

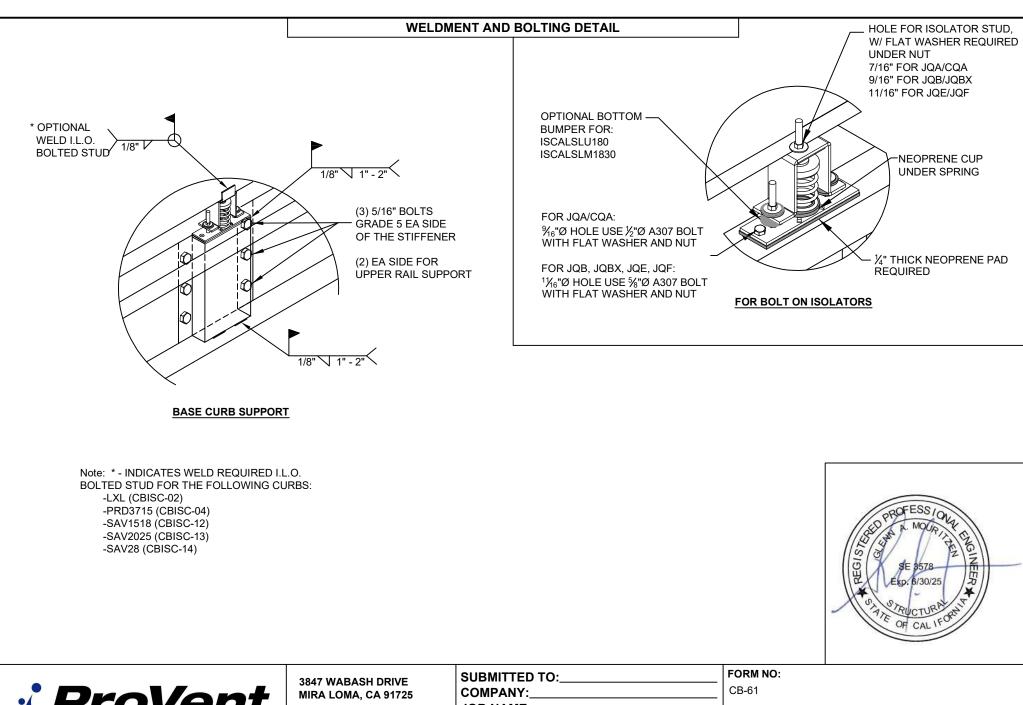
6593 Riverdale St. San Diego, CA 92120 619-727-4800

Structural Calculations

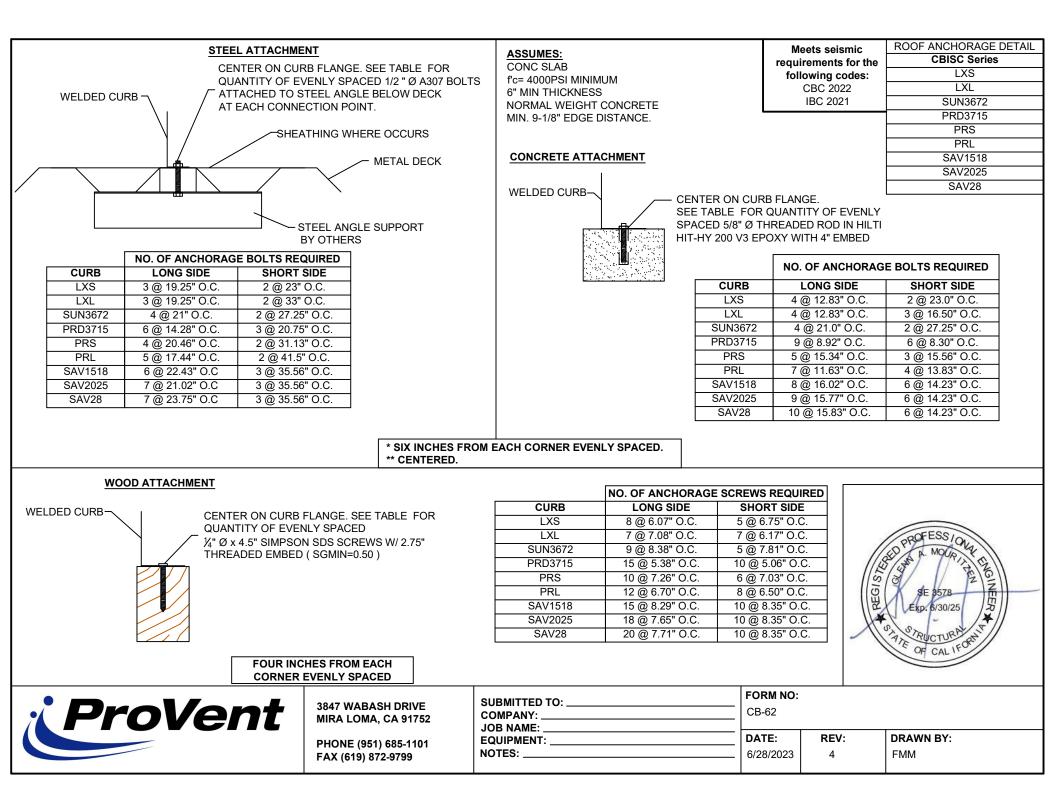
for

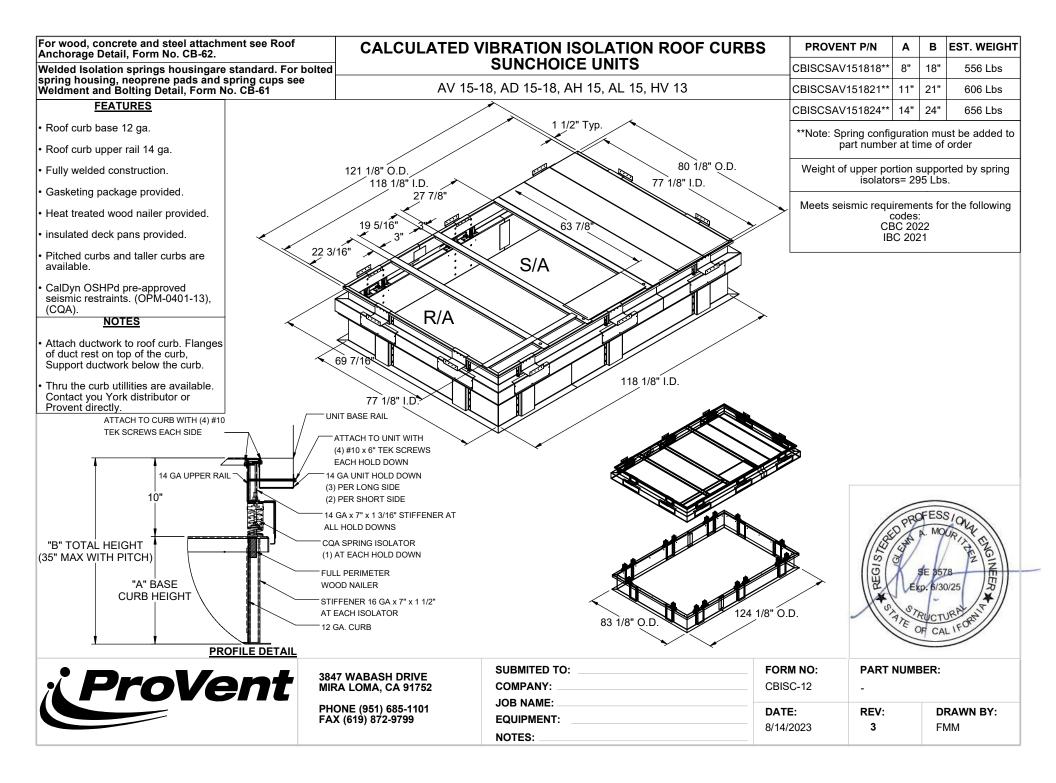
CBISC-12 Series

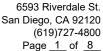
CBISCSAV1518** SERIES



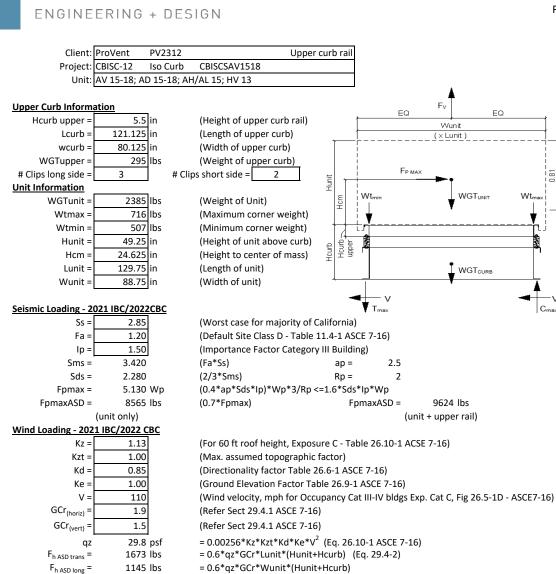
Prepared for:


PROVENT / RRS


3847 Wabash Drive Mira Loma, CA 91725


Date: August 23, 2023 Project Number: PV2312

oVent	3847 WABASH DRIVE	SUBMITTED TO:	FORM NO:			
	MIRA LOMA, CA 91725	COMPANY:	CB-61			
	PHONE (951) 685-1101 FAX (619) 872-9799	JOB NAME: EQUIPMENT: NOTES:	DATE: 08/14/23	REV: 2	DRAWN BY: FMM	



õ

E۳

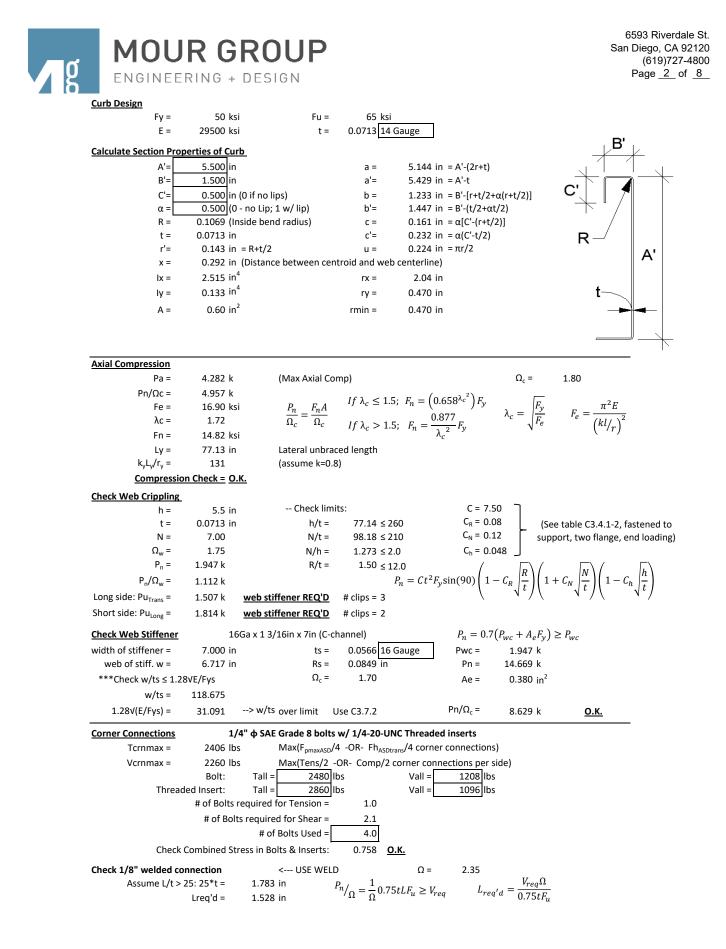
= 0.6*qz*GCr*Lunit*Wunit (Eq. 29.4-3)

Upper Curb Loading

 $F_{vert ASD} =$

$ \begin{array}{llllllllllllllllllllllllllllllllllll$
$Compression_{WIND} = 302 \text{ Ibs} = [F_{h ASD trans} *Hcm+2*0.6*Wtmax*wcurb-F_{vert ASD}*wcurb/2]/wcurb$
Tension _{WIND} = 977 lbs =[F _{h ASD trans} *Hcm-2*0.6*Wtmin*wcurb+F _{vertASD} *wcurb/2]/wcurb
> Negative values indicate opposite load.
Longitudinal:
Compression _{SEISMIC} = 3629 lbs =[FpmaxASD*Hcm+2*(1+0.14*S _{DS})*Wtmax*Lcurb]/Lcurb
Tension _{SEISMIC} = 1457 lbs =[FpmaxASD*Hcm-2*(0.6-0.14S _{DS})*Wtmin*Lcurb)]/Lcurb
Compression _{WIND} = 21 lbs =[F _{h ASD long} *Hcm+2*0.6*Wtmax*Lcurb-F _{vertASD} *Lcurb/2]/Lcurb
Tension _{WIND} = 695 lbs =[F _{h ASD long} *Hcm-2*0.6*Wtmin*Lcurb+F _{vertASD} *Lcurb/2]/Lcurb

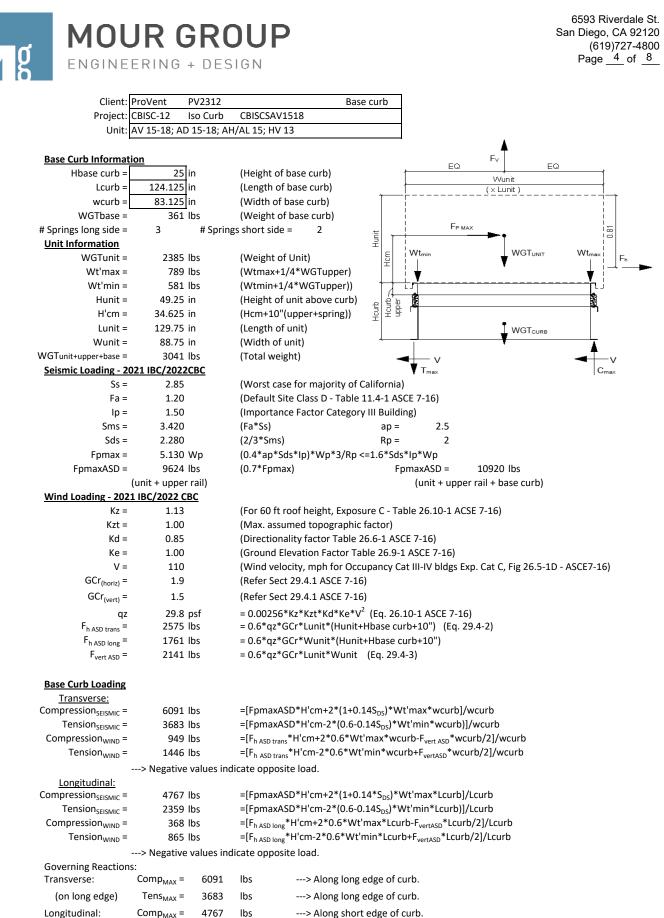
---> Negative values indicate opposite load.


2141 lbs

MOUR GROUP

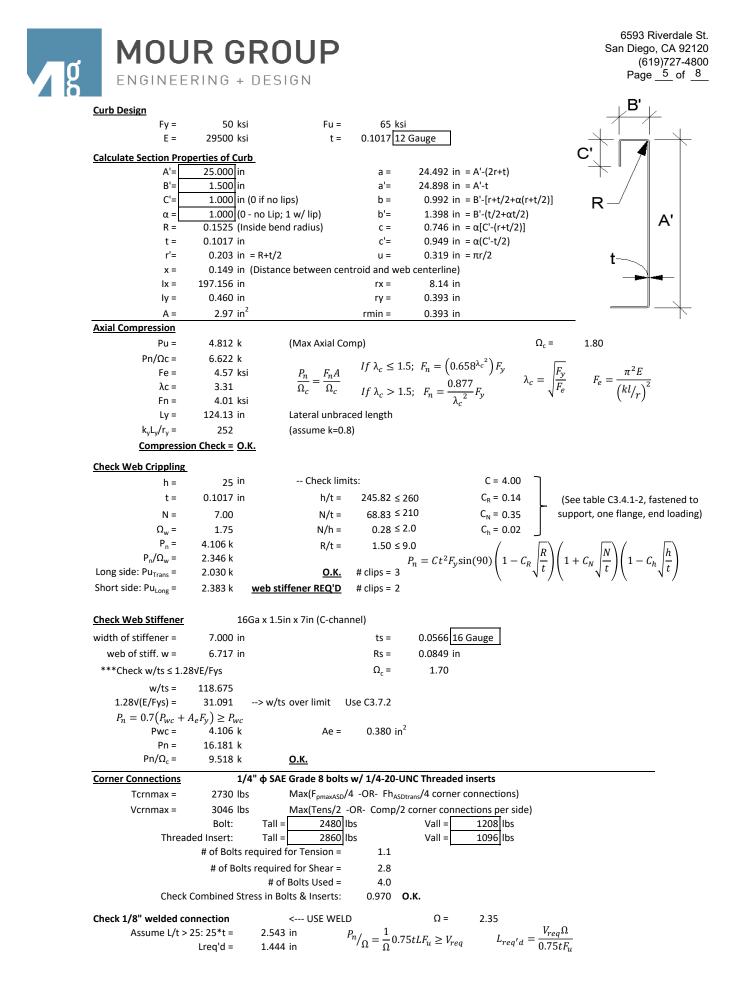
Governing Reactions:

Transverse:	Comp _{MAX} =	4520	lbs	> Along long edge of curb.
(on long edge)	Tens _{MAX} =	2348	lbs	> Along long edge of curb.
Longitudinal:	Comp _{MAX} =	3629	lbs	> Along short edge of curb.
(on short edge)	Tens _{MAX} =	1457	lbs	> Along short edge of curb.
•				


---> Negative values indicate opposite load.

MOUR GROUP

g


t1 =	Curb Clip	#10	SMS screw		Ω =	3.0	
(1 -	0.0713 in (cli	p thickness)	t2/t1 = 1	1.0	Fu1 =	65	ksi
t2 =	0.0713 in (ur	it base rail thickne	ss)		Fu2 =	65	ksi
d =	0.190 in (sc	rew diameter)		dw =	0.375	in (nom. wa	isher diameter)
or t2/t1 ≤ 1.0:		Pns = 2266 #	For	t2/t1 ≥ 2.5:			АT
Shear : $P_{ns} =$	$4.2F_{u2} t_2^3 d$	2.27 k		Pns =	2377 #		t₂∽_∥ Ī ′
ension: P _{ns}	$= 2.7t_1 dF_{u1}$	2.38 k	$P_{ns} = 2$	$2.7t_1 dF_{u1}$	2.38	k	
P_{ns}	$= 2.7t_2 dF_{u2}$	2.38 k	$P_{ns} = 2$	$2.7t_2 dF_{u2}$	2.38	k	t ₁
$Pns/\Omega =$	755 #						- Parting -
Pss/Ω =	540 # <- Co	ntrols	P	$= 0.85t_c dF$			
Pnot =	0.748 k (scr	ew pull-out strengt		$= \min(t_1, t)$			
Pnov =	2.607 k (scr	ew pull-over streng	U	$b = 1.5t_1 d_w R$			
$Pts/\Omega =$	249 # <- Co	ntrols					
Pts/Ω =	820 #	(full tensi	ile screw cap	acity)			U
	Shear (k) # c	lips V _{clip} (k)	V _{allow} (lb)	# screws	spacing		
Long side:	4.282	3 1.43	540 #	4	2.00 in		
Short side:	4.282	2 2.14	540 #	4	2.00 in		
			lip height =	2.5			
		-	e distance =		in (min. 1.5		·
heck Block shear r			inest part =		AISI BSR ap	olies	
Fy =	50 ksi	Ω =		polt/screw co			,
Agv =	0.463 in ²	Anv =			Ant =	0.082	
Rn/Ω =	8.674 k	$\kappa_n = 0.6F_y$	$A_{gv} + F_u A_{nt}$				
	<u>BSR O.K.</u>			(AISI Sect.	. E5.3)		v
Curb Loads (copied	<u>from above)</u>		<u> </u>	Loads at each	h Isolator	Type:	CQA
ransverse:	Comp _{MAX} = 53	86 lbs	<u> </u>	Fransverse lo	ading:	Comp _{MAX} =	: 1795.4 lbs
(on long edge)	Tens _{MAX} = 32	42 lbs		(on long	edge)	Tens _{MAX} =	1080.7 lbs
	Shear _{MAX} = 96	24 lbs	#	# isolators:	3	Shear _{MAX} =	962.4 lbs
ongitudinal:		.61 lbs	1 F	ongitudinal		Comp _{MAX} =	
(on short edge)		17 lbs		on short		Tens _{Max} =	
(on short euge)							
comprossion franc		24 lbs		# isolators:	2	Shear _{MAX} =	962.4 lbs
compression force		$81 k \le 3.176 k$	F			<u> </u>	
Wax unlit		$81 k \le 3.176 k$		*		6.0 in	/
		62 k ≤ 1.163 k	<u>U.R.</u> 2	2.0 in 🔿			\bigcirc
Max shea	r on isolator: 0.9			-			-
Max shear orces on top bolt:		4 -	0 275	n			
Max shear orces on top bolt: Tension =	1.081 k	d _b =	L	n		7.0 :	
Max shear orces on top bolt: Tension = Shear =	1.081 k 0.962 k	pper rail, t =	0.0713 i	n	A Soction F	7.0 in	
Max shear orces on top bolt: Tension = Shear = hear on curb rail:	$\begin{array}{llllllllllllllllllllllllllllllllllll$	pper rail, t = Ω =	0.0713 i 2.00	n (Appendix A	A, Section E		
Max shear orces on top bolt: Tension = Shear = <u>Shear O.K.</u>	1.081 k 0.962 k $P_n = teF_u$ Pn/ Ω = 4.6	rpper rail, t = Ω = 35 k e =	0.0713 i 2.00 1.0 i	n (Appendix A n		3.1 AISI)	
Max shear orces on top bolt: Tension = Shear = hear on curb rail:	1.081 k 0.962 k $P_n = teF_u$ $Pn/\Omega = 4.6$ $P_n = A_nF_t$	ipper rail, t = Ω = 35 k e = Ω =	0.0713 i 2.00 1.0 i 2.22	n (Appendix A n (Appendix A		3.1 AISI)	
Max shear orces on top bolt: Tension = Shear = <u>Shear O.K.</u>	1.081 k 0.962 k $P_n = teF_u$ $Pn/\Omega = 4.6$ $P_n = A_nF_t$ $Pn/\Omega = 4.92$	ipper rail, t = Ω = 35 k e = Ω = 89 k An =	0.0713 i 2.00 1.0 i 2.22 0.116 i	n (Appendix A n (Appendix A n	A, Section E	3.1 AISI) 3.2 AISI)	
Max shear orces on top bolt: Tension = Shear = <u>Shear O.K.</u>	1.081 k 0.962 k $P_n = teF_u$ Pn/ $\Omega = 4.6$ $P_n = A_nF_t$ Pn/ $\Omega = 4.90$ N.S.R. O	$\begin{array}{c} \text{ipper rail, t} = \\ \Omega = \\ 35 \text{ k} & e = \\ \Omega = \\ 89 \text{ k} & \text{An} = \\ \textbf{K}, & F_t = 0 \end{array}$	0.0713 i 2.00 1.0 i 2.22 0.116 i (0.1 + 3 <i>d/s</i>)	n (Appendix A n (Appendix A n	A, Section E3 43.063	3.1 AISI) 3.2 AISI)	
Max shear orces on top bolt: Tension = Shear = <u>Shear O.K.</u> Net section rupture	1.081 k 0.962 k $P_n = teF_u$ Pn/ $\Omega = 4.6$ $P_n = A_nF_t$ Pn/ $\Omega = 4.90$ N.S.R. O	$\begin{array}{c} \text{ipper rail, t} = \\ \Omega = \\ 35 \text{ k} & e = \\ \Omega = \\ 89 \text{ k} & \text{An} = \\ \textbf{K.} & F_t = 0 \\ ttF_u & \Omega = \end{array}$	0.0713 i 2.00 1.0 i 2.22 0.116 i (0.1 + 3 <i>d/s</i>) 2.50	n (Appendix A n (Appendix A n) $F_u \le F_u =$	A, Section E3 43.063	3.1 AISI) 3.2 AISI)	
Max shear orces on top bolt: Tension = Shear = <u>Shear O.K.</u> Net section rupture	1.081 k 0.962 k $P_n = teF_u$ $Pn/\Omega = 4.6$ $P_n = A_nF_t$ $Pn/\Omega = 4.90$ N.S.R. O th: $P_n = Cm_f d$	ipper rail, t = Ω = 35 k e = Ω = 89 k An = \mathbf{K} . F_t = (dtF_u Ω = 86 k d/t =	$\begin{array}{c} & \\ 0.0713 & i \\ 2.00 & \\ 1.0 & i \\ 2.22 & \\ 0.116 & i \\ (0.1 + 3d/s) \\ 2.50 & \\ 5.26 & \end{array}$	n (Appendix A n (Appendix A n) $F_u \le F_u =$	A, Section E3 43.063	3.1 AISI) 3.2 AISI)	
Max shear orces on top bolt: Tension = Shear = <u>Shear O.K.</u> Net section rupture	1.081 k 0.962 k $P_n = teF_u$ $Pn/\Omega = 4.6$ $P_n = A_nF_t$ $Pn/\Omega = 4.9$ N.S.R. O th: $P_n = Cm_f c$ $Pn/\Omega = 2.0$ Bearing O	$\begin{array}{c} \text{ipper rail, t} = \\ \Omega = \\ 35 \text{ k} & \text{e} = \\ \Omega = \\ 89 \text{ k} & \text{An} = \\ \textbf{K}, & F_t = 0 \\ dtF_u & \Omega = \\ 86 \text{ k} & d/t = \\ \textbf{K}, & C = \end{array}$	$\begin{array}{c} & \\ 0.0713 & i \\ 2.00 & \\ 1.0 & i \\ 2.22 & \\ 0.116 & i \\ (0.1 + 3d/s) \\ 2.50 & \\ 5.26 & \end{array}$	n (Appendix A n (Appendix A n $F_u \le F_u =$ (Section E3. mf =	A, Section E 43.063 .3.1 AISI)	3.1 AISI) 3.2 AISI)	
Max shear orces on top bolt: Tension = Shear = Shear O.K. Jet section rupture Solt Bearing Strengt	1.081 k 0.962 k $P_n = teF_u$ $Pn/\Omega = 4.6$ $P_n = A_nF_t$ $Pn/\Omega = 4.9$ N.S.R. O th: $P_n = Cm_f c$ $Pn/\Omega = 2.0$ Bearing O	ipper rail, t = Ω = 35 k e = Ω = 89 k An = \mathbf{K} . F_t = 0 dtF_u Ω = 86 k d/t = \mathbf{K} . C = (Appendix	0.0713 i 2.00 1.0 i 2.22 0.116 i (0.1 + 3 <i>d/s</i>) 2.50 5.26 3.00 A, Section E3	n (Appendix A n (Appendix A n $F_u \le F_u =$ (Section E3. mf =	A, Section E3 43.063 .3.1 AISI) 1.00	3.1 AISI) 3.2 AISI)	in ²
Max shear orces on top bolt: Tension = Shear = Shear O.K. Jet section rupture Bolt Bearing Strengt	1.081 k 0.962 k $P_n = teF_u$ $Pn/\Omega = 4.6$ $P_n = A_nF_t$ $Pn/\Omega = 4.9$ N.S.R.O th: $P_n = Cm_f c$ $Pn/\Omega = 2.0$ Bearing O n bolt: $P_{nt} = A_bF_n$	ipper rail, t = Ω = 35 k e = Ω = 89 k An = \mathbf{K} . $F_t = 0$ dtF_u Ω = 86 k d/t = \mathbf{K} . C = (Appendix) nt Fnt =	0.0713 i 2.00 1.0 i 2.22 0.116 i (0.1 + 3 <i>d/s</i>) 2.50 5.26 3.00 A, Section E3 40.5 k	n (Appendix A n (Appendix A n $F_u \le F_u =$ (Section E3. mf = 8.4 AISI)	A, Section E3 43.063 .3.1 AISI) 1.00	3.1 AISI) 3.2 AISI) ksi	in ² (Table E3.4-1, AISI)
Max shear orces on top bolt: Tension = Shear = <u>Shear O.K.</u> Net section rupture Solt Bearing Strengt shear and tension in Tension	1.081 k 0.962 k $P_n = teF_u$ $Pn/\Omega = 4.6$ $P_n = A_nF_t$ $Pn/\Omega = 4.9$ N.S.R.O th: $P_n = Cm_f c$ $Pn/\Omega = 2.0$ Bearing O n bolt: $P_{nt} = A_bF_n$	ipper rail, t = Ω = 35 k e = 89 k An = K . $F_t = 0$ dtF_u Ω = 86 k $d/t =K$. C = (Appendix) nt Fnt = 88 k Bolt tension	0.0713 i 2.00 1.0 i 2.22 0.116 i (0.1 + 3 <i>d/s</i>) 2.50 5.26 3.00 A, Section E3 40.5 k O.K.	n (Appendix A n (Appendix A n $F_u \le F_u =$ (Section E3. mf = 8.4 AISI)	A, Section E3 43.063 .3.1 AISI) 1.00 A _b =	3.1 AISI) 3.2 AISI) ksi 0.1104	
Max shear orces on top bolt: Tension = Shear = Shear O.K. Jet section rupture Solt Bearing Strengt	1.081 k 0.962 k $P_n = teF_u$ $Pn/\Omega = 4.6$ $P_n = A_nF_t$ $Pn/\Omega = 4.90$ N.S.R. O. th: $P_n = Cm_f \alpha$ $Pn/\Omega = 2.00$ Bearing O. n bolt: $P_{nt} = A_bF_t$ $Pnt/\Omega = 1.90$ $P_{nv} = A_bF_t$	ipper rail, t = Ω = 35 k e = B9 k An = \mathbf{K} . $F_t = 0$ dtF_u Ω = B6 k $d/t =\mathbf{K}. C =(Appendixtt$ Fnt = B8 k Bolt tension	$\begin{array}{c} & & \\ 0.0713 & i \\ 2.00 & \\ 1.0 & i \\ 2.22 & \\ 0.116 & i \\ 0.1 + 3d/s) \\ 2.50 & \\ 5.26$	n (Appendix A n (Appendix A n) $F_u \le F_u =$ (Section E3. mf = 3.4 AISI) <si< td=""><td>A, Section E3 43.063 .3.1 AISI) 1.00 A_b = Ωt =</td><td>8.1 AISI) 8.2 AISI) ksi 0.1104 2.25</td><td>(Table E3.4-1, AISI)</td></si<>	A, Section E3 43.063 .3.1 AISI) 1.00 A _b = Ωt =	8.1 AISI) 8.2 AISI) ksi 0.1104 2.25	(Table E3.4-1, AISI)
Max shear orces on top bolt: Tension = Shear = Shear O.K. Let section rupture Bolt Bearing Strengt Chear and tension in Tension Shear Combined Shear an	1.081 k 0.962 k $P_n = teF_u$ $Pn/\Omega = 4.6$ $P_n = A_nF_t$ $Pn/\Omega = 4.9$ N.S.R.O. th: $P_n = Cm_f d$ $Pn/\Omega = 2.0$ Bearing O. n bolt: $P_{nt} = A_bF_n$ $Pnt/\Omega = 1.9$ $P_{nv} = A_bF_r$ $Pnv/\Omega = 1.10$ d tension in bolt:	ipper rail, t = Ω = Ω = 35 k e = Ω = 89 k An = \mathbf{K} . $F_t = 0$ dtF_u Ω = 86 k d/t = \mathbf{K} . C = (Appendix) nt Fnt = 88 k Bolt tension nv Fnv = 04 k Bolt shear O	$\begin{array}{c} & & \\ 0.0713 & i \\ 2.00 & \\ 1.0 & i \\ 2.22 & \\ 0.116 & i \\ 0.1 + 3d/s) \\ 2.50 & \\ 5.26$	n (Appendix A n (Appendix A n) $F_u \le F_u =$ (Section E3. mf = 3.4 AISI) <si< td=""><td>A, Section E3 43.063 .3.1 AISI) 1.00 A_b = Ωt =</td><td>8.1 AISI) 8.2 AISI) ksi 0.1104 2.25</td><td>(Table E3.4-1, AISI)</td></si<>	A, Section E3 43.063 .3.1 AISI) 1.00 A _b = Ωt =	8.1 AISI) 8.2 AISI) ksi 0.1104 2.25	(Table E3.4-1, AISI)
Max shear orces on top bolt: Tension = Shear = Shear O.K. Let section rupture Bolt Bearing Strengt Chear and tension in Tension Shear Combined Shear an	1.081 k 0.962 k $P_n = teF_u$ $Pn/\Omega = 4.6$ $P_n = A_nF_t$ $Pn/\Omega = 4.9$ N.S.R.O. th: $P_n = Cm_f d$ $Pn/\Omega = 2.0$ Bearing O. n bolt: $P_{nt} = A_bF_n$ $Pnt/\Omega = 1.9$ $P_{nv} = A_bF_r$ $Pnv/\Omega = 1.10$ d tension in bolt:	ipper rail, t = Ω = Ω = 35 k e = Ω = 89 k An = \mathbf{K} . $F_t = 0$ dtF_u Ω = 86 k d/t = \mathbf{K} . C = (Appendix) nt Fnt = 88 k Bolt tension nv Fnv = 04 k Bolt shear O	0.0713 i 2.00 1.0 i 2.22 0.116 i (0.1 + 3 <i>d</i> /s) 2.50 5.26 3.00 A, Section E3 40.5 k O.K. 24.0 k . K.	n (Appendix A n (Appendix A n) $F_u \le F_u =$ (Section E3. mf = 3.4 AISI) <si< td=""><td>A, Section E3 43.063 .3.1 AISI) 1.00 A_b = Ωt =</td><td>8.1 AISI) 8.2 AISI) ksi 0.1104 2.25</td><td>(Table E3.4-1, AISI)</td></si<>	A, Section E3 43.063 .3.1 AISI) 1.00 A _b = Ωt =	8.1 AISI) 8.2 AISI) ksi 0.1104 2.25	(Table E3.4-1, AISI)
Max shear orces on top bolt: Tension = Shear = Shear O.K. Let section rupture Bolt Bearing Strengt Chear and tension in Tension Shear Combined Shear an	1.081 k 0.962 k $P_n = teF_u$ $Pn/\Omega = 4.6$ $P_n = A_nF_t$ $Pn/\Omega = 4.90$ N.S.R. O. th: $P_n = Cm_f \alpha$ $Pn/\Omega = 2.00$ Bearing O. Bearing O. n bolt: $P_{nt} = A_bF_t$ $Pnt/\Omega = 1.90$ $P_{nv} = A_bF_r$ $Pnv/\Omega = 1.10$	ipper rail, t = Ω = 35 k e = 35 k e = 89 k An = \mathbf{K} . $F_t = 0$ $4tF_u$ Ω = 86 k $d/t =\mathbf{K}. C =(Appendixtt$ Fnt = 88 k Bolt tension tv Fnv = 04 k Bolt shear O F_t = ft =	0.0713 i 2.00 1.0 i 2.22 0.116 i (0.1 + 3 <i>d/s</i>) 2.50 5.26 3.00 A, Section E3 40.5 k O.K. 24.0 k . K.	n (Appendix A n $VF_u \leq F_u =$ (Section E3. mf = 8.4 AISI) csi	A, Section E: 43.063 .3.1 AISI) 1.00 $A_{b} =$ $\Omega t =$ $\Omega v =$	8.1 AISI) 8.2 AISI) ksi 0.1104 2.25 2.40	(Table E3.4-1, AISI) (Table E3.4-1, AISI)
Max shear orces on top bolt: Tension = Shear = Shear O.K. Let section rupture Bolt Bearing Strengt Chear and tension in Tension Shear Combined Shear an	1.081 k 0.962 k $P_n = teF_u$ $Pn/\Omega = 4.6$ $P_n = A_nF_t$ $Pn/\Omega = 4.9$ N.S.R.O. th: $P_n = Cm_f d$ $Pn/\Omega = 2.0$ Bearing O. n bolt: $P_{nt} = A_bF_n$ $Pnt/\Omega = 1.9$ $P_{nv} = A_bF_r$ $Pnv/\Omega = 1.10$ d tension in bolt:	ipper rail, t = Ω = Ω = 35 k e = B9 k An = K . $F_t = 0$ dtF_u Ω = B6 k $d/t =K$. $C =(Appendix nt = 100 k)B8 k$ Bolt tension W Fnv = D4 k Bolt shear O F_{nt} ft = F'_{nt} ft = F'_{nt} P'nt/ Ω =	$\begin{array}{c} \\ 0.0713 & i \\ 2.00 \\ 1.0 & i \\ 2.22 \\ 0.116 & i \\ 2.50 \\ 5.26 \\ 3.00 \\ A, Section E3 \\ 40.5 \\ k \\ 0.K. \\ 24.0 \\ k \\ 0.K. \\ 24.0 \\ k \\ 0.852 \\ k \end{array}$	n (Appendix A n (Appendix A n) $F_u \le F_u =$ (Section E3. mf = 3.4 AISI) ksi ksi ksi No Good - Us	A, Section E: 43.063 .3.1 AISI) 1.00 $A_b =$ $\Omega t =$ $\Omega v =$ fv = $Fnv/\Omega =$ se Welds	8.1 AISI) 8.2 AISI) ksi 0.1104 2.25 2.40 8.71 10.00	(Table E3.4-1, AISI) (Table E3.4-1, AISI) ksi O.K.
Max shear orces on top bolt: Tension = Shear = Shear O.K. Let section rupture Bolt Bearing Strengt Chear and tension in Tension Shear Combined Shear an	1.081 k 0.962 k $P_n = teF_u$ $Pn/\Omega = 4.6$ $P_n = A_nF_t$ $Pn/\Omega = 4.90$ N.S.R. O. th: $P_n = Cm_f \alpha$ $Pn/\Omega = 2.00$ Bearing O. Bearing O. n bolt: $P_{nt} = A_bF_t$ $Pnt/\Omega = 1.90$ $P_{nv} = A_bF_t$ $Pnv/\Omega = 1.10$ d tension in bolt: $1.3F_{nt} - \frac{\Omega F_{nt}}{F_{nv}}f_v \leq P'_{nt} = A_t$	ipper rail, t = Ω = Ω = 35 k e = B9 k An = K . $F_t = 0$ dtF_u Ω = B6 k $d/t =K$. $C =(Appendix nt = 100 k)B8 k$ Bolt tension W Fnv = D4 k Bolt shear O F_{nt} ft = F'_{nt} ft = F'_{nt} P'nt/ Ω =	$\begin{array}{c} \\ 0.0713 & i \\ 2.00 \\ 1.0 & i \\ 2.22 \\ 0.116 & i \\ 2.50 \\ 5.26 \\ 3.00 \\ A, Section E3 \\ 40.5 \\ k \\ 0.K. \\ 24.0 \\ k \\ 0.K. \\ 24.0 \\ k \\ 0.852 \\ k \end{array}$	n (Appendix A n (Appendix A n) $F_u \le F_u =$ (Section E3. mf = 3.4 AISI) ksi ksi ksi No Good - Us	A, Section E: 43.063 .3.1 AISI) 1.00 $A_b =$ $\Omega t =$ $\Omega v =$ fv = $Fnv/\Omega =$ se Welds	8.1 AISI) 8.2 AISI) ksi 0.1104 2.25 2.40 8.71 10.00	(Table E3.4-1, AISI) (Table E3.4-1, AISI) ksi O.K. ksi
Max shear forces on top bolt: Tension = Shear = Shear O.K. Jet section rupture Solt Bearing Strengt Shear and tension in Tension Shear Combined Shear an $F'_{nt} = 1$	1.081 k 0.962 k $P_n = teF_u$ $Pn/\Omega = 4.6$ $P_n = A_nF_t$ $Pn/\Omega = 4.90$ N.S.R. O. th: $P_n = Cm_f \alpha$ $Pn/\Omega = 2.00$ Bearing O. Bearing O. n bolt: $P_{nt} = A_bF_t$ $Pnt/\Omega = 1.90$ $P_{nv} = A_bF_t$ $Pnv/\Omega = 1.10$ d tension in bolt: $1.3F_{nt} - \frac{\Omega F_{nt}}{F_{nv}}f_v \le P'_{nt} = A_t$ bading:	ipper rail, t = Ω = Ω = 35 k e = B9 k An = K . $F_t = 0$ dtF_u Ω = B6 k $d/t =K$. $C =(Appendix nt = 100 k)B8 k$ Bolt tension W Fnv = D4 k Bolt shear O F_{nt} ft = F'_{nt} ft = F'_{nt} P'nt/ Ω =	$\begin{array}{c} \\ 0.0713 & i \\ 2.00 \\ 1.0 & i \\ 2.22 \\ 0.116 & i \\ 2.50 \\ 5.26 \\ 3.00 \\ A, Section E3 \\ 40.5 \\ k \\ 0.K. \\ 24.0 \\ k \\ 0.K. \\ 24.0 \\ k \\ 0.852 \\ k \end{array}$	n (Appendix A n (Appendix A n) $F_u \le F_u =$ (Section E3. mf = 3.4 AISI) ksi ksi ksi No Good - Us	A, Section E: 43.063 .3.1 AISI) 1.00 $A_b =$ $\Omega t =$ $\Omega v =$ fv = $Fnv/\Omega =$ se Welds	8.1 AISI) 8.2 AISI) ksi 0.1104 2.25 2.40 8.71 10.00	(Table E3.4-1, AISI) (Table E3.4-1, AISI) ksi O.K. ksi 2.55
Max shear prces on top bolt: Tension = Shear = Shear on curb rail: Shear O.K. et section rupture olt Bearing Strengt mear and tension in Tension Shear ombined Shear an $F'_{nt} = 1$	1.081 k 0.962 k $P_n = teF_u$ $Pn/\Omega = 4.6$ $P_n = A_nF_t$ $Pn/\Omega = 4.90$ N.S.R. O. th: $P_n = Cm_f \alpha$ $Pn/\Omega = 2.00$ Bearing O. Bearing O. n bolt: $P_{nt} = A_bF_t$ $Pnt/\Omega = 1.90$ $P_{nv} = A_bF_t$ $Pnv/\Omega = 1.10$ d tension in bolt: $1.3F_{nt} - \frac{\Omega F_{nt}}{F_{nv}}f_v \le P'_{nt} = A_t$ bading: 21.04	ipper rail, t = Ω = Ω = 35 k e = B9 k An = K . $F_t = 0$ dtF_u Ω = B6 k $d/t =K$. $C =(Appendix nt = 100 k)B8 k$ Bolt tension W Fnv = D4 k Bolt shear O F_{nt} ft = F'_{nt} ft = F'_{nt} P'nt/ Ω =	$\begin{array}{c} & & & \\ 0.0713 & i \\ 2.00 & & \\ 1.0 & i \\ 2.22 & & \\ 0.116 & i \\ 2.50 & & \\ 5.26 & & \\ 5.26 & & \\ 3.00 & & \\ 5.26 & & \\ 3.00 & & \\ A, Section E3 & & \\ 40.5 & k & \\ 0.5 & k & \\ 0.7 & & \\ 0.852 & k & \\ P_n /_{\Omega} = \frac{1}{\Omega} \left(1 \right) \end{array}$	n (Appendix A n (Appendix A n) $F_u \le F_u =$ (Section E3. mf = 3.4 AISI) ksi ksi ksi No Good - Us	A, Section E: 43.063 .3.1 AISI) 1.00 $A_b =$ $\Omega t =$ $\Omega v =$ fv = $Fnv/\Omega =$ se Welds $t_2F_{u2} \ge V_{ret}$	8.1 AISI) 8.2 AISI) ksi 0.1104 2.25 2.40 8.71 10.00	(Table E3.4-1, AISI) (Table E3.4-1, AISI) ksi O.K. ksi 2.55 2.153 k

				0 0
edge)	Tens _{MAX} =	2359	lbs	> Along short edge of curb.

(on short e

---> Negative values indicate opposite load.

g MOUR GROUP ENGINEERING + DESIGN

Curb Loads (copied	from upper rail calcs)		_	Loads at each Isolator	Type:	CQA	
Transverse:	Comp _{MAX} = 5386	lbs	1	Transverse loading:	Comp _{MAX} =	1795.4	lbs
(on long edge)	Tens _{MAX} = 3242	lbs		(on long edge)	Tens _{MAX} =	1080.7	lbs
	Shear _{MAX} = 9624	lbs		# isolators: 3	Shear _{MAX} =	962.4	lbs
Longitudinal:	Comp _{MAX} = 4161	lbs	1	Longitudinal loading:	Comp _{MAX} =	2080.6	lbs
(on short edge)	Tens _{MAX} = 2017	lbs		(on short edge)	Tens _{MAX} =	1008.6	lbs
	Shear _{MAX} = 9624	lbs		# isolators: 2	Shear _{MAX} =	962.4	lbs
x compression force	on isolator: 2.081 k	≤ 3.176 k	О.К.				
Max uplift	on isolator: 1.081 k	≤ 3.176 k	<u>O.K.</u>	<u>+</u>	6.0 in		_¥
Max shear	on isolator: 0.962 k	≤ 1.163 k	<u>О.К.</u>	2.0 in			\bigcap^{\uparrow}
Forces on bottom bo	<u>olts:</u>			2.0 111			\cup
d _b =	0.5 in						
base curb, t =	0.1017 in				7.0 in		▲ Τ
Tension =	0.540 k / bolt					t2-	
Shear =	0.481 k / bolt						
Shear on base curb:	$P_n = teF_u$	Ω =	2.00	(Appendix A, Section	E3.1 AISI)	t ₁	
	Pn/Ω = 6.611 k	e =	1.0	in		1	
	Shear O.K.						F
Net section rupture:	$P_n = A_n F_t$	Ω=	2.22	(Appendix A, Section	E3.2 AISI)		WW.
	$Pn/\Omega = 8.428 \text{ k}$	An =		in			
	N.S.R. O.K.			$(s)F_u \le F_u = 55.250$	ksi		U
Bolt Bearing Strengt	<u>h:</u> $P_n = Cm_f dt F_u$	Ω=	2.50	(Section E3.3.1 AISI)			
	Pn/Ω = 3.966 k	d/t =					
	Bearing O.K.	C =		mf = 1.00			
Shear and tension in		(Appendix			2		_
Tension	$P_{nt} = A_b F_{nt}$		45.0 ksi	A _b = 0.1963	in ²		
	$Pnt/\Omega = 3.927 k$			Ωt = 2.25		۵ •	
Shear	$P_{nv} = A_b F_{nv}$		27.0 ksi	$\Omega v = 2.40$		4	
Combined Shear and	$Pnv/\Omega = 2.209 k$	Bolt shear C).К.	***(Table E3.4-1, Al	ISI)***	-	
		ft =	5.50	ksi fv :	= 2.45	ksi	∳Т о.к.
$F'_{nt} = 1$	$.3F_{nt} - \frac{\Omega F_{nt}}{F_{nv}} f_v \le F_{nt}$	F'nt =	45.00	ksi Fnv/Ω =		ksi	0.10.
	$P'_{nt} = A_b F'_{nt}$			Combined Not Applica			
Connection of Curb	to Supporting Structure						
Roof Loading	SEISMIC: (0.6-0.14S			WIND: 0.6D + W			
Transverse:	Uplift _{MAX} =		lbs	Shear _{MAX} =	= 5460	lbs	Т
Compression _{seismic} =	9839 lbs)*(H'cm+H	base curb)+(1+0.14S _{DS})*\			 21/wcurb
Tension _{seismic} =	7406 lbs			base curb)- $(0.6-0.14S_{DS})^*$			
Compression _{WIND} =	1689 lbs			ase curb)+0.6*WGT _{unit+upp}			
Tension _{WIND} =	2005 lbs			ase curb)-0.6*WGT _{unit+upp}			
Longitudinal:	Uplift _{MAX} =			Shear _{MAX} =			<u> </u>
	7252 lbs			base curb)+(1+0.14S _{DS})*\			
Compression _{seismic} =)*(H'cm+Hl	base curb)-(0.6-0.14S _{DS})*	WGT _{unit+upper+}		
Compression _{seismic} = Tension _{seismic} =	4819 lbs						
Compression _{seismic} =		=[F _{h ASD long} *((H'cm+Hba	se curb)+0.6*WGT _{unit+upp}			
Compression _{seismic} = Tension _{seismic} =	4819 lbs 688 lbs 1004 lbs	=[F _{h ASD long} *(=[F _{h ASD long} *((H'cm+Hba (H'cm+Hba	se curb)-0.6*WGT _{unit+uppe}	er+base*Lcurb/2	2+F _{vertASD} *Lo	
Compression _{seismic} = Tension _{seismic} = Compression _{WIND} =	4819 lbs 688 lbs 1004 lbs :: 1/4"ф x 4.	=[F _{h ASD long} *(=[F _{h ASD long} *(5" Simpson S	(H'cm+Hba (H'cm+Hba		er+base*Lcurb/2	2+F _{vertASD} *Lo	
Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} = Tension _{WIND} =	4819 lbs 688 lbs 1004 lbs	=[F _{h ASD long} *(=[F _{h ASD long} *(5" Simpson S	(H'cm+Hba (H'cm+Hba DS screws	se curb)-0.6*WGT _{unit+uppe} w/ 2.75" threaded em	er+base*Lcurb/2	2+F _{vertASD} *Lo	
Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} = Tension _{WIND} =	4819 lbs 688 lbs 1004 lbs :: 1/4"ф x 4.	=[F _{h ASD long} *(=[F _{h ASD long} *(5" Simpson S	(H'cm+Hba: (H'cm+Hba DS screws Ibs	se curb)-0.6*WGT _{unit+uppe} w/ 2.75" threaded em Vall _{metal} = 1093	er+base*Lcurb/2 b (SGmin = 0.4	2+F _{vertASD} *Lo	
Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} = Tension _{WIND} = Wood Attachment <u>Transverse:</u>	4819 lbs 688 lbs 1004 lbs :: 1/4" ϕ x 4. Tall _{metal} =	=[F _{h ASD long} *(=[F _{h ASD long} *(5" Simpson S = 997 = 760	(H'cm+Hba: (H'cm+Hba DS screws Ibs Ibs	se curb)-0.6*WGT _{unit+uppe} w/ 2.75" threaded em Vall _{metal} = 1093	er+base [*] Lcurb/2 b (SGmin = 0.4 7 lbs 2 lbs	2+F _{vertASD} *Lo 43)	
Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} = Tension _{WIND} = Wood Attachment <u>Transverse:</u> # of S	4819 lbs 688 lbs 1004 lbs :: 1/4"φ x 4. Tall _{metal} = Tall _{wood} =	=[F _{h ASD long} *(=[F _{h ASD long} *(5" Simpson S = 997 = 760 = 9.74	(H'cm+Hba: (H'cm+Hba DS screws Ibs Ibs	se curb)-0.6*WGT _{unit+upp} w/ 2.75" threaded em Vall _{metal} = 109 Vall _{wood} = 672	er+base [*] Lcurb/2 b (SGmin = 0.4 7 Ibs 2 Ibs : 0.975	2+F _{vertASD} *Lo 43)	

Use 15 - 1/4" ϕ x 4.5" Simpson SDS screws @ 8.3 in o.c. along long side of curb w/ 2.75" threaded embed

MOUR GROUP

ENGINEERING + DESIGN

Longitudinal: # of Screws Req'd for Uplift = 6.34 COMBINED LOADING: 0.959 O.K. 8.35 in o.c. # of Screws Reg'd for Shear = 8.13 Screw Spacing = Total # of screws required = 10 Use 10 - 1/4" ox 4.5" Simpson SDS screws @ 8.3 in o.c. along short side of curb w/ 2.75" threaded embed Steel Deck Attachment: 1/2" ϕ A307 Bolts to steel angle below deck Tall_{bolt} = 3927 lbs Vallholt 2209 lbs 2192 lbs Transverse: Tall_{metal} = 2086 lbs Vall_{metal} = # of Bolts Req'd for Uplift = 3.55 COMBINED LOADING: 0.868 O.K. Bolt Spacing = 22.43 in o.c. # of Bolts Reg'd for Shear = 2.49 Total # of bolts required = 6 Use 6 - 1/2" \$\phi A307 Bolts to steel angle below deck @ 22.4 in o.c. along long side of curb Longitudinal: # of Bolts Req'd for Uplift = 2.31 COMBINED LOADING: 0.662 O.K. # of Bolts Req'd for Shear = 2.49 Bolt Spacing = 35.56 in o.c. Total # of bolts required = 3 Use 3 - 1/2" ϕ A307 Bolts to steel angle below deck @ 35.6 in o.c. along short side of curb For Concrete anchorage: SEISMIC (0.6-0.14S_{DS})D + 0.7Ω_o E Ωo = 2.5 Concrete Attachment: 0.625in & HAS rods in Hilti HIT-HY 200 V3 epoxy w/ 4in embed A_{Na} Epoxy: Hilti HIT-HY 200 V3 (ICC ESR 4868) 4000 psi f'c = CNa 6 in (concrete thickness, t_min = h_ef + 2do) О.К. h = 4 in (effective embedment) h_ef = 0.625 in (anchor diameter) 0.75 in (hole diameter) da : do = 5 (number of dummy anchors to check capacity with spacing effect) n = s = 14 in (initial spacing estimate) 1170 2220 psi (from ESR 4868, Table 14, Temp range B) τk.cr / uncr = τk,cr / uncr = multiply by $(f'_{c}/2500)^{0.1}$ 1226 2327 psi If $f'_c > 2500$, $c_{Na} = 10d_a \sqrt{\frac{\tau_{uncr}}{1100}}$ c_Na= 9.0625 in (min. edge distance for full capacity); $N_{ag} = \frac{A_{Na}}{A_{Nao}} \varphi_{ec,Na} \varphi_{ed,Na} \varphi_{cp,Na} N_{ba}$ Tension: (ACI318-14, 17, 4, 5, 1b) Bond strength $\varphi_{ec,Na}\varphi_{ed,Na}\varphi_{cp,Na} = 1.0$ CNa ***Bond strength A_{Na}= 1343.52 in² will govern over A_{Nao}= 328.52 in² CNa CNa × concrete breakout $N_{ba} =$ $N_{ba} = \lambda_a \tau_{cr} \pi d_a h_{ef} \alpha_{n,seismic}$ 9535 lbs $\alpha_{n.seismic} = 0.99$ 38995 lbs (group) $N_{ag} =$ $\lambda_a = 1.0$ CONTROLS $\lambda_a = 1.0$ for normal weight conc; 0.6 for lightwo $\phi N_{ag} =$ 19010 lbs (group) $\frac{A_{Nc}}{4}\varphi_{ec,N}\varphi_{ed,N}\varphi_{cp,N}N_b$ Breakout $N_{cbg} =$ $N_b = \lambda_a k_c \sqrt{f'_c} h_{ef}^{1.5}$ strength A_{Nco} 816 in² A_{Nc} = N_b = 8601 lbs 0.75 $\phi_{conc} =$ 144 in² kc = 17 A_{Nco} = Ø_{bond} = 0.65 N_{cbg} = 48741 lbs (group) Ø_{seis} = 0.75 27417 lbs (group) 0.65 ØN_{cbg} = Ø_{steel} = 7865 (from ESR4868, Table 11) Shear: Vsa,eq = 0.6 $\alpha_{v,seismic} =$ Steel strength 3067 øVsa,eq = Tall_{IRED} = 3802 lbs (anchor) Vall_{IRED} = $3067 \text{ lbs} \propto = (1 + 0.2SDS)D + 2.5E = 1.421$ $Tall_{ASD} = Tall_{LRFD} / \alpha =$ $Vall_{ASD} = Vall_{LRFD}/\alpha =$ 2225 lbs 1795 lbs $D = 0.758 \quad E \oplus 242 \quad \propto = 1.709$ Uplift_{MAX} = Shear_{MAX} = 9579 lbs 13650 lbs Transverse =[Ωo*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*WGT_{unit+curb}*wcurb/2]/wcurb Compression_{SEISMIC} = 12104 lbs Tension_{SEISMIC} = 9579 lbs =[Ωo*FpmaxASD*(Hcm+Hcurb)-(0.6-0.14S_{DS})*WGT_{unit+curb}*wcurb/2]/wcurb Shear_{SEISMIC} = 13650 lbs =Ωo*FpmaxASD/2 Min Bolts Req'd Uplift = 4.30 spacing = 28.03 in o.c. Tapplied = 1197.3 lbs Min Bolts Req'd Shear = 16.02 in o.c. Vapplied = 975.0 lbs 7.60 spacing = bolts $T_{applied}$ $V_{apllied}$ Try using 8 O.K. COMBINED LOADING = ≤ 1.2 = 1.08 spaced at $\overline{T_{allow,ASD}} + \overline{V_{allow,ASD}}$ 16.02 in o.c Use 8 - 0.625in & HAS rods in Hilti HIT-HY 200 V3 epoxy @ 16 in o.c. max. along long side of curb w/ 4in embed Uplift_{MAX} = 6268 lbs Shear_{MAX} = 13650 lbs Longitudinal:

B MOUR GROUP ENGINEERING + DESIGN

(Compression _{SEISMIC} =	8794 lbs		=[Ωo*Fpmax/	ASD*(Hcm+H	curb)+(1+0.1	4S _{DS})*WGT	unit+curb*Lcur	b/2]/Lcur	b
	Tension _{SEISMIC} =	6268 lbs		=[Ωo*Fpmax/	ASD*(Hcm+H	curb)-(0.6-0.:	14S _{DS})*WG	T _{unit+curb} *Lcu	irb/2]/Lcu	rb
	Shear _{SEISMIC} =	13650 lbs		=Ωo*FpmaxA	SD/2					
	Min Bolts Req	'd Uplift =	2.82	spacing =	35.56 in	0.C.		Tapplied =	1044.7	7 lbs
	Min Bolts Req	'd Shear =	7.60	spacing =	10.16 in	0.C.		Vapplied =	975.0) lbs
	Try using	6 bolt	S	COMBINED L		Tapplied	Vapllied	< 1.2	= 1.01	O.K.
	spaced at	14.23 in o	.c.			$T_{allow,ASD}$	V _{allow,ASD}		- 1.01	
	<u>Use 6 - 0.625in φ Η</u>	AS rods in Hilt	HIT-HY	200 V3 epoxy	@ 14.2 in o.	c. max. along	short side	of curb w/	4in embeo	<u>k</u>

CURB DESIGN SUM	MARY:	CBISC-12	CBISCSAV15	18	Unit:	AV 15-18; AD 15-18; AH/AL 15; HV			
UPPER CURB RAIL	UPPER CURB RAIL THICKNESS: 0.1017 in 12 Gauge					13			
UNIT CLIP	THICKNESS:	0.0713 in	14 Gauge						
# OF CLIPS (LONG SIDE) - 3 clips with 4 - #10 SMS screws each clip									
WEB STIFFENER: 16Ga x 1 3/16in x 7in (C-channel) stiffener at each clip									
# OF CLIPS (SHORT SIDE) - 2 clips with 4 - #10 SMS screws each clip									
WEB STIFFENER: 16Ga x 1 3/16in x 7in (C-channel) stiffener at each clip									
VIBRATION ISOLATOR TYPE: CQA Top stud diameter: 3/8 (3) - CQA Isolators long side									
Anchor bolt diameter: 1/2 Anchor hole diamter: 9/16 (2) - CQA Isolators short side									
BASE CURB THICKNESS: 0.1017 in 12 Gauge ***Must weld top of CQA***									
WEE	STIFFENER:	16Ga x 1.5i	n x 7in (C-cha	nnel) stiffene	er at each c	lip on base curb			
CORNER CONNECTION: Use minimum 4 - 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts									
CURB		WOOD		<u>STE</u>	EL	<u>CONCRETE</u>			
ANCHORAGE	1/4"ф x 4.5"	' Simpson SE	DS screws w/	1/2" φ A307 Bolts to		0.625in φ HAS rods in Hilti HIT-HY			
ANCHORAGE	2.75" thre	aded embed	d (SGmin =	steel angle below deck		200 V3 epoxy w/ 4in embed			
LONG DIRECTION	15	@ 8.29 in c).C.	6 @ 22.4	3 in o.c.	8 @ 16.02 in o.c.			
SHORT DIRECTION	10	@ 8.35 in o).C.	3 @ 35.5	6 in o.c.	6 @ 14.23 in o.c.			