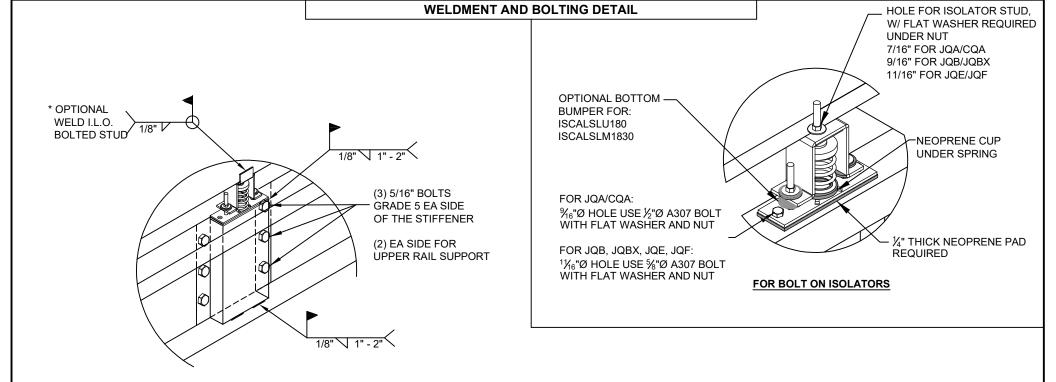


# Structural Calculations for

**CBISC-14 Series** 

CBISCSAV28\*\* SERIES




Prepared for:

PROVENT / RRS

3847 Wabash Drive Mira Loma, CA 91725

**Date: August 23, 2023** 

**Project Number: PV2312** 



Note: \* - INDICATES WELD REQUIRED I.L.O. BOLTED STUD FOR THE FOLLOWING CURBS:

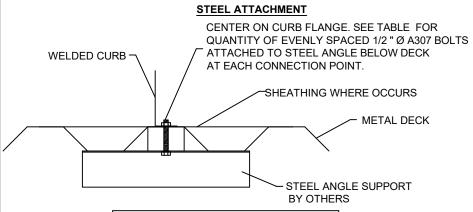
**BASE CURB SUPPORT** 

- -LXL (CBISC-02)
- -PRD3715 (CBISC-04)
- -SAV1518 (CBISC-12)
- -SAV2025 (CBISC-13)
- -SAV28 (CBISC-14)





3847 WABASH DRIVE MIRA LOMA, CA 91725


PHONE (951) 685-1101 FAX (619) 872-9799

| SUBMITTED TO: |
|---------------|
| COMPANY:      |
| JOB NAME:     |
| EQUIPMENT:    |
| NOTES:        |
|               |

FORM NO: CB-61

 DATE:
 REV:
 DRAWN BY:

 08/14/23
 2
 FMM



|         | NO. OF ANCHORAGE BOLTS REQUIRED |                 |  |  |  |
|---------|---------------------------------|-----------------|--|--|--|
| CURB    | LONG SIDE                       | SHORT SIDE      |  |  |  |
| LXS     | 3 @ 19.25" O.C.                 | 2 @ 23" O.C.    |  |  |  |
| LXL     | 3 @ 19.25" O.C.                 | 2 @ 33" O.C.    |  |  |  |
| SUN3672 | 4 @ 21" O.C.                    | 2 @ 27.25" O.C. |  |  |  |
| PRD3715 | 6 @ 14.28" O.C.                 | 3 @ 20.75" O.C. |  |  |  |
| PRS     | 4 @ 20.46" O.C.                 | 2 @ 31.13" O.C. |  |  |  |
| PRL     | 5 @ 17.44" O.C.                 | 2 @ 41.5" O.C.  |  |  |  |
| SAV1518 | 6 @ 22.43" O.C                  | 3 @ 35.56" O.C. |  |  |  |
| SAV2025 | 7 @ 21.02" O.C                  | 3 @ 35.56" O.C. |  |  |  |
| SAV28   | 7 @ 23.75" O.C                  | 3 @ 35.56" O.C. |  |  |  |

#### **ASSUMES:**

CONC SLAB
fc= 4000PSI MINIMUM
6" MIN THICKNESS
NORMAL WEIGHT CONCRETE
MIN. 9-1/8" EDGE DISTANCE.

Meets seismic requirements for the following codes: CBC 2022 IBC 2021 ROOF ANCHORAGE DETAIL
CBISC Series

LXS

LXL

SUN3672

PRD3715

PRS

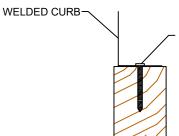
PRL

SAV1518

SAV2025

SAV28

#### **CONCRETE ATTACHMENT**


WELDED CURB

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 5/8" Ø THREADED ROD IN HILTI HIT-HY 200 V3 EPOXY WITH 4" EMBED

|         | NO. OF ANCHORAGE BOLTS REQUIRED |                 |  |  |
|---------|---------------------------------|-----------------|--|--|
| CURB    | LONG SIDE                       | SHORT SIDE      |  |  |
| LXS     | 4 @ 12.83" O.C.                 | 2 @ 23.0" O.C.  |  |  |
| LXL     | 4 @ 12.83" O.C.                 | 3 @ 16.50" O.C. |  |  |
| SUN3672 | 4 @ 21.0" O.C.                  | 2 @ 27.25" O.C. |  |  |
| PRD3715 | 9 @ 8.92" O.C.                  | 6 @ 8.30" O.C.  |  |  |
| PRS     | 5 @ 15.34" O.C.                 | 3 @ 15.56" O.C. |  |  |
| PRL     | 7 @ 11.63" O.C.                 | 4 @ 13.83" O.C. |  |  |
| SAV1518 | 8 @ 16.02" O.C.                 | 6 @ 14.23" O.C. |  |  |
| SAV2025 | 9 @ 15.77" O.C.                 | 6 @ 14.23" O.C. |  |  |
| SAV28   | 10 @ 15.83" O.C.                | 6 @ 14.23" O.C. |  |  |

\* SIX INCHES FROM EACH CORNER EVENLY SPACED.
\*\* CENTERED.

#### WOOD ATTACHMENT



CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED ¼" Ø x 4.5" SIMPSON SDS SCREWS W/ 2.75" THREADED EMBED ( SGMIN=0.50 )

|         | NO. OF ANCHORAGE SCREWS REQUIRED |                 |  |  |
|---------|----------------------------------|-----------------|--|--|
| CURB    | LONG SIDE                        | SHORT SIDE      |  |  |
| LXS     | 8 @ 6.07" O.C.                   | 5 @ 6.75" O.C.  |  |  |
| LXL     | 7 @ 7.08" O.C.                   | 7 @ 6.17" O.C.  |  |  |
| SUN3672 | 9 @ 8.38" O.C.                   | 5 @ 7.81" O.C.  |  |  |
| PRD3715 | 15 @ 5.38" O.C.                  | 10 @ 5.06" O.C. |  |  |
| PRS     | 10 @ 7.26" O.C.                  | 6 @ 7.03" O.C.  |  |  |
| PRL     | 12 @ 6.70" O.C.                  | 8 @ 6.50" O.C.  |  |  |
| SAV1518 | 15 @ 8.29" O.C.                  | 10 @ 8.35" O.C. |  |  |
| SAV2025 | 18 @ 7.65" O.C.                  | 10 @ 8.35" O.C. |  |  |
| SAV28   | 20 @ 7.71" O.C.                  | 10 @ 8.35" O.C. |  |  |



FOUR INCHES FROM EACH CORNER EVENLY SPACED



3847 WABASH DRIVE MIRA LOMA, CA 91752

PHONE (951) 685-1101 FAX (619) 872-9799

|               | 1  |
|---------------|----|
| SUBMITTED TO: | ١. |
| COMPANY:      | н  |
|               |    |
| JOB NAME:     | Н  |
| EQUIPMENT:    | H  |
| NOTES:        | L  |
| NO 1201       | Ι' |
|               |    |

FORM NO: CB-62

 DATE:
 REV:
 DRAWN BY:

 6/28/2023
 4
 FMM

For wood, concrete and steel attachment see Roof **CALCULATED VIBRATION ISOLATION ROOF CURBS** EST. Anchorage Detail, Form No. CB-62. PROVENT P/N В Α WEIGHT SUNCHOICE UNITS Welded Isolation springs housingare standard. For bolted spring housing, neoprene pads and spring cups see Weldment and Bolting Detail, Form No. CB-61 CBISCSAV2818\*\* 8" 18" 653 Lbs AV 28, AD 28, AE 18-23, AW 18-23, AH 25, AL 25, HV 25 **FEATURES** CBISCSAV2821\*\* 11" 21" 698 Lbs 1 1/2" Typ. Roof curb base 12 ga. CBISCSAV2824\*\* 14" 24" 748 Lbs \*\*Note: Spring configuration must be added Roof curb upper rail 14 ga. to part number at time of order 80 1/8" O.D. Fully welded construction. Weight of upper portion supported by spring isolators= 365 Lbs. 77 1/8" I.D. 151 1/2" O.D. Gasketing package provided. 148 1/2" I.D. Meets seismic requirements for the following Heat treated wood nailer provided. 27 7/8" codes: CBC 2022 insulated deck pans provided. IBC 2021 19 5/16" Pitched curbs and taller curbs are available. 22 3/16" CalDyn OSHPd pre-approved seismic restraints. (OPM-0401-13), (CQA). NOTES Attach ductwork to roof curb. Flanges of duct rest on top of the curb, Support ductwork below the curb. 148 1/2" I.D. 69 7/ Thru the curb utillities are available. Contact you York distributor or Provent directly. 77 1/8" I.D. ATTACH TO CURB WITH (4) #10 UNIT BASE RAIL TEK SCREWS EACH SIDE ATTACH TO UNIT WITH 14 GA UPPER RAIL (4) #10 x 6" TEK SCREWS EACH HOLD DOWN 14 GA UNIT HOLD DOWN (3) PER LONG SIDE 10" (3) PER SHORT SIDE REGISTERED 14 GA x 7" x 1 3/16" STIFFENER AT ALL HOLD DOWNS "B" TOTAL HEIGHT (35" MAX WITH PITCH) CQA SPRING ISOLATOR (1) AT EACH HOLD DOWN "A" BASE **FULL PERIMETER CURB HEIGHT** WOOD NAILER 154 1/2" Ó.D. STIFFENER 16 GA x 7" x 1 1/2" 83 1/8" O.D AT EACH ISOLATOR 12 GA. CURB **PROFILE DETAIL** SUBMITED TO: FORM NO: **PART NUMBER:** ProVent 3847 WABASH DRIVE MIRA LOMA, CA 91752 COMPANY: CBISC-14 **CBISCSAV28 SERIES** JOB NAME: PHONE (951) 685-1101 DATE: REV: DRAWN BY: FAX (619) 872-9799 EQUIPMENT: 8/16/2023 2 **FMM** NOTES:



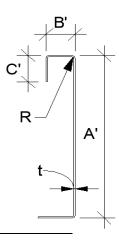
| Client:  | ProVent   | PV2312     |                    | Upper curb rail |
|----------|-----------|------------|--------------------|-----------------|
| Project: | CBISC-14  | Iso Curb   | CBISCSAV28         |                 |
| Unit:    | AV/AD 28; | AE/AW 18-2 | 3; AH/AL 25; HV 25 |                 |

| Unit:                            | AV/AD 28; AE/AV | V 18-23; AH/AL 25; HV 25                  |                                       |                        |                   |
|----------------------------------|-----------------|-------------------------------------------|---------------------------------------|------------------------|-------------------|
| •                                |                 |                                           |                                       | <b>A</b>               |                   |
| Upper Curb Informa               | ation           |                                           |                                       | F <sub>V</sub>         |                   |
| Hcurb upper =                    | 5.5 in          | (Height of upper curb rail)               | EQ                                    | EG                     | <u>'</u>          |
| Lcurb =                          | 151.5 in        | (Length of upper curb)                    |                                       | VVunit<br>( × Lunit )  |                   |
| wcurb =                          | 80.125 in       | (Width of upper curb)                     |                                       |                        |                   |
| WGTupper =                       | 365 lbs         | (Weight of upper curb)                    |                                       |                        | į                 |
|                                  | 3               | · · · · · · · · · · · · · · · · · · ·     | FPM                                   | IAX                    | =                 |
| # Clips long side =              | 3               | # Clips short side = 3                    | Ħ T                                   | <b>─</b> •             | 18:0              |
| Unit Information                 | 2040            | (14) : 1 . (11)                           |                                       | _ WGT <sub>UNIT</sub>  | Wt <sub>max</sub> |
| WGTunit =                        | 3010 lbs        | (Weight of Unit)                          | E Wtmin                               | <b>Y</b>               | F <sub>h</sub>    |
| Wtmax =                          | 903 lbs         | (Maximum corner weight)                   | _                                     |                        | ▼                 |
| Wtmin =                          | 640 lbs         | (Minimum corner weight)                   |                                       |                        |                   |
| Hunit =                          | 57.25 in        | (Height of unit above curb)               | Hcurb-<br>Hcurb-<br>upper             |                        | <b>3</b>          |
| Hcm =                            | 28.625 in       | (Height to center of mass)                | Hcurb<br>Hcurb<br>hppe                |                        | '                 |
| Lunit =                          | 160.0625 in     | (Length of unit)                          |                                       | _ WGT <sub>CURB</sub>  |                   |
| Wunit =                          | 88.75 in        | (Width of unit)                           | <del></del>                           | <del></del>            | <u> </u>          |
| •                                |                 |                                           | <b>⊸</b> ∨                            |                        | <b>⊸</b> V        |
| Seismic Loading - 20             | 021 IBC/2022CBC |                                           | ▼ T <sub>max</sub>                    |                        | C <sub>max</sub>  |
| Ss =                             | 2.85            | (Worst case for majority of C             | alifornia)                            |                        |                   |
| Fa =                             | 1.20            | (Default Site Class D - Table 1           |                                       |                        |                   |
| Ip =                             | 1.50            | (Importance Factor Category               | •                                     |                        |                   |
| Sms =                            | 3.420           | (Fa*Ss)                                   | ap = 2.5                              |                        |                   |
| Sds =                            | 2.280           | (2/3*Sms)                                 | Rp = 2.3                              |                        |                   |
|                                  |                 | , -                                       |                                       |                        |                   |
| Fpmax =                          | 5.130 Wp        | (0.4*ap*Sds*Ip)*Wp*3/Rp <                 |                                       | 42420 !!               |                   |
| FpmaxASD =                       | 10809 lbs       | (0.7*Fpmax)                               | FpmaxASD =                            | 12120 lbs              |                   |
|                                  | (unit only)     |                                           | (u                                    | nit + upper rail)      |                   |
| Wind Loading - 202               | 1 IBC/2022 CBC  |                                           |                                       |                        |                   |
| Kz =                             | 1.13            | (For 60 ft roof height, Exposu            | ıre C - Table 26.10-1 AC              | CSE 7-16)              |                   |
| Kzt =                            | 1.00            | (Max. assumed topographic                 | factor)                               |                        |                   |
| Kd =                             | 0.85            | (Directionality factor Table 2            | 6.6-1 ASCE 7-16)                      |                        |                   |
| Ke =                             | 1.00            | (Ground Elevation Factor Tab              | ole 26.9-1 ASCE 7-16)                 |                        |                   |
| V =                              | 110             | (Wind velocity, mph for Occu              | ipancy Cat III-IV bldgs E             | xp. Cat C, Fig 26.5-1D | - ASCE7-16)       |
| GCr <sub>(horiz)</sub> =         | 1.9             | (Refer Sect 29.4.1 ASCE 7-16              |                                       |                        |                   |
| GCr <sub>(vert)</sub> =          | 1.5             | (Refer Sect 29.4.1 ASCE 7-16              |                                       |                        |                   |
| qz                               | 29.8 psf        | = 0.00256*Kz*Kzt*Kd*Ke*V <sup>2</sup>     | (Ea. 26.10-1 ASCE 7-1                 | 6)                     |                   |
| F <sub>h ASD trans</sub> =       | 2366 lbs        | = 0.6*qz*GCr*Lunit*(Hunit+                |                                       | -,                     |                   |
| F <sub>h ASD long</sub> =        | 1312 lbs        | = 0.6*qz*GCr*Wunit*(Hunit-                |                                       |                        |                   |
| F <sub>vert ASD</sub> =          | 2642 lbs        | = 0.6*qz*GCr*Lunit*Wunit                  |                                       |                        |                   |
| · vert ASD                       | 2012 103        | 0.0 qz Ger Eurik Warin                    | (14. 23.4 3)                          |                        |                   |
| Hanna Comb Landina               | _               |                                           |                                       |                        |                   |
| Upper Curb Loading               | í               |                                           |                                       |                        |                   |
| Transverse:                      | 6244 lbc        | =[FpmaxASD*Hcm+2*(1+0.1                   | 15 \*\\/+may*wcurh]/                  | weurh                  |                   |
| Compression <sub>SEISMIC</sub> = | 6244 lbs        | =[FpmaxASD*Hcm-2*(0.6-0.1                 |                                       |                        |                   |
| Tension <sub>SEISMIC</sub> =     | 3502 lbs        |                                           |                                       |                        |                   |
| Compression <sub>WIND</sub> =    | 608 lbs         | =[F <sub>h ASD trans</sub> *Hcm+2*0.6*Wtr |                                       |                        |                   |
| Tension <sub>WIND</sub> =        | 1398 lbs        | =[F <sub>h ASD trans</sub> *Hcm-2*0.6*Wtn | nın "wcurp+F <sub>vertASD</sub> *wcu  | irb/2]/wcurb           |                   |
|                                  | > Negative valu | ies indicate opposite load.               |                                       |                        |                   |
| Longitudinal:                    |                 |                                           |                                       |                        |                   |
| $Compression_{SEISMIC} =$        | 4425 lbs        | =[FpmaxASD*Hcm+2*(1+0.1                   |                                       |                        |                   |
| $Tension_{SEISMIC} =$            | 1683 lbs        | =[FpmaxASD*Hcm-2*(0.6-0.3                 | 14S <sub>DS</sub> )*Wtmin*Lcurb)]/    | 'Lcurb                 |                   |
| Compression <sub>WIND</sub> =    | 11 lbs          | = $[F_{h ASD long}*Hcm+2*0.6*Wtm]$        | nax*Lcurb-F <sub>vertASD</sub> *Lcurb | o/2]/Lcurb             |                   |
| Tension <sub>WIND</sub> =        | 801 lbs         | =[F <sub>h ASD long</sub> *Hcm-2*0.6*Wtm  |                                       |                        |                   |
|                                  |                 | ies indicate opposite load.               |                                       |                        |                   |
|                                  |                 |                                           |                                       |                        |                   |

Governing Reactions:

| doverning neaction |                       |      |     |                             |
|--------------------|-----------------------|------|-----|-----------------------------|
| <u>Transverse:</u> | Comp <sub>MAX</sub> = | 6244 | lbs | > Along long edge of curb.  |
| (on long edge)     | Tens <sub>MAX</sub> = | 3502 | lbs | > Along long edge of curb.  |
| Longitudinal:      | Comp <sub>MAX</sub> = | 4425 | lbs | > Along short edge of curb. |
| (on short edge)    | Tens <sub>MAX</sub> = | 1683 | lbs | > Along short edge of curb. |

<sup>---&</sup>gt; Negative values indicate opposite load.




#### Curb Design

| Fy = | 50 ksi    | Fu = | 65 ksi          |
|------|-----------|------|-----------------|
| E =  | 29500 ksi | t =  | 0.0713 14 Gauge |

#### Calculate Section Properties of Curb

| A'=  | 5.500 in                     | a =                | 5.144 in = A'-(2r+t)                  |
|------|------------------------------|--------------------|---------------------------------------|
| B'=  | 1.500 in                     | a'=                | 5.429 in = A'-t                       |
| C'=  | 0.500 in (0 if no lips)      | b =                | 1.233 in = B'-[r+t/2+ $\alpha$ (r+t/2 |
| α=   | 0.500 (0 - no Lip; 1 w/ lip) | b'=                | 1.447 in = B'- $(t/2+\alpha t/2)$     |
| R =  | 0.1069 (Inside bend radius)  | c =                | 0.161 in = $\alpha[C'-(r+t/2)]$       |
| t =  | 0.0713 in                    | c'=                | 0.232 in = $\alpha(C'-t/2)$           |
| r'=  | 0.143  in  = R+t/2           | u =                | $0.224 \text{ in } = \pi r/2$         |
| x =  | 0.282 in (Distance between   | centroid and web c | enterline)                            |
| Ix = | 2.641 in                     | rx =               | 2.06 in                               |
| ly = | 0.157 in                     | ry =               | 0.502 in                              |
| A =  | 0.623 in <sup>2</sup>        | rmin =             | 0.502 in                              |
|      |                              |                    |                                       |



#### **Axial Compression**

| Pa =    | 5.404 k   | (Max Axial Cor                                          | np)                                                                   | $\Omega_c$ =                | 1.80                        |
|---------|-----------|---------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------|-----------------------------|
| Pn/Ωc = | 5.838 k   |                                                         | $E = (0.6 \text{ GeV}^2) E$                                           | _                           |                             |
| Fe =    | 19.23 ksi | $P_n = F_n A$                                           | If $\lambda_c \le 1.5$ ; $F_n = \left(0.658^{\lambda_c^2}\right) F_y$ | $\lambda = \frac{F_y}{F_y}$ | $_{F}$ $-\frac{\pi^{2}E}{}$ |
| λc =    | 1.61      | $\frac{\Omega_c}{\Omega_c} = \frac{\Omega_c}{\Omega_c}$ | If $\lambda_c > 1.5$ ; $F_n = \frac{0.877}{\lambda_c^2} F_y$          | $\kappa_c - \sqrt{F_e}$     | $r_e = \frac{1}{(kl/m)^2}$  |
| Fn =    | 16.87 ksi |                                                         | $\lambda_c^2$ $\lambda_c^2$                                           | •                           | ( 11)                       |
| Ly =    | 77.13 in  | Lateral unbrac                                          | ed length                                                             |                             |                             |

123 (assume k=0.8)

Compression Check = O.K.

## **Check Web Crippling**

Long side:

| h =                     | 5.5 in    | Check limi          | ts:             | C = 7.50                                            |                                                                     |
|-------------------------|-----------|---------------------|-----------------|-----------------------------------------------------|---------------------------------------------------------------------|
| t =                     | 0.0713 in | h/t =               | 77.14 ≤ 260     | $C_R = 0.08$                                        | (See table C3.4.1-2, fastened to                                    |
| N =                     | 7.00      | N/t =               | 98.18 ≤ 210     | $C_N = 0.12$                                        | support, two flange, end loading)                                   |
| $\Omega_{\rm w}$ =      | 1.75      | N/h =               | 1.273 ≤ 2.0     | $C_h = 0.048$                                       |                                                                     |
| P <sub>n</sub> =        | 1.947 k   | R/t =               | $1.50 \le 12.0$ | / [                                                 | $\overline{\mathcal{L}}$                                            |
| $P_n/\Omega_w =$        | 1.112 k   |                     | $P_n = C$       | $(2t^2F_y\sin(90))\left(1-C_R\right)^{\frac{R}{t}}$ | $\left(1+C_N\right)\left(1+C_h\right)\left(1-C_h\right)\frac{h}{t}$ |
| : Pu <sub>Trans</sub> = | 2.081 k   | web stiffener REQ'D | # clips = 3     | / 1                                                 | // 11// 11/                                                         |

| Short side: Pu <sub>Long</sub> = | 1.475 k | web stiffer | er REQ'D | # clips = 3 |   |
|----------------------------------|---------|-------------|----------|-------------|---|
|                                  |         |             | (0       |             | ъ |

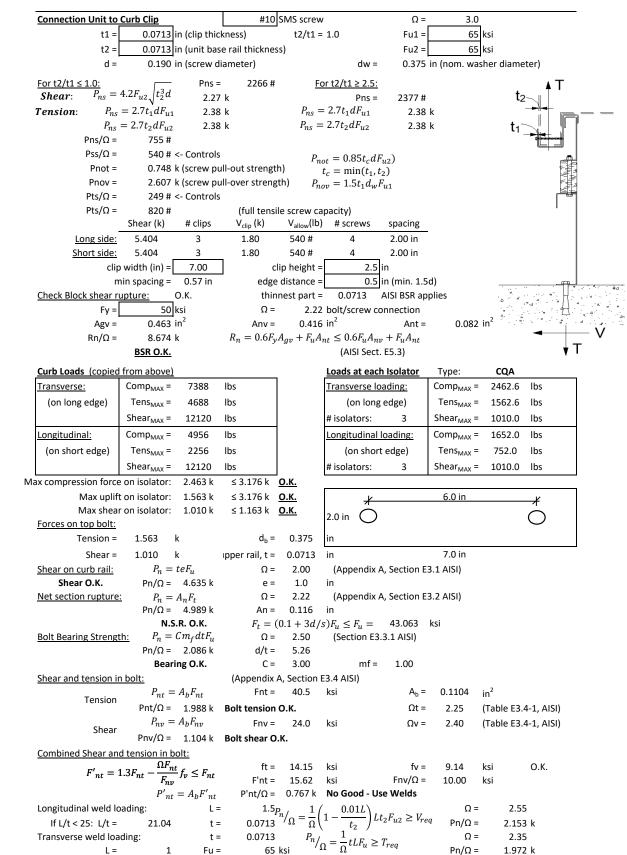
| Check Web Stiffener   | 16Ga x 1 | 3/16in x 7in (C-cha | $P_n = 0.7$     | $P_n = 0.7(P_{wc} + A_e F_y) \ge P_{wc}$ |                       |  |  |
|-----------------------|----------|---------------------|-----------------|------------------------------------------|-----------------------|--|--|
| width of stiffener =  | 7.000 in | ts =                | 0.0566 16 Gauge | Pwc =                                    | 1.947 k               |  |  |
| web of stiff. w =     | 6.717 in | Rs =                | 0.0849 in       | Pn =                                     | 14.669 k              |  |  |
| ***Check w/ts ≤ 1.28\ | /E/Fys   | $\Omega_c$ =        | 1.70            | Ae =                                     | 0.380 in <sup>2</sup> |  |  |

w/ts = 118.675

 $Pn/\Omega_c =$ 1.28v(E/Fys) = 31.091 --> w/ts over limit Use C3.7.2 8.629 k <u>O.K.</u>

#### 1/4" $\varphi$ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts **Corner Connections**

Tcrnmax = 3030 lbs Max(F<sub>pmaxASD</sub>/4 -OR- Fh<sub>ASDtrans</sub>/4 corner connections) Vcrnmax = 3122 lbs Max(Tens/2 -OR- Comp/2 corner connections per side) Bolt: Tall = 2480 lbs Vall = 1208 lbs 1096 lbs Tall = 2860 lbs Vall = Threaded Insert:


# of Bolts required for Tension = 1.2 # of Bolts required for Shear = 2.8

# of Bolts Used = 5.0

0.814 **O.K.** Check Combined Stress in Bolts & Inserts:

### Check 1/8" welded connection





65 ksi

 $Pn/\Omega =$ 

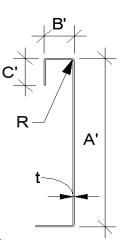
1.972 k

L=



|       | ProVent     | PV2312     |                    | Base curb |
|-------|-------------|------------|--------------------|-----------|
|       | CBISC-14    | Iso Curb   | CBISCSAV28         |           |
| Unit: | AV/AD 28; A | AE/AW 18-2 | 3; AH/AL 25; HV 25 |           |

| اا                               | AV/AD 28, AL/         | AVV 10-23    | , AII/AL 23, IIV                | 23                       |                          |                           |                    |                     |                     |                |
|----------------------------------|-----------------------|--------------|---------------------------------|--------------------------|--------------------------|---------------------------|--------------------|---------------------|---------------------|----------------|
| Dana Comb Informati              | :                     |              |                                 |                          |                          |                           |                    | F <sub>V</sub>      |                     |                |
| Base Curb Informat               |                       |              | (Hadaba a Chasa                 | d-V                      |                          | b.                        | EQ                 | FV EG               | )                   |                |
| Hbase curb =                     | 25 in                 |              | (Height of base                 |                          |                          |                           |                    | Wunit               |                     |                |
| Lcurb =                          | 154.5 in              |              | (Length of base                 | -                        | 1                        | .]                        | (                  | × Lunit )           |                     |                |
| wcurb =                          | 83.125 in             |              | (Width of base                  | •                        |                          | İ                         |                    |                     |                     |                |
| WGTbase =                        | 383 lb                |              | (Weight of bas                  | •                        |                          | 1                         | г                  |                     |                     |                |
| # Springs long side =            | 3                     | # Springs    | short side =                    | 3                        | T III                    | 1                         | F <sub>P MAX</sub> | <b>-</b> •          | 18.0                |                |
| Unit Information                 |                       |              |                                 |                          |                          | 10/4                      |                    | WGT <sub>UNIT</sub> | )A/#                |                |
| WGTunit =                        | 3010 lb               | S            | (Weight of Uni                  | it)                      | Hcm                      | Wt <sub>min</sub>         |                    | ▼ WGTUNIT           | Wt <sub>max</sub> F | - <sub>h</sub> |
| Wt'max =                         | 994 lb                | S            | (Wtmax+1/4*\                    | WGTupper)                |                          | ₩                         |                    | ·                   | ₩   → .             |                |
| Wt'min =                         | 731 lb                | S            | (Wtmin+1/4*V                    | VGTupper))               |                          | <u> </u>                  |                    |                     | <del></del> j;      |                |
| Hunit =                          | 57.25 in              | 1            | (Height of unit                 | above curb)              | و <u>با</u> ب            | Ž.                        |                    |                     |                     |                |
| H'cm =                           | 38.625 in             | 1            | (Hcm+10"(upp                    | er+spring))              | Hcurb<br>Hcurb-<br>upper | : 「                       |                    |                     | -1                  |                |
| Lunit =                          | 160.0625 in           | 1            | (Length of unit                 | :)                       | -                        |                           |                    | WGT <sub>CURB</sub> |                     |                |
| Wunit =                          | 88.75 in              | 1            | (Width of unit)                 | )                        | 1                        |                           |                    | <b>Y</b>            | <u> </u>            |                |
| WGTunit+upper+base =             | 3758 lb               | S            | (Total weight)                  |                          | -                        | - V                       |                    |                     |                     |                |
| Seismic Loading - 20             | 021 IBC/2022C         | ВС           |                                 |                          |                          | T <sub>max</sub>          |                    |                     | Cmax                |                |
| Ss =                             | 2.85                  |              | (Worst case fo                  | r maiority of C          | alifornia                |                           |                    |                     | ,                   |                |
| Fa =                             | 1.20                  |              | (Default Site C                 |                          |                          |                           |                    |                     |                     |                |
| Ip =                             | 1.50                  |              | (Importance Fa                  |                          |                          | •                         |                    |                     |                     |                |
| Sms =                            | 3.420                 |              | (Fa*Ss)                         | actor category           | ap =                     | 2.5                       |                    |                     |                     |                |
| Sds =                            | 2.280                 |              | (2/3*Sms)                       |                          | Rp =                     | 2.3                       |                    |                     |                     |                |
| Fpmax =                          | 5.130 W               | /n           | (0.4*ap*Sds*lj                  | n\*\\/n*2/Dn /:          | •                        |                           |                    |                     |                     |                |
| FpmaxASD =                       | 12120 lb              | -            | (0.4 ap 3us i)                  | p) wp 3/kp <             |                          | pmaxASD =                 | . 12               | 495 lbs             |                     |                |
| •                                |                       |              | (U.7 Fpillax)                   |                          | Г                        |                           |                    |                     |                     |                |
|                                  | (unit + upper r       | -            |                                 |                          |                          | (unit + t                 | ipper raii         | + base curb)        |                     |                |
| Wind Loading - 202               |                       | <del>_</del> | /5 CO ft f                      | haisha Firesan           | С Т                      | .bl= 2C 10 1              |                    | 1.6)                |                     |                |
| Kz =                             | 1.13                  |              | (For 60 ft roof                 |                          |                          | ibie 26.10                | I ACSE 7-1         | 16)                 |                     |                |
| Kzt =                            | 1.00                  |              | (Max. assumed                   |                          |                          | 05 7 46)                  |                    |                     |                     |                |
| Kd =                             | 0.85                  |              | (Directionality                 |                          |                          | •                         |                    |                     |                     |                |
| Ke =                             | 1.00                  |              | (Ground Eleva                   |                          |                          |                           | •                  |                     |                     |                |
| V =                              | 110                   |              | (Wind velocity                  | , mph for Occu           | ipancy C                 | at III-IV bld             | gs Exp. Ca         | it C, Fig 26.5-1D   | - ASCE7-16)         |                |
| $GCr_{(horiz)} =$                | 1.9                   |              | (Refer Sect 29.                 | 4.1 ASCE 7-16)           | )                        |                           |                    |                     |                     |                |
| GCr <sub>(vert)</sub> =          | 1.5                   |              | (Refer Sect 29.                 | 4.1 ASCE 7-16)           | )                        |                           |                    |                     |                     |                |
| qz                               | 29.8 p                | sf           | = 0.00256*Kz*                   | Kzt*Kd*Ke*V <sup>2</sup> | (Ea. 26                  | 10-1 ASCE                 | 7-16)              |                     |                     |                |
| F <sub>h ASD trans</sub> =       | 3478 lb               |              | = 0.6*qz*GCr*                   |                          |                          |                           |                    | )                   |                     |                |
| F <sub>h ASD long</sub> =        | 1928 lb               |              | = 0.6*qz*GCr*                   |                          |                          |                           |                    |                     |                     |                |
| F <sub>vert ASD</sub> =          | 2642 lb               | S            | = 0.6*qz*GCr*                   | Lunit*Wunit              | (Eq. 29.                 | 4-3)                      |                    |                     |                     |                |
|                                  |                       |              | •                               |                          |                          | •                         |                    |                     |                     |                |
| Base Curb Loading                |                       |              |                                 |                          |                          |                           |                    |                     |                     |                |
| Transverse:                      |                       |              |                                 |                          |                          |                           |                    |                     |                     |                |
| Compression <sub>SEISMIC</sub> = | 8255 lb               | ns           | =[FpmaxASD*I                    | H'cm+2*(1+0.1            | 45 <sub>55</sub> )*W     | t'max*wcu                 | ırb1/wcurl         | h                   |                     |                |
| Tension <sub>SEISMIC</sub> =     | 5221 lb               |              | =[FpmaxASD*I                    |                          |                          |                           |                    |                     |                     |                |
| Compression <sub>WIND</sub> =    | 1488 lb               |              | =[F <sub>h ASD trans</sub> *H'o |                          |                          |                           |                    |                     |                     |                |
| Tension <sub>WIND</sub> =        | 2060 lb               |              | =[F <sub>h ASD trans</sub> *H'  |                          |                          |                           |                    |                     |                     |                |
|                                  |                       |              |                                 |                          | WCC                      | vertASD                   | wcarb/ 2           | i/ wearb            |                     |                |
|                                  | > Negative v          | alues indic  | cate opposite lo                | oad.                     |                          |                           |                    |                     |                     |                |
| Longitudinal:                    | 5.C52 III             |              | [FACD*1                         | U 2*/1 . O 1             | 4*C \*\                  | A/±1                      |                    | _                   |                     |                |
| Compression <sub>SEISMIC</sub> = | 5653 lb               |              | =[FpmaxASD*I                    |                          |                          |                           | -                  |                     |                     |                |
| Tension <sub>SEISMIC</sub> =     | 2619 lb               |              | =[FpmaxASD*I                    |                          |                          |                           |                    |                     |                     |                |
| Compression <sub>WIND</sub> =    | 354 lb                |              | =[F <sub>h ASD long</sub> *H'c  |                          |                          |                           |                    |                     |                     |                |
| Tension <sub>WIND</sub> =        | 926 lb                |              | =[F <sub>h ASD long</sub> *H'c  |                          | nın≁Lcur                 | p+F <sub>vertASD</sub> *l | .curb/2]/L         | .curb               |                     |                |
|                                  |                       | alues indic  | cate opposite lo                | oad.                     |                          |                           |                    |                     |                     |                |
| Governing Reactions              | _                     |              |                                 |                          |                          |                           |                    |                     |                     |                |
| Transverse:                      | Comp <sub>MAX</sub> = | 8255         | lbs                             | -> Along long e          | edge of c                | urb.                      |                    |                     |                     |                |
| (on long edge)                   | Tens <sub>MAX</sub> = | 5221         | lbs                             | -> Along long e          | edge of c                | urb.                      |                    |                     |                     |                |
| Longitudinal:                    | Comp <sub>MAX</sub> = | 5653         | lbs                             | -> Along short           | edge of                  | curb.                     |                    |                     |                     |                |
| _                                |                       |              |                                 | _                        | _                        |                           |                    |                     |                     |                |
| (on short edge)                  | Tens <sub>MAX</sub> = |              |                                 | -> Along short           | euge of                  | curb.                     |                    |                     |                     |                |
|                                  | > Negative v          | aiues indic  | cate opposite lo                | oad.                     |                          |                           |                    |                     |                     |                |






| Fy = | 50 ksi    | Fu = | 65 ksi          |
|------|-----------|------|-----------------|
| E =  | 29500 ksi | t =  | 0.1017 12 Gauge |

#### **Calculate Section Properties of Curb**

| tion P | roperties of t | <u>curb</u>            |                  |              |                            |
|--------|----------------|------------------------|------------------|--------------|----------------------------|
| A'=    | 25.000         | in                     | a =              | 24.492 in =  | A'-(2r+t)                  |
| B'=    | 1.750          | in                     | a'=              | 24.898 in =  | A'-t                       |
| C'=    | 1.000          | in (0 if no lips)      | b =              | 1.242 in =   | $B'-[r+t/2+\alpha(r+t/2)]$ |
| α =    | 1.000          | (0 - no Lip; 1 w/ lip) | b'=              | 1.648 in =   | B'- $(t/2+\alpha t/2)$     |
| R =    | 0.1525         | (Inside bend radius)   | c =              | 0.746  in =  | $\alpha$ [C'-(r+t/2)]      |
| t =    | 0.1017         | in                     | c'=              | 0.949  in  = | α(C'-t/2)                  |
| r'=    | 0.203          | in = $R+t/2$           | u =              | 0.319  in  = | πr/2                       |
| x =    | 0.187          | in (Distance between   | centroid and web | centerline)  |                            |
| Ix =   | 205.037        | in                     | rx =             | 8.23 in      |                            |
| ly =   | 0.672          | in                     | ry =             | 0.471 in     |                            |
| A =    | 3.02           | in <sup>2</sup>        | rmin =           | 0.471 in     |                            |



#### **Axial Compression**

| Pu =              | 6.060 k   | (Max Axial Comp)                                                                                       | $\Omega_{c}$ =                       | 1.80                       |
|-------------------|-----------|--------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------|
| Pn/Ωc =           | 6.244 k   | $If \lambda < 1F, F = (0.6F0\lambda^2)F$                                                               | _                                    |                            |
| Fe =              | 4.24 ksi  | $P_n - F_n A$ If $\lambda_c \le 1.5$ ; $F_n = \left(0.658^{\lambda_c^2}\right) F_y$                    | $\lambda_c = \sqrt{\frac{F_y}{F_e}}$ | $_{E}$ $_{-}$ $\pi^{2}E$   |
| λc =              | 3.44      | $\frac{R}{\Omega_c} = \frac{R}{\Omega_c}$ If $\lambda_c > 1.5$ ; $F_n = \frac{0.877}{\lambda_c^2} F_y$ | $\lambda_c = \sqrt{\frac{y}{F_e}}$   | $r_e = \frac{1}{(kl/l)^2}$ |
| Fn =              | 3.72 ksi  | $\lambda_c^2$ 10, $\lambda_h^2$                                                                        | •                                    | ( 77)                      |
| Ly =              | 154.50 in | Lateral unbraced length                                                                                |                                      |                            |
| $k_y L_y / r_y =$ | 262       | (assume k=0.8)                                                                                         |                                      |                            |
|                   |           |                                                                                                        |                                      |                            |

#### Compression Check = O.K.

#### **Check Web Crippling**

| h =                              | 25 in     | Check limi          | ts:            | C = 4.00                                                   |                                                                           |
|----------------------------------|-----------|---------------------|----------------|------------------------------------------------------------|---------------------------------------------------------------------------|
| t =                              | 0.1017 in | h/t =               | 245.82 ≤ 260   | C <sub>R</sub> = 0.14                                      | (See table C3.4.1-2, fastened to                                          |
| N =                              | 7.00      | N/t =               | 68.83 ≤ 210    | $C_{N} = 0.35$                                             | support, one flange, end loading)                                         |
| $\Omega_{\rm w}$ =               | 1.75      | N/h =               | 0.28 ≤ 2.0     | $C_{h} = 0.02$                                             |                                                                           |
| $P_n =$                          | 4.106 k   | R/t =               | $1.50 \le 9.0$ | / [                                                        | $\overline{R} \setminus (\overline{N}) \setminus \overline{h}$            |
| $P_n/\Omega_w =$                 | 2.346 k   |                     | $P_n =$        | $= Ct^2F_{y}\sin(90) \left(1 - C_{R}\right)^{\frac{1}{2}}$ | $\left(\frac{R}{L}\right)\left(1+C_N\right)\left(1-C_h\right)\frac{h}{L}$ |
| Long side: Pu <sub>Trans</sub> = | 2.752 k   | web stiffener REQ'D | # clips = 3    | , , , ( "\1                                                | t /                                                                       |
| Short side: Pulong =             | 1.884 k   | О.К.                | # clips = 3    | `                                                          |                                                                           |

#### <u>Check Web Stiffener</u> 16Ga x 1.5in x 7in (C-channel)

width of stiffener = 7.000 in ts = 0.0566 16 Gauge web of stiff. w = 6.717 in Rs = 0.0849 in \*\*\*Check w/ts 
$$\leq$$
 1.28VE/Fys  $\Omega_{\rm c}$  = 1.70 w/ts = 118.675 1.28V(E/Fys) = 31.091 --> w/ts over limit Use C3.7.2  $P_n = 0.7(P_{wc} + A_e F_y) \geq P_{wc}$ 

 $Pn/\Omega_c = 9.518 \text{ k}$  **O.K.** 

#### Corner Connections 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts

| Tcrnmax = | 3374 lbs   |        | Max(F <sub>pmaxASD</sub> /4 -OR- Fh <sub>ASDtrans</sub> /4 corner connections) |     |        |      |     |  |
|-----------|------------|--------|--------------------------------------------------------------------------------|-----|--------|------|-----|--|
| Vcrnmax = | 4127 lbs   |        | Max(Tens/2 -OR- Comp/2 corner connections per side)                            |     |        |      |     |  |
|           | Bolt:      | Tall = | 2480                                                                           | lbs | Vall = | 1208 | lbs |  |
| Threade   | ed Insert: | Tall = | 2860                                                                           | lbs | Vall = | 1096 | lbs |  |
|           |            |        |                                                                                |     |        |      |     |  |

# of Bolts required for Tension = 1.4 # of Bolts required for Shear = 3.8

# of Bolts Used = 6.0

Check Combined Stress in Bolts & Inserts: 0.854 **O.K.** 

#### Check 1/8" welded connection <--- USE WELD

Assume L/t > 25: 25\*t = 2.543 in Lreq'd = 1.956 in 
$$P_n/_{\Omega} = \frac{1}{\Omega} 0.75t L F_u \ge V_{req}$$
  $L_{req'd} = \frac{V_{req} \Omega}{0.75t F_u}$ 

Ω =

| Curb Loads (copied f         | rom upper rail calcs)                                 |              |             | Loads at each      | <u>Isolator</u> | Type:                  | CQA            |               |
|------------------------------|-------------------------------------------------------|--------------|-------------|--------------------|-----------------|------------------------|----------------|---------------|
| Transverse:                  | Comp <sub>MAX</sub> = 7388                            | lbs          |             | Transverse loa     | ading:          | Comp <sub>MAX</sub> =  | 2462.6         | lbs           |
| (on long edge)               | Tens <sub>MAX</sub> = 4688                            | lbs          |             | (on long           | edge)           | Tens <sub>MAX</sub> =  | 1562.6         | lbs           |
|                              | Shear <sub>MAX</sub> = 12120                          | lbs          |             | # isolators:       | 3               | Shear <sub>MAX</sub> = | 1010.0         | lbs           |
| Longitudinal:                | Comp <sub>MAX</sub> = 4956                            | lbs          | 1           | Longitudinal l     | oading:         | Comp <sub>MAX</sub> =  | 1652.0         | lbs           |
| (on short edge)              | Tens <sub>MAX</sub> = 2256                            | lbs          |             | (on short          | edge)           | Tens <sub>MAX</sub> =  | 752.0          | lbs           |
|                              | Shear <sub>MAX</sub> = 12120                          | lbs          |             | # isolators:       | 3               | Shear <sub>MAX</sub> = | 1010.0         | lbs           |
| x compression force          | on isolator: 2.463 k                                  | ≤ 3.176 k    | О.К.        |                    |                 |                        |                |               |
| Max uplift                   | on isolator: 1.563 k                                  | ≤ 3.176 k    | <u>O.K.</u> | <u></u>            |                 | 6.0 in                 |                |               |
| Max shear                    | on isolator: 1.010 k                                  | ≤ 1.163 k    | <u>O.K.</u> | 2.0 in             |                 |                        |                |               |
| Forces on bottom bo          | lts:                                                  |              |             | 2.0 111            |                 |                        |                |               |
| d <sub>b</sub> =             | 0.5 in                                                |              |             |                    |                 |                        |                |               |
| base curb, t =               | 0.1017 in                                             |              |             |                    |                 | 7.0 in                 |                | ΔT            |
| Tension =                    | 0.781 k / bolt                                        |              |             |                    |                 |                        | t <sub>2</sub> | J             |
| Shear =                      | 0.505 k / bolt                                        |              |             |                    |                 |                        | -              | <del> </del>  |
| Shear on base curb:          | $P_n = teF_u$                                         | Ω =          | 2.00        | (Appendix A        | , Section E     | 3.1 AISI)              | t₁→            |               |
|                              | $Pn/\Omega = 6.611 k$                                 | e =          | 1.0         | in                 |                 |                        | •              |               |
|                              | Shear O.K.                                            |              |             |                    |                 |                        |                |               |
| Net section rupture:         | $P_n = A_n F_t$                                       | Ω =          | 2.22        | (Appendix A        | , Section E     | 3.2 AISI)              |                |               |
|                              | $Pn/\Omega = 8.428 \text{ k}$                         | An =         | 0.153       | in                 |                 |                        |                |               |
|                              | N.S.R. O.K.                                           | $F_t =$      | (0.1 + 3d)  | $(s)F_u \le F_u =$ | 55.250          | ksi                    |                | l             |
| <b>Bolt Bearing Strength</b> | $P_n = Cm_f dt F_i$                                   | Ω =          | 2.50        | (Section E3.       | 3.1 AISI)       |                        |                |               |
|                              | $Pn/\Omega = 3.966 \text{ k}$                         | d/t =        | 4.92        |                    |                 |                        |                |               |
|                              | Bearing O.K.                                          | C =          | 3.00        | mf =               | 1.00            |                        |                |               |
| Shear and tension in         |                                                       | (Appendix    |             |                    |                 |                        |                |               |
| Tension                      | $P_{nt} = A_b F_{nt}$                                 |              | 45.0 ksi    | $A_b =$            | 0.1963          | in <sup>2</sup>        | 7 5 7          |               |
|                              | $Pnt/\Omega = 3.927 k$                                |              |             | Ωt =               | 2.25            |                        |                | A             |
| Shear                        | $P_{nv} = A_b F_{nv}$                                 |              | 27.0 ksi    |                    | 2.40            |                        |                |               |
|                              | $Pnv/\Omega = 2.209 k$                                | Bolt shear C | D.K.        | ***(Table          | E3.4-1, AI      | SI)***                 | -              | <b>-</b> ── ∨ |
| Combined Shear and           |                                                       | _            |             |                    | _               |                        |                | <b>∀</b> T    |
| $F'_{nt} = 1$                | $.3F_{nt} - \frac{\Omega F_{nt}}{F_{nv}} f_v \le F_n$ | ft =         | 7.96        | ksi                | fv =            |                        | ksi            | O.K.          |
|                              |                                                       |              |             |                    | Fnv/Ω =         |                        | ksi            |               |
|                              | $P'_{nt} = A_b F'_n$                                  |              | 3.927 k     | Combined No        | t Applicat      | ole -> F'nt = F        | nt             |               |

# **Connection of Curb to Supporting Structure**

| Roof Loading                     | SEISMIC: (0.6-0.14S <sub>D</sub> | <sub>s</sub> )D + 0.7E                 | WIND: 0.6D + W                            |                                                 |               |
|----------------------------------|----------------------------------|----------------------------------------|-------------------------------------------|-------------------------------------------------|---------------|
| <u>Transverse:</u>               | Uplift <sub>MAX</sub> =          | 9802 lbs                               | Shear <sub>MAX</sub> =                    | 6747 lbs                                        |               |
| Compression <sub>SEISMIC</sub> = | 12808 lbs                        | =[FpmaxASD*(H'cm+Hb                    | ase curb)+(1+0.14S <sub>DS</sub> )*WGT    | unit+upper+base*wcurb/2                         | ]/wcurb       |
| Tension <sub>SEISMIC</sub> =     | 9802 lbs                         | =[FpmaxASD*(H'cm+Hb                    | ase curb)-(0.6-0.14S <sub>DS</sub> )*WG   | T <sub>unit+upper+base</sub> *wcurb/2           | 2]/wcurb      |
| Compression <sub>WIND</sub> =    | 2469 lbs                         | =[F <sub>h ASD trans</sub> *(H'cm+Hbas | se curb)+0.6*WGT <sub>unit+upper+ba</sub> | <sub>se</sub> *wcurb/2-F <sub>vert ASD</sub> *w | curb/2]/wcurl |
| Tension <sub>WIND</sub> =        | 2855 lbs                         | =[F <sub>h ASD trans</sub> *(H'cm+Hba  | se curb)-0.6*WGT <sub>unit+upper+ba</sub> | <sub>se</sub> *wcurb/2+F <sub>vertASD</sub> *w  | curb/2]/wcurl |
| Longitudinal:                    | Uplift <sub>MAX</sub> =          | 5030 lbs                               | Shear <sub>MAX</sub> =                    | 6747 lbs                                        |               |
| Compression <sub>SEISMIC</sub> = | 8036 lbs                         | =[FpmaxASD*(H'cm+Hb                    | ase curb)+(1+0.14S <sub>DS</sub> )*WGT    | unit+upper+base*Lcurb/2],                       | /Lcurb        |
| Tension <sub>SEISMIC</sub> =     | 5030 lbs                         | =[FpmaxASD*(H'cm+Hb                    | ase curb)-(0.6-0.14S <sub>DS</sub> )*WG   | T <sub>unit+upper+base</sub> *Lcurb/2           | ]/Lcurb       |
| $Compression_{WIND} =$           | 601 lbs                          | =[F <sub>h ASD long</sub> *(H'cm+Hbas  | e curb)+0.6*WGT <sub>unit+upper+bas</sub> | se*Lcurb/2-F <sub>vert ASD</sub> *Lcu           | urb/2]/Lcurb  |
| Tension <sub>WIND</sub> =        | 988 lbs                          | =[F <sub>h ASD long</sub> *(H'cm+Hbas  | e curb)-0.6*WGT <sub>unit+upper+bas</sub> | <sub>e</sub> *Lcurb/2+F <sub>vertASD</sub> *Lcu | ırb/2]/Lcurb  |
|                                  |                                  |                                        |                                           | -                                               |               |

| Wood Attachn | ment: 1/4"φ x 4.5            | " Simpson S | DS screws | w/ 2.75" thr           | eaded emb   | (SGm | in = 0.43)  |
|--------------|------------------------------|-------------|-----------|------------------------|-------------|------|-------------|
|              | Tall <sub>metal</sub> =      | 997         | lbs       | $Vall_{metal} =$       | 1097        | lbs  |             |
| Transverse:  | Tall <sub>wood</sub> =       | 760         | lbs       | Vall <sub>wood</sub> = | 672         | lbs  |             |
| #            | of Screws Req'd for Uplift = | 12.90       | -         | COMBINED               | LOADING:    |      | 0.980 O.K.  |
| #            | of Screws Req'd for Shear =  | 10.04       | _         | Req'd Mi               | n Spacing = |      | 7.71 in o.d |
|              | Total # of screws required = | 20          |           |                        | •           |      | <u> </u>    |

Use 20 - 1/4"φ x 4.5" Simpson SDS screws @ 7.7 in o.c. along long side of curb w/ 2.75" threaded embed



Longitudinal:

# of Screws Req'd for Uplift = 6.62 COMBINED LOADING: 0.997 O.K. 10.04 Screw Spacing =

#### 8.35 in o.c. # of Screws Reg'd for Shear = Total # of screws required = 10 Use 10 - 1/4" x 4.5" Simpson SDS screws @ 8.3 in o.c. along short side of curb w/ 2.75" threaded embed Steel Deck Attachment: 1/2" $\varphi$ A307 Bolts to steel angle below deck Tall<sub>bolt</sub> = 3927 lbs 2209 lbs 2192 lbs Transverse: $Tall_{metal} =$ 2086 lbs Vall<sub>metal</sub> = # of Bolts Req'd for Uplift = 4.70 COMBINED LOADING: 0.979 O.K. Bolt Spacing = 23.75 in o.c. # of Bolts Reg'd for Shear = 3.08 7 Total # of bolts required = Use 7 - 1/2" φ A307 Bolts to steel angle below deck @ 23.8 in o.c. along long side of curb Longitudinal: # of Bolts Req'd for Uplift = 2.41 COMBINED LOADING: 0.652 O.K. # of Bolts Req'd for Shear = 3.08 Bolt Spacing = 35.56 in o.c. Total # of bolts required = Use 3 - 1/2" φ A307 Bolts to steel angle below deck @ 35.6 in o.c. along short side of curb **For Concrete anchorage:** SEISMIC (0.6-0.14S<sub>DS</sub>)D + $0.7\Omega_o$ E Concrete Attachment: 0.625in & HAS rods in Hilti HIT-HY 200 V3 epoxy w/ 4in embed $A_{Na}$ Epoxy: Hilti HIT-HY 200 V3 (ICC ESR 4868) 4000 psi f'c = 6 in (concrete thickness, t\_min = h\_ef + 2do) O.K. h = 4 in (effective embedment) h\_ef = 0.625 in (anchor diameter) 0.75 in (hole diameter) da : do = 5 (number of dummy anchors to check capacity with spacing effect) n = 14.2 in (initial spacing estimate) 2220 psi (from ESR 4868, Table 14, Temp range B) tk.cr / uncr = 1170 τk,cr / uncr = multiply by $(f'_c/2500)^{0.1}$ 1226 2327 psi If $f'_c > 2500$ , $c_{Na} = 10d_a \sqrt{\frac{\tau_{uncr}}{1100}}$ c<sub>N</sub>a= 9.0625 in (min. edge distance for full capacity); $N_{ag} = \frac{A_{Na}}{A_{Nao}} \varphi_{ec,Na} \varphi_{ed,Na} \varphi_{cp,Na} N_{ba}$ Tension: (ACI318-14, 17.4.5.1b) Bond strength $\varphi_{ec,Na}\varphi_{ed,Na}\varphi_{cp,Na}=1.0$ CNa \*\*\*Bond strength $A_{Na}=$ 1358.02 in<sup>2</sup> will govern over A<sub>Nao</sub>= 328.52 in<sup>2</sup> concrete breakout $N_{ba} =$ $N_{ba} = \lambda_a \tau_{cr} \pi d_a h_{ef} \alpha_{n,seismic}$ 9535 lbs $\alpha_{n.seismic} = 0.99$ 39416 lbs (group) $N_{ag} =$ $\lambda_a = 1.0$ CONTROLS $\lambda_a = 1.0$ for normal weight conc; 0.6 for lightwo ØN<sub>ag</sub> = 19215 lbs (group) $\frac{A_{Nc}}{4}\varphi_{ec,N}\varphi_{ed,N}\varphi_{cp,N}N_b$ Breakout $N_{cbg} =$ $N_b = \lambda_a k_c \sqrt{f'_c} h_{ef}^{1.5}$ strength 825.6 in<sup>2</sup> A<sub>Nc</sub> = $N_b = 8601$ 0.75 144 in<sup>2</sup> kc = 17A<sub>Nco</sub> = 0.65 $N_{cbg} =$ 49315 lbs (group) 0.75 27739 lbs (group) 0.65 $\phi N_{cbg} =$ 7865 (from ESR4868, Table 11) Shear: Vsa,eq = 0.6 Steel strength 3067 øVsa,eq = Tall<sub>IRED</sub> = 3843 lbs (anchor) Vall<sub>IRFD</sub> = 3067 lbs $\propto = (1 + 0.2SDS)D + 2.5E = 1.421$ $Tall_{ASD} = Tall_{LRFD}/\alpha =$ $Vall_{ASD} = Vall_{LRFD}/\alpha =$ 1795 lbs 2249 lbs D = 0.758 $E \oplus .242 \propto = 1.709$ Uplift<sub>MAX</sub> = $Shear_{MAX} =$ 13520 lbs 16869 lbs Transverse =[Ωo\*FpmaxASD\*(Hcm+Hcurb)+(1+0.14S<sub>DS</sub>)\*WGT<sub>unit+curb</sub>\*wcurb/2]/wcurb Compression<sub>SEISMIC</sub> = 16702 lbs Tension<sub>SEISMIC</sub> = 13520 lbs = $[\Omega o*FpmaxASD*(Hcm+Hcurb)-(0.6-0.14S_{DS})*WGT_{unit+curb}*wcurb/2]/wcurb$ Shear<sub>SEISMIC</sub> = 16869 lbs =Ωo\*FpmaxASD/2 6.01 spacing = Tapplied = Min Bolts Req'd Uplift = 23.75 in o.c. 1352.0 lbs Min Bolts Req'd Shear = 15.83 in o.c. Vapplied = 1054.3 lbs 9.40 spacing = $\frac{T_{applied}}{T_{allow,ASD}} + \frac{V_{apllied}}{V_{allow,ASD}}$ bolts Try using 10 O.K. COMBINED LOADING = spaced at 15.83 in o.c

Use 10 - 0.625in φ HAS rods in Hilti HIT-HY 200 V3 epoxy @ 15.8 in o.c. max. along long side of curb w/ 4in embed

 $Shear_{MAX} =$ 

16869 lbs

7016 lbs

 $Uplift_{MAX} =$ 

Longitudinal:

= 1.11

spaced at

14.23

in o.c.

= $[\Omega o*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*WGT_{unit+curb}*Lcurb/2]/Lcurb$ Compression<sub>SEISMIC</sub> = 10198 lbs  $= \! [\Omega o^* FpmaxASD^*(Hcm + Hcurb) - (0.6 - 0.14S_{DS})^*WGT_{unit+curb}^* Lcurb/2] / Lcurb$  $Tension_{SEISMIC} =$ 7016 lbs  $\mathsf{Shear}_{\mathsf{SEISMIC}} =$ 16869 lbs  $=\Omega o*FpmaxASD/2$ Min Bolts Req'd Uplift = 3.12 spacing = 23.71 in o.c. Tapplied = 1169.4 lbs 7.90 in o.c. Vapplied = 1054.3 lbs Min Bolts Req'd Shear = 9.40 spacing =  $\frac{T_{applied}}{T_{allow,ASD}} + \frac{V_{apllied}}{V_{allow,ASD}}$  $V_{apllied} \le 1.2$ Try using 6 bolts O.K.

Use 6 - 0.625in φ HAS rods in Hilti HIT-HY 200 V3 epoxy @ 14.2 in o.c. max. along short side of curb w/ 4in embed

COMBINED LOADING =

| <b>CURB DESIGN SUM</b>                                                                             | MARY:             | CBISC-14                     | CBISCSAV28   |                      | Unit                           | AV/AD 28; AE/AW 18-23; AH/AL       |
|----------------------------------------------------------------------------------------------------|-------------------|------------------------------|--------------|----------------------|--------------------------------|------------------------------------|
| UPPER CURB RAIL                                                                                    | 0.1017 in         | 12 Gauge                     |              |                      | 25; HV 25                      |                                    |
| UNIT CLIP                                                                                          | 0.0713 in         | 14 Gauge                     |              |                      |                                |                                    |
| # OF CLIPS (LONG SIDE) - 3 clips with 4 - #10 SMS screws each clip                                 |                   |                              |              |                      |                                |                                    |
| <b>WEB STIFFENER:</b> 16Ga x 1 3/16in x 7in (C-channel) stiffener at each clip                     |                   |                              |              |                      |                                |                                    |
| # OF CLIPS (SHORT SIDE) - 3 clips with 4 - #10 SMS screws each clip                                |                   |                              |              |                      |                                |                                    |
| WEB STIFFENER: 16Ga x 1 3/16in x 7in (C-channel) stiffener at each clip                            |                   |                              |              |                      |                                |                                    |
| VIBRATION ISOLATOR TYPE: CQA Top stud diameter: 3/8                                                |                   |                              |              | 3/8                  | (3) - CQA Isolators long side  |                                    |
| Anchor bolt diameter: 1/2 Anchor ho                                                                |                   |                              | le diamter:  | 9/16                 | (3) - CQA Isolators short side |                                    |
| BASE CURB THICKNESS: 0.1017 in 12 Gauge                                                            |                   |                              |              |                      |                                | ***Must weld top of CQA***         |
| WEB STIFFENER: NOT REQUIRED                                                                        |                   |                              |              |                      |                                |                                    |
| CORNER CONNECTION: Use minimum 6 - 1/4" $\varphi$ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts |                   |                              |              |                      |                                |                                    |
| CURB<br>ANCHORAGE                                                                                  | WOOD              |                              | <u>STEEL</u> |                      | <u>CONCRETE</u>                |                                    |
|                                                                                                    | 1/4"¢ x 4.5'      | x 4.5" Simpson SDS screws w/ |              | 1/2" φ A307 Bolts to |                                | 0.625in φ HAS rods in Hilti HIT-HY |
|                                                                                                    | 2.75" thre        | 75" threaded embed (SGmin =  |              |                      | oelow deck                     | 200 V3 epoxy w/ 4in embed          |
| LONG DIRECTION                                                                                     | 20 @ 7.71 in o.c. |                              |              | 7 @ 23.75 in o.c.    |                                | 10 @ 15.83 in o.c.                 |
| SHORT DIRECTION                                                                                    | 10 @ 8.35 in o.c. |                              |              | 3 @ 35.56 in o.c.    |                                | 6 @ 14.23 in o.c.                  |