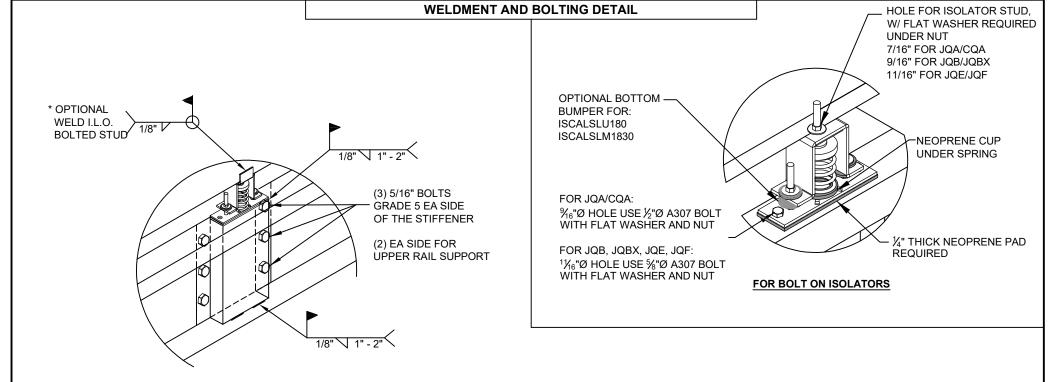


Structural Calculations for CBISC-13 Series

CBISCSAV2025** SERIES


Prepared for:

PROVENT / RRS

3847 Wabash Drive Mira Loma, CA 91725

Date: August 23, 2023

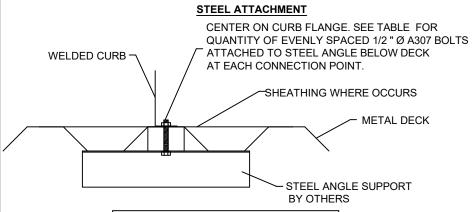
Project Number: PV2312

Note: * - INDICATES WELD REQUIRED I.L.O. BOLTED STUD FOR THE FOLLOWING CURBS:

BASE CURB SUPPORT

- -LXL (CBISC-02)
- -PRD3715 (CBISC-04)
- -SAV1518 (CBISC-12)
- -SAV2025 (CBISC-13)
- -SAV28 (CBISC-14)

3847 WABASH DRIVE MIRA LOMA, CA 91725


PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITTED TO:
COMPANY:
JOB NAME:
EQUIPMENT:
NOTES:

FORM NO: CB-61

 DATE:
 REV:
 DRAWN BY:

 08/14/23
 2
 FMM

	NO. OF ANCHORAGE BOLTS REQUIRED			
CURB	LONG SIDE	SHORT SIDE		
LXS	3 @ 19.25" O.C.	2 @ 23" O.C.		
LXL	3 @ 19.25" O.C.	2 @ 33" O.C.		
SUN3672	4 @ 21" O.C.	2 @ 27.25" O.C.		
PRD3715	6 @ 14.28" O.C.	3 @ 20.75" O.C.		
PRS	4 @ 20.46" O.C.	2 @ 31.13" O.C.		
PRL	5 @ 17.44" O.C.	2 @ 41.5" O.C.		
SAV1518	6 @ 22.43" O.C	3 @ 35.56" O.C.		
SAV2025	7 @ 21.02" O.C	3 @ 35.56" O.C.		
SAV28	7 @ 23.75" O.C	3 @ 35.56" O.C.		

ASSUMES:

CONC SLAB
fc= 4000PSI MINIMUM
6" MIN THICKNESS
NORMAL WEIGHT CONCRETE
MIN. 9-1/8" EDGE DISTANCE.

Meets seismic requirements for the following codes: CBC 2022 IBC 2021 ROOF ANCHORAGE DETAIL
CBISC Series

LXS

LXL

SUN3672

PRD3715

PRS

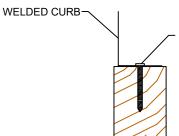
PRL

SAV1518

SAV2025

SAV28

CONCRETE ATTACHMENT


WELDED CURB

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 5/8" Ø THREADED ROD IN HILTI HIT-HY 200 V3 EPOXY WITH 4" EMBED

	NO. OF ANCHORAGE BOLTS REQUIRED				
CURB	LONG SIDE SHORT SIDE				
LXS	4 @ 12.83" O.C.	2 @ 23.0" O.C.			
LXL	4 @ 12.83" O.C.	3 @ 16.50" O.C.			
SUN3672	4 @ 21.0" O.C.	2 @ 27.25" O.C.			
PRD3715	9 @ 8.92" O.C.	6 @ 8.30" O.C.			
PRS	5 @ 15.34" O.C.	3 @ 15.56" O.C.			
PRL	7 @ 11.63" O.C.	4 @ 13.83" O.C.			
SAV1518	8 @ 16.02" O.C.	6 @ 14.23" O.C.			
SAV2025	9 @ 15.77" O.C.	6 @ 14.23" O.C.			
SAV28	10 @ 15.83" O.C.	6 @ 14.23" O.C.			

* SIX INCHES FROM EACH CORNER EVENLY SPACED.
** CENTERED.

WOOD ATTACHMENT

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED ¼" Ø x 4.5" SIMPSON SDS SCREWS W/ 2.75" THREADED EMBED (SGMIN=0.50)

	NO. OF ANCHORAGE SCREWS REQUIRED			
CURB	LONG SIDE	SHORT SIDE		
LXS	8 @ 6.07" O.C.	5 @ 6.75" O.C.		
LXL	7 @ 7.08" O.C.	7 @ 6.17" O.C.		
SUN3672	9 @ 8.38" O.C.	5 @ 7.81" O.C.		
PRD3715	15 @ 5.38" O.C.	10 @ 5.06" O.C.		
PRS	10 @ 7.26" O.C.	6 @ 7.03" O.C.		
PRL	12 @ 6.70" O.C.	8 @ 6.50" O.C.		
SAV1518	15 @ 8.29" O.C.	10 @ 8.35" O.C.		
SAV2025	18 @ 7.65" O.C.	10 @ 8.35" O.C.		
SAV28	20 @ 7.71" O.C.	10 @ 8.35" O.C.		

FOUR INCHES FROM EACH CORNER EVENLY SPACED

3847 WABASH DRIVE MIRA LOMA, CA 91752

PHONE (951) 685-1101 FAX (619) 872-9799

	1
SUBMITTED TO:	١.
COMPANY:	н
JOB NAME:	Н
EQUIPMENT:	H
NOTES:	L
NO 1201	Ι'

FORM NO: CB-62

 DATE:
 REV:
 DRAWN BY:

 6/28/2023
 4
 FMM

For wood, concrete and steel attachment see Roof PROVENT P/N Α **CALCULATED VIBRATION ISOLATION ROOF CURBS** Anchorage Detail, Form No. CB-62. SUNCHOICE UNITS 8" CBISCSAV202518** Welded Isolation springs housingare standard. For bolted spring housing, neoprene pads and spring cups see Weldment and Bolting Detail, Form No. CB-61 CBISCSAV202521*3 11" AV 20-25, AD 20-25, AE 13-15, AW 13-15, AH 18-20, AL 18-20, HV 15-20 **FEATURES** CBISCSAV202524** 14" **Note: Spring configuration must be added to Roof curb base 12 ga. 1 1/2" Typ. part number at time of order Roof curb upper rail 14 ga. Weight of upper portion supported by spring isolators= 325 Lbs. Fully welded construction. 80 1/8" O.D. 135 1/8" O.D. 77 1/8" I.D. Gasketing package provided. Meets seismic requirements for the following 132 1/8" I.D. codes: Heat treated wood nailer provided. 27 7/8" **CBC 2022** IBC 2021 insulated deck pans provided. 19 5/16" 63 7/8 Pitched curbs and taller curbs are 22 3/16" available. S/A CalDyn OSHPd pre-approved seismic restraints. (OPM-0401-13), (CQA). NOTES R/A Attach ductwork to roof curb. Flanges of duct rest on top of the curb, Support ductwork below the curb. 32 1/8" I.D. 69 7/16 Thru the curb utillities are available. Contact you York distributor or 77 1/8" I.D. Provent directly. ATTACH TO CURB WITH (4) #10 UNIT BASE RAIL TEK SCREWS EACH SIDE ATTACH TO UNIT WITH 14 GA UPPER RAIL (4) #10 TEK SCREWS EACH HOLD DOWN LONG SIDE (5) #10 TEK SCREWS EACH HOLD DOWN SHORT SIDE 14 GA UNIT HOLD DOWN (3) PER LONG SIDE 10" (2) PER SHORT SIDE REGISTERED 14 GA x 7" x 1 3/16" STIFFENER AT ALL HOLD DOWNS "B" TOTAL HEIGHT CQA SPRING ISOLATOR (35" MAX WITH PITCH) (1) AT EACH HOLD DOWN FULL PERIMETER "A" BASE WOOD NAILER CURB HEIGHT 138 1/8" O.D. STIFFENER 16 GA x 7" x 1 1/2" 83 1/8" O.D AT EACH ISOLATOR 12 GA. CURB **PROFILE DETAIL** SUBMITED TO: FORM NO: **PART NUMBER:** ProVent 3847 WABASH DRIVE MIRA LOMA, CA 91752 COMPANY: CBISC-13 CBISCSAV2025 SERIES

JOB NAME:

NOTES:

EQUIPMENT:

DATE:

8/14/2023

REV:

2

DRAWN BY:

FMM

PHONE (951) 685-1101

FAX (619) 872-9799

B EST. WEIGHT

615 Lbs

660 Lbs

710 Lbs

18"

21"

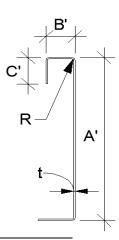
24"

Client:	ProVent	PV2312		Upper curb rail
Project:	CBISC-13	Iso Curb	CBISCSAV2025	
Unit:	AV/AD 20-	25; AE/AW 1	3-15; AH/AL 18-20; I	HV 15-20

Unit:	AV/AD 20-25; AE	/AW 13-15; AH/AL 18-20; HV 15-20]			
						1	
Upper Curb Informa	ation_			. EQ	F∨	EQ	
Hcurb upper =	5.5 in	(Height of upper curb rail)			₩u		
Lcurb =	135.125 in	(Length of upper curb)			(×Lu		
wcurb =	80.125 in	(Width of upper curb)	1				
WGTupper =	325 lbs	(Weight of upper curb)					
# Clips long side =	3	# Clips short side = 2		FPMA	<		180
Unit Information				-	-	1	[0]
WGTunit =	2655 lbs	(Weight of Unit)	HZ.	Wt _{min}	1	WGT _{UNIT}	Wt _{max} F _h
Wtmax =	797 lbs	(Maximum corner weight)	푸	. ↓	,		↓ →
Wtmin =	564 lbs	(Minimum corner weight)	++	<u> </u>			
Hunit =	57.25 in	(Height of unit above curb)	<u>A</u> _				
Hcm =	28.625 in	(Height to center of mass)	Hcurb Hcurb upper	- 1			
Lunit =	143.8125 in	(Length of unit)	=		•		
		· ·	1			WGT _{CURB}	<u> </u>
Wunit =	88.75 in	(Width of unit)			•		A
			-	← ∨			─ ∨
Seismic Loading - 20		='		▼ T _{max}			C _{max}
Ss =	2.85	(Worst case for majority of 0					
Fa =	1.20	(Default Site Class D - Table					
Ip =	1.50	(Importance Factor Category	y III Build	ing)			
Sms =	3.420	(Fa*Ss)	ap =	2.5			
Sds =	2.280	(2/3*Sms)	Rp =				
Fpmax =	5.130 Wp	(0.4*ap*Sds*Ip)*Wp*3/Rp <	=1.6*Sd	s*Ip*Wp			
FpmaxASD =	9534 lbs	(0.7*Fpmax)	F	pmaxASD =	10701	lbs	
	(unit only)			(un	it + uppe	er rail)	
Wind Loading - 202	1 IBC/2022 CBC						
Kz =	1.13	(For 60 ft roof height, Expos	ure C - Ta	able 26.10-1 ACS	E 7-16)		
Kzt =	1.00	(Max. assumed topographic	factor)				
Kd =	0.85	(Directionality factor Table 2	26.6-1 AS	CE 7-16)			
Ke =	1.00	(Ground Elevation Factor Ta					
V =	110	(Wind velocity, mph for Occ		•	p. Cat C.	Fig 26.5-1D -	ASCE7-16)
GCr _(horiz) =	1.9	(Refer Sect 29.4.1 ASCE 7-16			,,	0	,
	1.5	(Refer Sect 29.4.1 ASCE 7-16					
GCr _(vert) =							
qz	29.8 psf	= 0.00256*Kz*Kzt*Kd*Ke*V)		
F _{h ASD trans} =	2126 lbs	= 0.6*qz*GCr*Lunit*(Hunit+		(Eq. 29.4-2)			
F _{h ASD long} =	1312 lbs	= 0.6*qz*GCr*Wunit*(Hunit					
F _{vert ASD} =	2373 lbs	= 0.6*qz*GCr*Lunit*Wunit	(Eq. 29.	4-3)			
Upper Curb Loading	<u> </u>						
<u>Transverse:</u>							
Compression _{SEISMIC} =	5508 lbs	=[FpmaxASD*Hcm+2*(1+0.1					
Tension _{SEISMIC} =	3089 lbs	=[FpmaxASD*Hcm-2*(0.6-0.					
$Compression_{WIND} =$	528 lbs	=[F _{h ASD trans} *Hcm+2*0.6*Wti	max*wcı	ırb-F _{vert ASD} *wcu	rb/2]/wo	curb	
Tension _{WIND} =	1269 lbs	= $[F_{h ASD trans}*Hcm-2*0.6*Wtr$	nin*wcu	rb+F _{vertASD} *wcur	b/2]/wc	urb	
	> Negative val	ues indicate opposite load.					
Longitudinal:	=	• •					
Compression _{SEISMIC} =	4121 lbs	=[FpmaxASD*Hcm+2*(1+0.1	4*S _{DS})*V	Wtmax*Lcurb]/L	curb		
Tension _{SEISMIC} =	1703 lbs	=[FpmaxASD*Hcm-2*(0.6-0.					
Compression _{WIND} =	47 lbs	= $[F_{h ASD long}^* + Hcm + 2*0.6*Wtn$)	
Tension _{WIND} =	788 lbs	=[F _{h ASD long} *Hcm-2*0.6*Wtm					
		ues indicate opposite load.		verman =====	,,		
	•	acs maicate opposite ioau.					
Governing Reactions	J.						

Governing Reactions:

doverning Reaction	3.			
<u>Transverse:</u>	Comp _{MAX} =	5508	lbs	> Along long edge of curb.
(on long edge)	Tens _{MAX} =	3089	lbs	> Along long edge of curb.
Longitudinal:	Comp _{MAX} =	4121	lbs	> Along short edge of curb.
(on short edge)	Tens _{MAX} =	1703	lbs	> Along short edge of curb.


^{---&}gt; Negative values indicate opposite load.

Curb Design

Calculate Section Properties of Curb

A'=	5.500	in	a =	5.144 in = A'-(2r+t)	
B'=	1.500	in	a'=	5.429 in = A'-t	
C'=	0.500	in (0 if no lips)	b =	1.233 in = B'-[r+t/2+ α (r+t/	2
α=	0.500	(0 - no Lip; 1 w/ lip)	b'=	1.447 in = B'- $(t/2+\alpha t/2)$	
R =	0.1069	(Inside bend radius)	c =	0.161 in = $\alpha[C'-(r+t/2)]$	
t =	0.0713	in	c'=	0.232 in = $\alpha(C'-t/2)$	
r'=	0.143	in = $R+t/2$	u =	$0.224 \text{ in } = \pi r/2$	
x =	0.292	in (Distance between	centroid and web ce	enterline)	
Ix =	2.515		rx =	2.04 in	
ly =	0.133	in ⁴	ry =	0.470 in	
A =	0.60	in ²	rmin =	0.470 in	

Axial Compression

Pa =	4.767 k	(Max Axial Co	mp)	$\Omega_c =$	1.80
Pn/Ωc =	4.957 k		$E = \left(0.6 \operatorname{Fg}\lambda_c^2\right) E$	_	
Fe =	16.90 ksi	$P_n \ _ F_n A$	If $\lambda_c \le 1.5$; $F_n = \left(0.658^{\lambda_c^2}\right) F_y$	$_{\lambda}$ - $ F_{y} $	$_{F}$ $ \pi^{2}E$
λc =	1.72	$\frac{\overline{\Omega_c}}{\Omega_c} = \frac{\overline{\Omega_c}}{\Omega_c}$	If $\lambda_c > 1.5$; $F_n = \frac{0.877}{\lambda_c^2} F_y$	$\kappa_c - \sqrt{\overline{F_e}}$	$r_e = \frac{1}{(kl/m)^2}$
Fn =	14.82 ksi		λ_c^2 λ_c^2	•	(77)
Ly =	77.13 in	Lateral unbrad	ced length		
$k_y L_y / r_y =$	131	(assume k=0.8	3)		

Compression Check = O.K.

Check Web Crippling

h =	5.5 in	Check limits	5:	C = 7.50	
t =	0.0713 in	h/t =	77.14 ≤ 260	C _R = 0.08 (See table C3.4.1-2, fastened to	
N =	7.00	N/t =	98.18 ≤ 210	$C_N = 0.12$ support, two flange, end loading)	
$\Omega_{\rm w}$ =	1.75	N/h =	$1.273 \le 2.0$	$C_h = 0.048$	
$P_n =$	1.947 k	R/t =	$1.50 \le 12.0$	$\left(\begin{array}{c} \Gamma_{D} \end{array}\right) \left(\begin{array}{c} \Gamma_{N} \end{array}\right) \left(\begin{array}{c} \Gamma_{N} \end{array}\right)$	
$P_n/\Omega_w =$	1.112 k		$P_n = C$	$t^2 F_y \sin(90) \left(1 - C_R \sqrt{\frac{R}{t}}\right) \left(1 + C_N \sqrt{\frac{N}{t}}\right) \left(1 - C_h \sqrt{\frac{h}{t}}\right)$	
e: Pu _{Trans} =	1.836 k	web stiffener REQ'D	# clips = 3	\ \\'\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
_					

Long side: Pu Short side: Pu_{Long} = 2.061 k web stiffener REQ'D # clips = 2

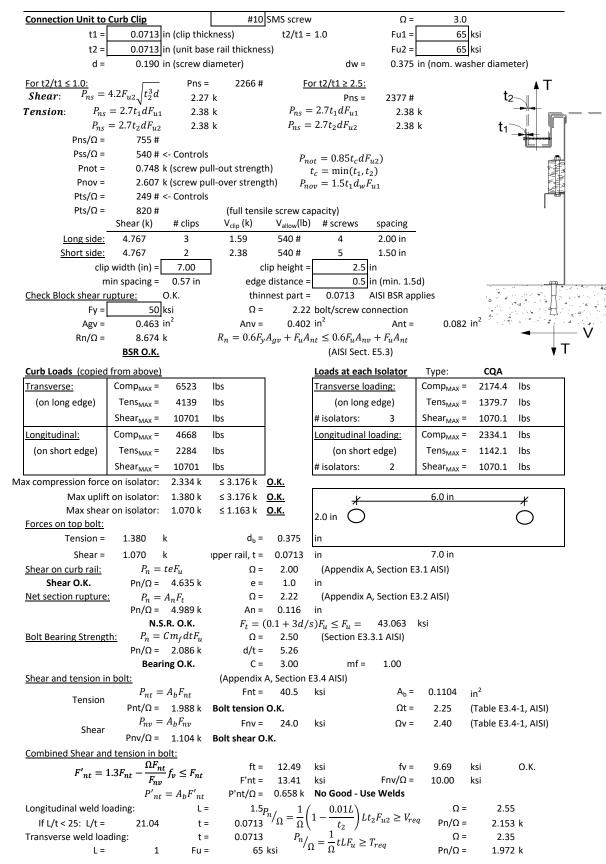
Check Web Stiffener 16Ga x 1 3/16in x 7in (C-channel) $P_n = 0.7(P_{wc} + A_e F_y) \ge P_{wc}$ width of stiffener = 7.000 in ts = 0.0566 16 Gauge Pwc = 1.947 k Pn = web of stiff. w = 6.717 in Rs = 0.0849 in 14.669 k 1.70 $\Omega_c =$ ***Check w/ts \leq 1.28 \forall E/Fys Ae= 0.380 in²

w/ts = 118.675

 $Pn/\Omega_c =$ 1.28v(E/Fys) = 31.091 --> w/ts over limit Use C3.7.2 8.629 k <u>O.K.</u>

1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts **Corner Connections**

 $Max(F_{pmaxASD}/4 - OR- Fh_{ASDtrans}/4 corner connections)$ Tcrnmax = 2675 lbs Max(Tens/2 -OR- Comp/2 corner connections per side) 2754 lbs Vcrnmax = Tall = 2480 lbs Vall = 1208 lbs Bolt: Threaded Insert: Tall = 2860 lbs Vall = 1096 lbs


> # of Bolts required for Tension = 1.1 # of Bolts required for Shear = 2.5 # of Bolts Used = 4.0

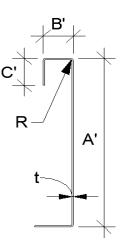
Check Combined Stress in Bolts & Inserts: 0.898 <u>O.K.</u>

Check 1/8" welded connection

L/8" welded connection <--- USE WELD
$$\Omega$$
 = 2.35
Assume L/t > 25: 25*t = 1.783 in $P_n/\Omega = \frac{1}{\Omega} 0.75 t L F_u \geq V_{req}$ $L_{req'd} = \frac{V_{req'd}}{0.75 t}$

Client:	ProVent	PV2312		Base curb			
Project:	CBISC-13	Iso Curb	CBISCSAV2025				
Unit:	nit: AV/AD 20-25; AE/AW 13-15; AH/AL 18-20; HV 15-20						

Unit:	AV/AD 20-25; AE/A	W 13-15; AH/AL 18-20; HV 15-20	ı.
Dana Comb Informat			F _v
Base Curb Informat		(Haisht of book south)	EQ V EQ ,
Hbase curb =	25 in	(Height of base curb)	Wunit
Lcurb =	138.125 in	(Length of base curb)	(× Lunit)
wcurb =	83.125 in	(Width of base curb)	
WGTbase =	385 lbs	(Weight of base curb)	F _{P MAX}
# Springs long side =	3 # S _I	rings short side = 2	FP MAX 188
Unit Information	"		Wt _{min} WGT _{UNIT} Wt _{max}
WGTunit =	2655 lbs	(Weight of Unit) 불	F _h
Wt'max =	878 lbs	(Wtmax+1/4*WGTupper)	∀
Wt'min =	645 lbs	(Wtmin+1/4*WGTupper))	<u>r1</u>
Hunit =	57.25 in	(Height of unit above curb) (Hcm+10"(upper+spring))	
H'cm =	38.625 in		· · ·
Lunit =	143.8125 in	(Length of unit)	WGTcurb
Wunit =	88.75 in	(Width of unit)	<u> </u>
WGTunit+upper+base =	3365 lbs	(Total weight)	4 ∨
Seismic Loading - 20			T _{max} C _{max}
Ss =	2.85	(Worst case for majority of California)	
Fa =	1.20	(Default Site Class D - Table 11.4-1 ASC	•
Ip =	1.50	(Importance Factor Category III Buildin	ng)
Sms =	3.420	(Fa*Ss) ap =	2.5
Sds =	2.280	(2/3*Sms) Rp =	2
Fpmax =	5.130 Wp	(0.4*ap*Sds*Ip)*Wp*3/Rp <=1.6*Sds	• •
FpmaxASD =	10701 lbs	(0.7*Fpmax) Fp	omaxASD = 12084 lbs
	(unit + upper rail)		(unit + upper rail + base curb)
Wind Loading - 202	1 IBC/2022 CBC		
Kz =	1.13	(For 60 ft roof height, Exposure C - Tal	ble 26.10-1 ACSE 7-16)
Kzt =	1.00	(Max. assumed topographic factor)	
Kd =	0.85	(Directionality factor Table 26.6-1 ASC	CE 7-16)
Ke =	1.00	(Ground Elevation Factor Table 26.9-1	L ASCE 7-16)
V =	110	(Wind velocity, mph for Occupancy Ca	at III-IV bldgs Exp. Cat C, Fig 26.5-1D - ASCE7-16)
$GCr_{(horiz)} =$	1.9	(Refer Sect 29.4.1 ASCE 7-16)	
$GCr_{(vert)} =$	1.5	(Refer Sect 29.4.1 ASCE 7-16)	
qz	29.8 psf	$= 0.00256*Kz*Kzt*Kd*Ke*V^2$ (Eq. 26.1)	10-1 ASCE 7-16)
F _{h ASD trans} =	3125 lbs	= 0.6*qz*GCr*Lunit*(Hunit+Hbase cur	rb+10") (Eq. 29.4-2)
F _{h ASD long} =	1928 lbs	= 0.6*qz*GCr*Wunit*(Hunit+Hbase cu	urb+10")
F _{vert ASD} =	2373 lbs	= 0.6*qz*GCr*Lunit*Wunit (Eq. 29.4	1-3)
Base Curb Loading			
Transverse:			
Compression _{SEISMIC} =	7288 lbs	= $[FpmaxASD*H'cm+2*(1+0.14S_{DS})*Wt]$	t'max*wcurb]/wcurb
Tension _{SEISMIC} =	4610 lbs	=[FpmaxASD*H'cm-2*(0.6-0.14S _{DS})*W	Vt'min*wcurb)]/wcurb
$Compression_{WIND} =$	1319 lbs	$=[F_{h ASD trans}*H'cm+2*0.6*Wt'max*wcu$	
Tension _{WIND} =	1864 lbs	=[F _{h ASD trans} *H'cm-2*0.6*Wt'min*wcu	rb+F _{vertASD} *wcurb/2]/wcurb
	> Negative value:	indicate opposite load.	
Longitudinal:	ū	• •	
Compression _{SEISMIC} =	5308 lbs	=[FpmaxASD*H'cm+2*(1+0.14*S _{DS})*W	Vt'max*Lcurb]/Lcurb
Tension _{SEISMIC} =	2630 lbs	=[FpmaxASD*H'cm-2*(0.6-0.14S _{DS})*W	Vt'min*Lcurb)]/Lcurb
Compression _{WIND} =	406 lbs	= $[F_{h ASD long}*H'cm+2*0.6*Wt'max*Lcur$	rb-F _{vertASD} *Lcurb/2]/Lcurb
Tension _{WIND} =	951 lbs	=[F _{h ASD long} *H'cm-2*0.6*Wt'min*Lcurb	
	> Negative value:	indicate opposite load.	
Governing Reaction	=	• •	
Transverse:	Comp _{MAX} = 728	8 lbs> Along long edge of cu	urb.
(on long edge)	Tens _{MAX} = 463	.0 lbs> Along long edge of cu	urb.
Longitudinal:		5 5 5	
LUHERLUUHIdi.	('Omp = F3'		riirh
_	$Comp_{MAX} = 530$	g g	
(on short edge)	Tens _{MAX} = 263		



Fy =	50 ksi	Fu =	65 ksi
E =	29500 ksi	t =	0.1017 12 Gauge

Calculate Section Properties of Curb

roperties of (<u>Curb</u>			
25.000	in	a =	24.492 in	= A'-(2r+t)
1.750	in	a'=	24.898 in	= A'-t
1.000	in (0 if no lips)	b =	1.242 in	$= B'-[r+t/2+\alpha(r+t/2)]$
1.000	(0 - no Lip; 1 w/ lip)	b'=	1.648 in	$= B'-(t/2+\alpha t/2)$
0.1525	(Inside bend radius)	c =	0.746 in	$= \alpha[C'-(r+t/2)]$
0.1017	in	c'=	0.949 in	$= \alpha(C'-t/2)$
0.203	in = $R+t/2$	u =	0.319 in	= πr/2
0.187	in (Distance between	centroid and we	b centerline)	
205.037	in	rx =	8.23 in	
0.672	in	ry =	0.471 in	
3.02	in ²	rmin =	0.471 in	
	25.000 1.750 1.000 1.000 0.1525 0.1017 0.203 0.187 205.037 0.672	1.750 in 1.000 in (0 if no lips) 1.000 (0 - no Lip; 1 w/ lip) 0.1525 (Inside bend radius) 0.1017 in 0.203 in = R+t/2 0.187 in (Distance between 205.037 in 0.672 in	25.000 in a = 1.750 in a'= 1.000 in (0 if no lips) b = 1.000 (0 - no Lip; 1 w/ lip) b'= 0.1525 (Inside bend radius) c = 0.1017 in c'= 0.203 in = R+t/2 u = 0.187 in (Distance between centroid and we 205.037 in rx = 0.672 in ry =	25.000 in a = 24.492 in 1.750 in a'= 24.898 in 1.000 in (0 if no lips) b = 1.242 in 1.000 (0 - no Lip; 1 w/ lip) b'= 1.648 in 0.1525 (Inside bend radius) c = 0.746 in 0.1017 in c'= 0.949 in 0.203 in = R+t/2 u = 0.319 in 0.187 in (Distance between centroid and web centerline) 205.037 in rx = 8.23 in 0.672 in ry = 0.471 in

Axial Compression

Pu =	5.351 k	(Max Axial Comp)		$\Omega_c =$	1.80
Pn/Ωc =	7.812 k	If) < 15.	$E = (0.650\lambda_c^2) E$	_	
Fe =	5.30 ksi		$F_n = \left(0.658^{\lambda_c^2}\right) F_y$	$\lambda = \frac{F_y}{F_y}$	$F = \frac{\pi^2 E}{\pi^2 E}$
λc =	3.07	$\frac{\pi}{\Omega_c} = \frac{\pi}{\Omega_c}$ If $\lambda_c > 1.5$:	$F_n = \frac{0.877}{\lambda_c^2} F_y$	$\kappa_c - \sqrt{\overline{F_e}}$	$T_e = \frac{1}{(kl/l)^2}$
Fn =	4.65 ksi	1) 70, 7 1.0,	λ_c^2	•	(77)
Ly =	138.13 in	Lateral unbraced length			
$k_y L_y / r_y =$	234	(assume k=0.8)			

Compression Check = O.K.

Check Web Crippling

h =	25 in	Check limi	its:	C = 4.00	
t =	0.1017 in	h/t =	245.82 ≤ 260	C _R = 0.14	(See table C3.4.1-2, fastened to
N =	7.00	N/t =	68.83 ≤ 210	$C_{N} = 0.35$	support, one flange, end loading)
$\Omega_{\rm w}$ =	1.75	N/h =	$0.28 \le 2.0$	$C_{h} = 0.02$	
$P_n =$	4.106 k	R/t =	$1.50 \le 9.0$	/ []	\
$P_n/\Omega_w =$	2.346 k		$P_n =$	$= Ct^2F_y\sin(90)\left(1-C_R\right)\frac{R}{t}$	$\left(1+C_N\right)\left(1-C_h\right)\left(1-C_h\right)$
Long side: Pu _{Trans} =	2.429 k	web stiffener REQ'D	# clips = 3	$\int \int $	$// $ $\sqrt{t}// $ $\sqrt{t}/$
Short side: Pulang =	2.654 k	web stiffener RFO'D	# clips = 2	,	, , ,

Check Web Stiffener 16Ga x 1.5in x 7in (C-channel)

		00 / 2.5 / 0 o	u	
width of stiffener =	7.000 in		ts =	0.0566 16 Gauge
web of stiff. w =	6.717 in		Rs =	0.0849 in
***Check w/ts ≤ 1.28	B√E/Fys		$\Omega_{\rm c}$ =	1.70
w/ts =	118.675			
1.28√(E/Fys) =	31.091	> w/ts over limit	Use C3.7.2	
$P_n = 0.7(P_{wc} + A)$	$A_e F_y \ge P_{wc}$			
Pwc =	4.106 k	Ae =	= 0.380 in ²	

16.181 k $Pn/\Omega_c =$ 9.518 k <u>O.K.</u>

1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts **Corner Connections**

Tcrnmax =	3021 lbs		Max(F _{pmaxASD} /4 -OR- Fh _{ASDtrans} /4 corner connections)						
Vcrnmax =	3644 lbs		Max(Tens/2	-OR-	Comp/2 co	rner cor	nections p	er side)	
	Bolt:	Tall =	2480	lbs		Vall =	1208	lbs	
Threade	d Insert:	Tall =	2860	lbs		Vall =	1096	lbs	
	# of Bolts red	quired f	or Tension =	,	1.2	•		-	
	# of Bolts	require	d for Shear =		3 3				

of Bolts Used = 5.0 Check Combined Stress in Bolts & Inserts: 0.909 **O.K.**

Check 1/8" welded connection

Pn =

Assume L/t > 25: 25*t = 2.543 in
$$P_n/\Omega = \frac{1}{\Omega} 0.75t L F_u \ge V_{req}$$
 $L_{req'd} = \frac{V_{req}\Omega}{0.75t F_u}$

Curb Loads (copied t	from upper rail calcs)		_	Loads at each	<u> Isolator</u>	Type:	CQA	
Transverse:	Comp _{MAX} = 6523	lbs		Transverse lo	ading:	Comp _{MAX} :	= 2174.4	lbs
(on long edge)	Tens _{MAX} = 4139	lbs		(on long	edge)	Tens _{MAX} :	= 1379.7	lbs
	Shear _{MAX} = 10701	lbs		# isolators:	3	Shear _{MAX} :	= 1070.1	lbs
Longitudinal:	Comp _{MAX} = 4668	lbs		Longitudinal l	oading:	Comp _{MAX} :	= 2334.1	lbs
(on short edge)	Tens _{MAX} = 2284	lbs		(on short	edge)	Tens _{MAX} :	= 1142.1	lbs
	Shear _{MAX} = 10701	lbs		# isolators:	2	Shear _{MAX} :	= 1070.1	lbs
ax compression force	on isolator: 2.334 k	≤ 3.176 k	O.K.			•		
Max uplift	on isolator: 1.380 k	≤ 3.176 k	<u>O.K.</u>	<u> </u>		6.0 in		<u>_</u>
Max shear	on isolator: 1.070 k	≤ 1.163 k	<u>O.K.</u>	2.0 in				$\stackrel{\wedge}{\frown}$
Forces on bottom bo	lts:			2.0 111				
d _b =	0.5 in							
base curb, t =	0.1017 in					7.0 in		ΔT
Tension =	0.690 k / bolt						t₂∽	1 .
Shear =	0.535 k / bolt							
Shear on base curb:	$P_n = teF_u$	Ω =	2.00	(Appendix A	A, Section E	3.1 AISI)	t₁→	
	$Pn/\Omega = 6.611 \text{ k}$	e =	1.0	in			•	
	Shear O.K.							
Net section rupture:	$P_n = A_n F_t$	Ω =	2.22	(Appendix A	A, Section E	3.2 AISI)		
	$Pn/\Omega = 8.428 \text{ k}$	An =	0.153	in				
	N.S.R. O.K.	$F_t =$	(0.1 + 3d)	$(s)F_u \le F_u =$	55.250	ksi		
Bolt Bearing Strength	$P_n = C m_f dt F_u$	Ω =	2.50	(Section E3.	3.1 AISI)			
	$Pn/\Omega = 3.966 \text{ k}$	d/t =	4.92					
	Bearing O.K.	C =	3.00	mf =	1.00			
Shear and tension in	bolt:	(Appendix	A, Section	E3.4 AISI)				
Tension	$P_{nt} = A_b F_{nt}$	Fnt =	45.0 ksi	$A_b =$	0.1963	in ²	·	
rension	$Pnt/\Omega = 3.927 k$	Bolt tension	O.K.	Ωt =	2.25		8	\prod
Shear	$P_{nv} = A_b F_{nv}$	Fnv =	27.0 ksi				•	4
	$Pnv/\Omega = 2.209 k$	Bolt shear O	.K.	***(Table	E3.4-1, AIS	SI)***	-	- ── ∨
Combined Shear and	tension in bolt:							↓ T
$F'_{nt} = 1$	$\overline{.3F_{nt} - \frac{\Omega F_{nt}}{F_{nv}} f_v} \le F_n$	ft = ^t F'nt =	7.03	ksi	fv =		ksi	O.K.
111					Fnv/Ω =		ksi	
	D' - A E'		2 0 2 7 1.	Cambinad Na		10 > E'n+ -	En+	

$P'_{nt}=A_bF'_{nt}$ P'nt/ Ω = 3.927 k Combined Not Applicable -> F'nt = Fnt Connection of Curb to Supporting Structure

COMMICCION OF CUID C	o oupporting of acture			
Roof Loading	SEISMIC: (0.6-0.14S _D	_s)D + 0.7E	WIND: 0.6D + W	
<u>Transverse:</u>	Uplift _{MAX} =	8777 lbs	Shear _{MAX} =	6042 lbs
Compression _{SEISMIC} =	11469 lbs	=[FpmaxASD*(H'cm+Hb	ase curb)+(1+0.14S _{DS})*WGT	_{unit+upper+base} *wcurb/2]/wcurb
Tension _{SEISMIC} =	8777 lbs	=[FpmaxASD*(H'cm+Hb	ase curb)-(0.6-0.14S _{DS})*WG	T _{unit+upper+base} *wcurb/2]/wcurb
Compression _{WIND} =	2215 lbs	=[F _{h ASD trans} *(H'cm+Hbas	se curb)+0.6*WGT _{unit+upper+ba}	se*wcurb/2-F _{vert ASD} *wcurb/2]/wcurb
Tension _{WIND} =	2569 lbs	=[F _{h ASD trans} *(H'cm+Hbas	se curb)-0.6*WGT _{unit+upper+bas}	e*wcurb/2+F _{vertASD} *wcurb/2]/wcurb
<u>Longitudinal:</u>	Uplift _{MAX} =	5094 lbs	Shear _{MAX} =	6042 lbs
Compression _{SEISMIC} =	7786 lbs	=[FpmaxASD*(H'cm+Hb	ase curb)+(1+0.14S _{DS})*WGT	_{unit+upper+base} *Lcurb/2]/Lcurb
$Tension_{SEISMIC} =$	5094 lbs	=[FpmaxASD*(H'cm+Hb	ase curb)-(0.6-0.14S _{DS})*WG	Γ _{unit+upper+base} *Lcurb/2]/Lcurb
$Compression_{WIND} =$	711 lbs	$=[F_{h ASD long}*(H'cm+Hbas$	e curb)+0.6*WGT _{unit+upper+bas}	_e *Lcurb/2-F _{vert ASD} *Lcurb/2]/Lcurb
Tension _{WIND} =	1065 lbs	=[F _{h ASD long} *(H'cm+Hbas	e curb)-0.6*WGT _{unit+upper+base}	*Lcurb/2+F _{vertASD} *Lcurb/2]/Lcurb
Wood Attachment:	1/4"ф x 4.5	" Simpson SDS screws	w/ 2.75" threaded emb (SG	6min = 0.43)

WOOU Attacili	ιιειιι. 1/4 ψ x 4.3	Jiiipsuii J	D3 3CI EW3	W/ 2./3 till	caucu ciiib	(3011111 - 0.43	"
	Tall _{metal} =	997	lbs	$Vall_{metal} =$	1097	lbs	
Transverse:	Tall _{wood} =	760	lbs	$Vall_{wood} =$	672	lbs	
#	of Screws Req'd for Uplift =	11.55	-	COMBINED	LOADING:	0.963 (D.K.
#	of Screws Req'd for Shear =	8.99	_	Req'd Mi	n Spacing =	7.65 ii	n o.c
	Total # of screws required =	18					

Use 18 - 1/4"φ x 4.5" Simpson SDS screws @ 7.7 in o.c. along long side of curb w/ 2.75" threaded embed

Longitudinal:

of Screws Req'd for Uplift = 6.70 COMBINED LOADING: 0.991 O.K.

of Screws Req'd for Shear = 8.99 Screw Spacing = 8.35 in o.c.

Total # of screws required = 10 Use 10 - 1/4" φ x 4.5" Simpson SDS screws @ 8.3 in o.c. along short side of curb w/ 2.75" threaded embed Steel Deck Attachment: 1/2" φ A307 Bolts to steel angle below deck Tall_{bolt} = 3927 lbs 2209 lbs 2192 lbs Transverse: $Tall_{metal} =$ 2086 lbs Vall_{metal} = # of Bolts Req'd for Uplift = 4.21 COMBINED LOADING: 0.877 O.K. Bolt Spacing = 21.02 in o.c. # of Bolts Reg'd for Shear = 2.76 7 Total # of bolts required = Use 7 - 1/2" φ A307 Bolts to steel angle below deck @ 21 in o.c. along long side of curb Longitudinal: # of Bolts Req'd for Uplift = 2.44 COMBINED LOADING: # of Bolts Req'd for Shear = 2.76 Bolt Spacing = 35.56 in o.c. Total # of bolts required = Use 3 - 1/2" φ A307 Bolts to steel angle below deck @ 35.6 in o.c. along short side of curb **For Concrete anchorage:** SEISMIC (0.6-0.14S_{DS})D + $0.7\Omega_o$ E Concrete Attachment: 0.625in & HAS rods in Hilti HIT-HY 200 V3 epoxy w/ 4in embed A_{Na} Epoxy: Hilti HIT-HY 200 V3 (ICC ESR 4868) 4000 psi f'c = 6 in (concrete thickness, t_min = h_ef + 2do) O.K. h = 4 in (effective embedment) h_ef = 0.625 in (anchor diameter) 0.75 in (hole diameter) da : do = 5 (number of dummy anchors to check capacity with spacing effect) n = 14 in (initial spacing estimate) 1170 2220 psi (from ESR 4868, Table 14, Temp range B) tk.cr / uncr = τk,cr / uncr = multiply by $(f'_c/2500)^{0.1}$ 1226 2327 psi If $f'_c > 2500$, $c_{Na} = 10d_a \sqrt{\frac{\tau_{uncr}}{1100}}$ c_Na= 9.0625 in (min. edge distance for full capacity); $N_{ag} = \frac{A_{Na}}{A_{Nao}} \varphi_{ec,Na} \varphi_{ed,Na} \varphi_{cp,Na} N_{ba}$ Tension: (ACI318-14, 17.4.5.1b) Bond strength $\varphi_{ec,Na}\varphi_{ed,Na}\varphi_{cp,Na}=1.0$ CNa ***Bond strength $A_{Na}=$ 1343.52 in² will govern over A_{Nao}= 328.52 in² concrete breakout $N_{ba} =$ $N_{ba} = \lambda_a \tau_{cr} \pi d_a h_{ef} \alpha_{n,seismic}$ 9535 lbs $\alpha_{n.seismic} = 0.99$ 38995 lbs (group) $N_{ag} =$ $\lambda_a = 1.0$ CONTROLS $\lambda_a = 1.0$ for normal weight conc; 0.6 for lightwo ØN_{ag} = 19010 lbs (group) $\frac{A_{Nc}}{4}\varphi_{ec,N}\varphi_{ed,N}\varphi_{cp,N}N_b$ Breakout $N_{cbg} =$ $N_b = \lambda_a k_c \sqrt{f'_c} h_{ef}^{1.5}$ strength 816 in² A_{Nc} = $N_b = 8601$ 0.75 144 in² kc = 17A_{Nco} = 0.65 $N_{cbg} =$ 48741 lbs (group) 0.75 27417 lbs (group) 0.65 $\phi N_{cbg} =$ 7865 (from ESR4868, Table 11) Shear: Vsa,eq = 0.6 Steel strength 3067 øVsa,eq = Tall_{IRED} = 3802 lbs (anchor) Vall_{IRFD} = 3067 lbs $\propto = (1 + 0.2SDS)D + 2.5E = 1.421$ $Tall_{ASD} = Tall_{LRFD}/\alpha =$ $Vall_{ASD} = Vall_{LRFD}/\alpha =$ 2225 lbs 1795 lbs D = 0.758 $E \oplus .242 \propto = 1.709$ $Uplift_{MAX} =$ $Shear_{MAX} =$ 11938 lbs 15105 lbs Transverse =[Ωo*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*WGT_{unit+curb}*wcurb/2]/wcurb Compression_{SEISMIC} = 14747 lbs Tension_{SEISMIC} = 11938 lbs = $[\Omega o*FpmaxASD*(Hcm+Hcurb)-(0.6-0.14S_{DS})*WGT_{unit+curb}*wcurb/2]/wcurb$ Shear_{SEISMIC} = 15105 lbs =Ωo*FpmaxASD/2 Min Bolts Req'd Uplift = 5.36 spacing = 25.23 in o.c. Tapplied = 1326.5 lbs Min Bolts Req'd Shear = 15.77 in o.c. Vapplied = 1007.0 lbs 8.41 spacing = $\frac{T_{applied}}{T_{allow,ASD}} + \frac{V_{apllied}}{V_{allow,ASD}}$ bolts Try using O.K. COMBINED LOADING = spaced at 15.77 in o.c Use 9 - 0.625in φ HAS rods in Hilti HIT-HY 200 V3 epoxy @ 15.8 in o.c. max. along long side of curb w/ 4in embed

 $Uplift_{MAX} =$

Longitudinal:

6988 lbs

 $Shear_{MAX} =$

15105 lbs

= $[\Omega o*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*WGT_{unit+curb}*Lcurb/2]/Lcurb$ Compression_{SEISMIC} = 9797 lbs $= \! [\Omega o^* FpmaxASD^*(Hcm + Hcurb) - (0.6 - 0.14S_{DS})^*WGT_{unit+curb}^* Lcurb/2] / Lcurb$ $Tension_{SEISMIC} =$ 6988 lbs $\mathsf{Shear}_{\mathsf{SEISMIC}} =$ 15105 lbs $=\Omega o*FpmaxASD/2$ Min Bolts Req'd Uplift = 3.14 spacing = 23.71 in o.c. Tapplied = 1164.7 lbs 8.89 in o.c. Vapplied = 1007.0 lbs Min Bolts Req'd Shear = 8.41 spacing = $\frac{T_{applied}}{T_{allow,ASD}} + \frac{V_{apllied}}{V_{allow,ASD}}$ $V_{apllied} \le 1.2$ Try using bolts O.K. COMBINED LOADING = = 1.08 spaced at in o.c. 14.23

Use 6 - 0.625in φ HAS rods in Hilti HIT-HY 200 V3 epoxy @ 14.2 in o.c. max. along short side of curb w/ 4in embed

CURB DESIGN SUM	MARY:	CBISC-13	CBISCSAV202	25	Unit:	AV/AD 20-25; AE/AW 13-15;
UPPER CURB RAIL	THICKNESS:	0.1017 in	12 Gauge			AH/AL 18-20; HV 15-20
UNIT CLIP	THICKNESS:	0.0713 in	14 Gauge			
# OF CLIPS (I	LONG SIDE) -	3 clips with	4 - #10 SMS	crews each o	clip	
WEE	STIFFENER:	16Ga x 1 3/	16in x 7in (C-	channel) stiff	ener at eac	h clip
# OF CLIPS (SI	HORT SIDE) -	2 clips with	5 - #10 SMS s	crews each o	clip	
WEE	STIFFENER:	16Ga x 1 3/	16in x 7in (C-	channel) stiff	ener at eac	h clip
VIBRATION ISOI	LATOR TYPE:	CQA	Top stud	l diameter:	3/8	(3) - CQA Isolators long side
Anchor bo	olt diameter:	1/2	Anchor ho	le diamter:	9/16	(2) - CQA Isolators short side
BASE CURB	THICKNESS:	0.1017 in	12 Gauge			***Must weld top of CQA***
WEE	STIFFENER:	16Ga x 1.5ii	n x 7in (C-cha	nnel) stiffene	er at each cl	ip on base curb
CORNER CO	ONNECTION:	Use minimu	ım 5 - 1/4" ф	SAE Grade 8	bolts w/ 1/4	4-20-UNC Threaded inserts
CURB		WOOD		STE	EL	<u>CONCRETE</u>
ANCHORAGE	1/4"¢ x 4.5'	' Simpson SE	OS screws w/	1/2" ф A30	7 Bolts to	0.625in φ HAS rods in Hilti HIT-HY
ANCHORAGE	2.75" thre	aded embed	d (SGmin =	steel angle b	oelow deck	200 V3 epoxy w/ 4in embed
LONG DIRECTION	18	8 @ 7.65 in o	.c.	7 @ 21.0	2 in o.c.	9 @ 15.77 in o.c.
SHORT DIRECTION	10	@ 8.35 in o	o.c.	3 @ 35.5	6 in o.c.	6 @ 14.23 in o.c.