕t _{min}		1	WGTUNIT	Wt	^{nax} F _h
Wt'max =	322	lbs	(Wtmax+1	/4*WGTupper)	1	1	¥ .			•	1	, →
Wt'min =	242	lbs	(Wtmin+1/	/4*WGTupper))		-t r	<u>.</u>					j j
Hunit =	40.56	in	(Height of	unit above curb)	-e 1	Jer						
H'cm =	30.28	in	(Hcm+10"(upper+spring))	Hcurb Hcurb ₂	ġ				_		1
Lunit =	74.05	in	(Length of	unit)						WGTCURB		
Wunit =	48.88	in	(Width of ι	unit)	4		-					Ā
WGTunit+upper+base =	1251		(Total weig	ght)		◄	v				-	—v
Seismic Loading - 20		<u>CBC</u>					T_{max}					C _{max}
Ss =	2.85		•	e for majority of								
Fa =	1.20		•	te Class D - Table								
Ip =	1.50			ce Factor Categor	•	0,		_				
Sms =	3.420		(Fa*Ss)		ар		2.					
Sds =	2.280		(2/3*Sms)		Rp			2				
Fpmax =	5.130	•	• •	ls*Ip)*Wp*3/Rp	<=1.6*S	•						
FpmaxASD =	3964		(0.7*Fpma	x)		•	axASD		4492			
	(unit + upper	-				((unit +	upper i	rail + b	ase curb)		
Wind Loading - 202		BC				T - 1-1 -	26.40	4 4 6 6 5	7 4 6			
Kz =	1.13			oof height, Expos			26.10	-1 ACSE	/-16)			
Kzt =	1.00		•	med topographic			7 4 6)					
Kd =	0.85		•	ality factor Table 2				10)				
Ke = V =	1.00 110		•	evation Factor Ta city, mph for Occ					Cat C			7 1 ()
v – GCr _(horiz) =	1.9		-	: 29.4.1 ASCE 7-16		Cat II		ugs exp	. Cal C	, FIG 20.3	ID - ASCEI	-10)
					-							
GCr _(vert) =	1.5		•	29.4.1 ASCE 7-16	,							
qz	29.8	•		*Kz*Kzt*Kd*Ke*V GCr*Lunit*(Hunit+					4 2)			
F _{h ASD trans} =	1318 870		-	SCr*Wunit*(Hunit				(Eq. 29.	4-Z)			
F _{h ASD long} = F _{vert ASD} =	673		•	SCr*Lunit*Wunit			,					
vert ASD –	0/3	105	- 0.0 qz C		(LY. 2)	5.4-5))					
Base Curb Loading												
Transverse:												
Compression _{SEISMIC} =	3633	lbs	=[FpmaxAS	SD*H'cm+2*(1+0.	14S _{DS})*	Wt'm	nax*wo	curb]/w	curb			
Tension _{SEISMIC} =	2648	lbs	=[FpmaxAS	6D*H'cm-2*(0.6-0).14S _{DS})	*Wt'r	nin*w	curb)]/v	vcurb			
Compression _{WIND} =	975	lbs	=[F _{h ASD trans}	*H'cm+2*0.6*W	t'max*v	vcurb	-F _{vert As}	_{sp} *wcur	b/2]/v	vcurb		
Tension _{WIND} =	972	lbs	=[F _{h ASD trans}	_s *H'cm-2*0.6*Wt	'min*w	curb+	+F _{vertASI}	_D *wcurl	b/2]/w	curb		
	> Negative	values ind	licate opposi	te load.								
Longitudinal:												
$Compression_{SEISMIC} =$	2485	lbs		SD*H'cm+2*(1+0.	0.07							
Tension _{SEISMIC} =	1500	lbs		SD*H'cm-2*(0.6-0								
Compression _{WIND} =	409			*H'cm+2*0.6*Wt								
Tension _{WIND} =	406		-	*H'cm-2*0.6*Wt'	min*Lc	urb+F	vertASD	*Lcurb/2	2]/Lcu	ſb		
	> Negative	values ind	licate opposi	te load.								
Governing Reaction	-	2622	llee		· · ·	· . ·						
Transverse:	Comp _{MAX} =	3633	lbs	> Along long	-							
(on long edge)	Tens _{MAX} =	2648	lbs	> Along long	edge of	fcurb).					
Longitudinal:	Comp _{MAX} =	2485	lbs	> Along shor	t edge o	of cur	b.					
(on short edge)	Tens _{MAX} =	1500	lbs	> Along shor	t edge o	of curl	b.					
	> Negative	values ind	licate opposi	te load.								
	5		••									

g MOUR GROUP ENGINEERING + DESIGN

Curb Loaus (copieu	from upper rail calcs)			Loads at each Isolator	Туре:	CQA	
Transverse:	Comp _{MAX} = 3271	lbs		Transverse loading:	Comp _{MAX} =	1635.7	lbs
(on long edge)	Tens _{MAX} = 2388	lbs		(on long edge)	Tens _{MAX} =		lbs
	Shear _{MAX} = 3964	lbs		# isolators: 2	Shear _{MAX} =		lbs
Longitudinal:	$Comp_{MAX} = 2180$	lbs		Longitudinal loading:	Comp _{MAX} =		lbs
(on short edge)	$Tens_{MAX} = 1297$	lbs		(on short edge)	Tens _{MAX} =		lbs
(on one cuge)	Shear _{MAX} = 3964	lbs		# isolators: 2	Shear _{MAX} =		lbs
ax compression force		≤ 3.176 k	О.К.		WAA		
•	on isolator: 1.194 k	≤ 3.176 k		ĸ	6.0 in		r
•	on isolator: 0.496 k	≤ 1.163 k					
Forces on bottom bo	olts:			2.0 in			\bigcirc
d _b =	0.5 in						
base curb, t =	0.0713 in				7.0 in		▲ T
Tension =	0.597 k / bolt					t2-	ıT'
Shear =	0.248 k / bolt						
Shear on base curb:	$P_n = teF_u$	Ω =	2.00	(Appendix A, Section	E3.1 AISI)	t ₁	
	$Pn/\Omega = 4.635 k$	e =	1.0	in		1	
	Shear O.K.						r an
Net section rupture:	$P_n = A_n F_t$	Ω =	2.22	(Appendix A, Section	E3.2 AISI)		
	Pn/Ω = 5.909 k	An =		in			
	N.S.R. O.K.	$F_t = 0$	(0.1 + 3d)	$s)F_u \le F_u = 55.250$	ksi		U
Bolt Bearing Strengt		Ω =	2.50	(Section E3.3.1 AISI)			
	$Pn/\Omega = 2.781 k$	d/t =	7.01				
	Bearing O.K.	C =	3.00	mf = 1.00			
Shear and tension in		(Appendix			2		
Tension	$P_{nt} = A_b F_{nt}$		45.0 ksi	$A_{b} = 0.1963$	in ²	4	
	$Pnt/\Omega = 3.927 k$			Ωt = 2.25		۵. ۵	
Shear	$P_{nv} = A_b F_{nv}$		27.0 ksi	$\Omega v = 2.40$	1011444	4	
Combined Cheer and	$Pnv/\Omega = 2.209 k$	Bolt shear O	.K.	***(Table E3.4-1, A	lSI)***	-	
Combined Shear and		ft =	6.08	ksi fv	= 1.26	ksi	∳Т О.К.
$F'_{nt} = 1$	$1.3F_{nt} - \frac{\Omega F_{nt}}{F_{nv}} f_v \le F_{nt}$	F'nt =	45.00	ksi Fnv/Ω		ksi	0.1.
	$P'_{nt} = A_h F'_{nt}$			Combined Not Applica			
Connection of Curb	to Supporting Structure						
Roof Loading	SEISMIC: (0.6-0.14Sp	-		WIND: 0.6D + W			
Transverse:	Uplift _{MAX} =	-	lbs	Shear _{MAX}	= 2246	lbs	Т
Compression _{seismic} =	6584 lbs	=[FpmaxASD	*(H'cm+Ht	base curb)+(1+0.14S _{DS})*			 21/wcurb
Tension _{SEISMIC} =	5583 lbs			base curb)-(0.6-0.14S _{DS})			
Compression _{WIND} =	1728 lbs			se curb)+0.6*WGT _{unit+up}			
Tension _{WIND} =	1651 lbs			se curb)-0.6*WGT _{unit+up}			
	1051 105			Shear _{MAX}]
	Linlift=	5205		base curb)+(1+0.14S _{DS})*			 1/Lourb
Longitudinal:	Uplift _{MAX} =	=[FnmavASD	*(H'Cm+H'		•• • • • unit+unner+h	ase LCUID/2	., LCUID
Longitudinal: Compression _{SEISMIC} =	4210 lbs						
Longitudinal: Compression _{SEISMIC} = Tension _{SEISMIC} =	4210 lbs 3209 lbs	=[FpmaxASD	*(H'cm+Ht	base curb)-(0.6-0.14S _{DS})	*WGT _{unit+upper+}	_{base} *Lcurb/	2]/Lcurb
Longitudinal: Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} =	4210 lbs 3209 lbs 694 lbs	=[FpmaxASD =[F _{h ASD long} *(*(H'cm+Hb H'cm+Hbas	base curb)-(0.6-0.14S _{DS}) se curb)+0.6*WGT _{unit+upp}	*WGT _{unit+upper+} _{per+base} *Lcurb/2	_{base} *Lcurb/ 2-F _{vert ASD} *L	2]/Lcurb curb/2]/Lcurb
Longitudinal: Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} = Tension _{WIND} =	4210 lbs 3209 lbs 694 lbs 617 lbs	=[FpmaxASD =[F _{h ASD long} *(=[F _{h ASD long} *(*(H'cm+Hb H'cm+Hbas H'cm+Hbas	base curb)-(0.6-0.14S _{DS}) se curb)+0.6*WGT _{unit+upp} se curb)-0.6*WGT _{unit+upp}	*WGT _{unit+upper+} _{per+base} *Lcurb/2 _{er+base} *Lcurb/2	_{base} *Lcurb/ 2-F _{vert ASD} *Lu 2+F _{vertASD} *Lu	2]/Lcurb curb/2]/Lcurb
Longitudinal: Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} =	4210 lbs 3209 lbs 694 lbs 617 lbs :: 1/4"ф x 4 .5	=[FpmaxASD =[F _{h ASD long} *(=[F _{h ASD long} *(5'' Simpson SI	*(H'cm+Hk H'cm+Hbas H'cm+Hbas DS screws	base curb)-(0.6-0.14S _{DS}) se curb)+0.6*WGT _{unit+upp} se curb)-0.6*WGT _{unit+upp} w/ 2.75" thr <u>eaded em</u>	*WGT _{unit+upper+} per+base*Lcurb/2 per+base *Lcurb/2 be (SGmin = 0.	_{base} *Lcurb/ 2-F _{vert ASD} *Lu 2+F _{vertASD} *Lu	2]/Lcurb curb/2]/Lcurb
Longitudinal: Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} = Tension _{WIND} = Wood Attachment	4210 lbs 3209 lbs 694 lbs 617 lbs :: 1/4" ϕ x 4. Tall _{metal} =	=[FpmaxASD =[F _{h ASD long} *((=[F _{h ASD long} *('' Simpson St 997	*(H'cm+Hb H'cm+Hbas H'cm+Hbas DS screws Ibs	base curb)-(0.6-0.14S _{DS}) se curb)+0.6*WGT _{unit+upp} se curb)-0.6*WGT _{unit+upp} w/ 2.75" threaded em Vall _{metal} = 109	*WGT _{unit+upper+} _{ber+base} *Lcurb/2 _{her+base} *Lcurb/2 b (SGmin = 0.4 7 lbs	_{base} *Lcurb/ 2-F _{vert ASD} *Lu 2+F _{vertASD} *Lu	2]/Lcurb curb/2]/Lcurb
Longitudinal: Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} = Tension _{WIND} =	4210 lbs 3209 lbs 694 lbs 617 lbs :: 1/4"ф x 4 .5	=[FpmaxASD =[F _{h ASD long} *((=[F _{h ASD long} *('' Simpson St 997	*(H'cm+Hb H'cm+Hbas H'cm+Hbas DS screws Ibs	base curb)-(0.6-0.14S _{DS}) se curb)+0.6*WGT _{unit+upp} se curb)-0.6*WGT _{unit+upp} w/ 2.75" threaded em Vall _{metal} = 109	*WGT _{unit+upper+} per+base*Lcurb/2 per+base *Lcurb/2 be (SGmin = 0.	_{base} *Lcurb/ 2-F _{vert ASD} *Lu 2+F _{vertASD} *Lu	2]/Lcurb curb/2]/Lcurb
Longitudinal: Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} = Tension _{WIND} = Wood Attachment <u>Transverse:</u> # of S	4210 lbs 3209 lbs 694 lbs 617 lbs t: 1/4"ф x 4. Tall _{metal} = Tall _{wood} = Screws Req'd for Uplift =	=[FpmaxASD =[F _{h ASD long} *(=[F _{h ASD long} *(5'' Simpson St 997 760 7.35	*(H'cm+Hb H'cm+Hbas H'cm+Hbas DS screws Ibs	base curb)-(0.6-0.14S _{DS}) se curb)+0.6*WGT _{unit+upp} se curb)-0.6*WGT _{unit+upp} w/2.75" threaded em Vall _{metal} = 109 Vall _{wood} = 67 COMBINED LOADING	*WGT _{unit+upper+} 	base [*] Lcurb/ 2-F _{vert ASD} *Lu 2+F _{vertASD} *Lu 43) O.K.	2]/Lcurb curb/2]/Lcurb
Longitudinal: Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} = Tension _{WIND} = Wood Attachment <u>Transverse:</u> # of S # of S	4210 lbs 3209 lbs 694 lbs 617 lbs t: 1/4"φ x 4. Tall _{metal} = Tall _{wood} =	=[FpmaxASD =[F _{h ASD long} *(=[F _{h ASD long} *(" Simpson St 997 760 7.35 3.34	*(H'cm+Hl H'cm+Hbas H'cm+Hbas DS screws Ibs Ibs	base curb)- $(0.6-0.14S_{DS})^{-1}$ se curb)+ $0.6*WGT_{unit+upp}$ se curb)- $0.6*WGT_{unit+upp}$ w/ 2.75" threaded em Vall _{metal} = 109 Vall _{wood} = 67	*WGT _{unit+upper+} 	_{base} *Lcurb/ 2-F _{vert ASD} *Lu 2+F _{vert ASD} *Lu 243)	2]/Lcurb curb/2]/Lcurb

Use 10 - 1/4" ϕ x 4.5" Simpson SDS screws @ 7.3 in o.c. along long side of curb w/ 2.75" threaded embed

MOUR GROUP

ENGINEERING + DESIGN

Longitudinal: # of Screws Req'd for Uplift = 4.22 COMBINED LOADING: 0.913 O.K. 7.03 in o.c. # of Screws Reg'd for Shear = 3.34 Screw Spacing = Total # of screws required = 6 Use 6 - 1/4" ox 4.5" Simpson SDS screws @ 7 in o.c. along short side of curb w/ 2.75" threaded embed Steel Deck Attachment: 1/2" ϕ A307 Bolts to steel angle below deck Vall_{bolt} Tall_{bolt} = 3927 lbs 2209 lbs 2192 lbs Transverse: Tall_{metal} = 2086 lbs Vall_{metal} = # of Bolts Req'd for Uplift = 2.68 COMBINED LOADING: 0.840 O.K. # of Bolts Reg'd for Shear = Bolt Spacing = 20.46 in o.c. 1.02 Total # of bolts required = 4 Use 4 - 1/2" ϕ A307 Bolts to steel angle below deck @ 20.5 in o.c. along long side of curb Longitudinal: # of Bolts Req'd for Uplift = 1.54 COMBINED LOADING: 0.555 O.K. # of Bolts Req'd for Shear = 1.02 Bolt Spacing = 31.13 in o.c. Total # of bolts required = 2 Use 2 - 1/2" ϕ A307 Bolts to steel angle below deck @ 31.1 in o.c. along short side of curb For Concrete anchorage: SEISMIC (0.6-0.14S_{DS})D + 0.7Ω_o E Ωo = 2.5 Concrete Attachment: 0.625in & HAS rods in Hilti HIT-HY 200 V3 epoxy w/ 4in embed A_{Na} Epoxy: Hilti HIT-HY 200 V3 (ICC ESR 4868) 4000 psi f'c = CNa 6 in (concrete thickness, t_min = h_ef + 2do) О.К. h = 4 in (effective embedment) h_ef = 0.625 in (anchor diameter) 0.75 in (hole diameter) da : do = 5 (number of dummy anchors to check capacity with spacing effect) n = s = 10 in (initial spacing estimate) 1170 2220 psi (from ESR 4868, Table 14, Temp range B) τk.cr / uncr = τk,cr / uncr = multiply by $(f'_{c}/2500)^{0.1}$ 1226 2327 psi If $f'_c > 2500$, $c_{Na} = 10d_a \sqrt{\frac{\tau_{uncr}}{1100}}$ c_Na= 9.0625 in (min. edge distance for full capacity); $N_{ag} = \frac{A_{Na}}{A_{Nao}} \varphi_{ec,Na} \varphi_{ed,Na} \varphi_{cp,Na} N_{ba}$ Tension: (ACI318-14, 17, 4, 5, 1b) Bond strength $\varphi_{ec,Na}\varphi_{ed,Na}\varphi_{cp,Na} = 1.0$ CNa ***Bond strength A_{Na}= 1053.52 in² will govern over A_{Nao}= 328.52 in² CNa CNa × concrete breakout $N_{ba} =$ $N_{ba} = \lambda_a \tau_{cr} \pi d_a h_{ef} \alpha_{n,seismic}$ 9535 lbs $\alpha_{n.seismic} = 0.99$ 30578 lbs (group) $N_{ag} =$ $\lambda_a = 1.0$ CONTROLS $\lambda_a = 1.0$ for normal weight conc; 0.6 for lightwo $\phi N_{ag} =$ 14907 lbs (group) $\frac{A_{Nc}}{4}\varphi_{ec,N}\varphi_{ed,N}\varphi_{cp,N}N_b$ Breakout $N_{cbg} =$ $N_b = \lambda_a k_c \sqrt{f'_c} h_{ef}^{1.5}$ strength A_{Nco} 624 in² A_{Nc} = N_b = 8601 lbs 0.75 $\phi_{conc} =$ 144 in² kc = 17 A_{Nco} = 0.65 Ø_{bond} = N_{cbg} = 37273 lbs (group) Øseis = 0.75 20966 lbs (group) 0.65 ØN_{cbg} = Ø_{steel} = 7865 (from ESR4868, Table 11) Shear: Vsa,eq = 0.6 $\alpha_{v,seismic} =$ Steel strength 3067 øVsa,eq = Tall_{IRED} = 2981 lbs (anchor) Vall_{IRED} = $3067 \text{ lbs} \propto = (1 + 0.2SDS)D + 2.5E = 1.421$ $Tall_{ASD} = Tall_{LRFD} / \alpha =$ $Vall_{ASD} = Vall_{LRFD}/\alpha =$ 1795 lbs 1745 lbs $D = 0.758 \quad E \oplus .242 \quad \propto = 1.709$ Uplift_{MAX} = Shear_{MAX} = 5615 lbs 6778 lbs Transverse: =[Ωo*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*WGT_{unit+curb}*wcurb/2]/wcurb Compression_{SEISMIC} = 7808 lbs Tension_{SEISMIC} = 6778 lbs =[Ωo*FpmaxASD*(Hcm+Hcurb)-(0.6-0.14S_{DS})*WGT_{unit+curb}*wcurb/2]/wcurb Shear_{SEISMIC} = 5615 lbs =Ωo*FpmaxASD/2 Min Bolts Req'd Uplift = 3.88 spacing = 20.46 in o.c. Tapplied = 1355.7 lbs Min Bolts Req'd Shear = 20.46 in o.c. Vapplied = 701.9 lbs 3.13 spacing = $\frac{T_{applied}}{T_{allow,ASD}} + \frac{V_{apllied}}{V_{allow,ASD}}$ bolts Try using 5 O.K. COMBINED LOADING = ≤ 1.2 = 1.17 spaced at 15.34 in o.c Use 5 - 0.625in ϕ HAS rods in Hilti HIT-HY 200 V3 epoxy @ 15.3 in o.c. max. along long side of curb w/ 4in embed Uplift_{MAX} = 3909 lbs Shear_{MAX} = 5615 lbs Longitudinal:

B MOUR GROUP ENGINEERING + DESIGN

C	Compression _{SEISMIC} =	4939	lbs		=[Ωo*FpmaxASD	*(Hcm+H	Hcurb)+(1+0.1	4S _{DS})*WGT	unit+curb*LCU	rb/2]/Lcur	b
	Tension _{SEISMIC} =	3909	lbs		=[Ωo*FpmaxASD	*(Hcm+H	Hcurb)-(0.6-0.3	14S _{DS})*WG	T _{unit+curb} *Lcu	ırb/2]/Lcu	rb
	Shear _{SEISMIC} =	5615	lbs		=Ωo*FpmaxASD/	2					
	Min Bolts Req	'd Uplift =		2.24	spacing =	15.56 i	n o.c.		Tapplied =	1303.1	1 lbs
	Min Bolts Req	'd Shear =		3.13	spacing =	10.38 i	n o.c.		Vapplied =	701.9	9 lbs
	Try using	3	bolts		COMBINED LOAD	NNG -	Tapplied	$V_{apllied}$	< 1.2	= 1.14	O.K.
	spaced at	15.56	in o.c.		COMBINED LOAL	- 0/11	$T_{allow,ASD}$	Vallow,ASD		- 1.14	
	<u>Use 3 - 0.625in φ Η</u>	IAS rods in	Hilti HI	T-HY	200 V3 epoxy @ 2	<u>15.6 in c</u>	.c. max. along	short side	of curb w/	4in embeo	<u>d</u>

CURB DESIGN SUM	MARY:	CBISC-05	CBISCPRS		Unit:	YORK ZX 04-07; XX A7; ZY, ZQ, XY,			
UPPER CURB RAIL	THICKNESS:	0.0713 in	14 Gauge			XQ 04-06			
UNIT CLIP	THICKNESS:	0.0713 in	14 Gauge						
# OF CLIPS (LONG SIDE) - 3 clips with 4 - #10 SMS screws each clip									
WEB STIFFENER: NOT REQUIRED									
# OF CLIPS (SHORT SIDE) - 2 clips with 4 - #10 SMS screws each clip									
WEB STIFFENER: NOT REQUIRED									
VIBRATION ISOLATOR TYPE: CQA Top stud diameter: 3/8 (2) - CQA Isolators long side									
Anchor bo	olt diameter:	9/16	(2) - CQA Isolators short side						
BASE CURB	THICKNESS:	0.0713 in	14 Gauge			Bolt or Weld O.K			
WEE	STIFFENER:	16Ga x 1.5i	n x 7in (C-cha	nnel) stiffene	er at each cl	ip on base curb			
CORNER CO	ONNECTION:	Use minimu	um 3 - 1/4" φ	SAE Grade 8	bolts w/ 1/	4-20-UNC Threaded inserts			
CURB		WOOD		STE	EL	<u>CONCRETE</u>			
ANCHORAGE	1/4"ф x 4.5"	' Simpson SE	OS screws w/	1/2" ф А307 Bolts to		0.625in φ HAS rods in Hilti HIT-HY			
ANCHORAGE	2.75" thre	aded embed	d (SGmin =	steel angle b	pelow deck	200 V3 epoxy w/ 4in embed			
LONG DIRECTION	10) @ 7.26 in c	.c.	4 @ 20.4	6 in o.c.	5 @ 15.34 in o.c.			
SHORT DIRECTION	6	@ 7.03 in o.	.c.	2 @ 31.1	3 in o.c.	3 @ 15.56 in o.c.			