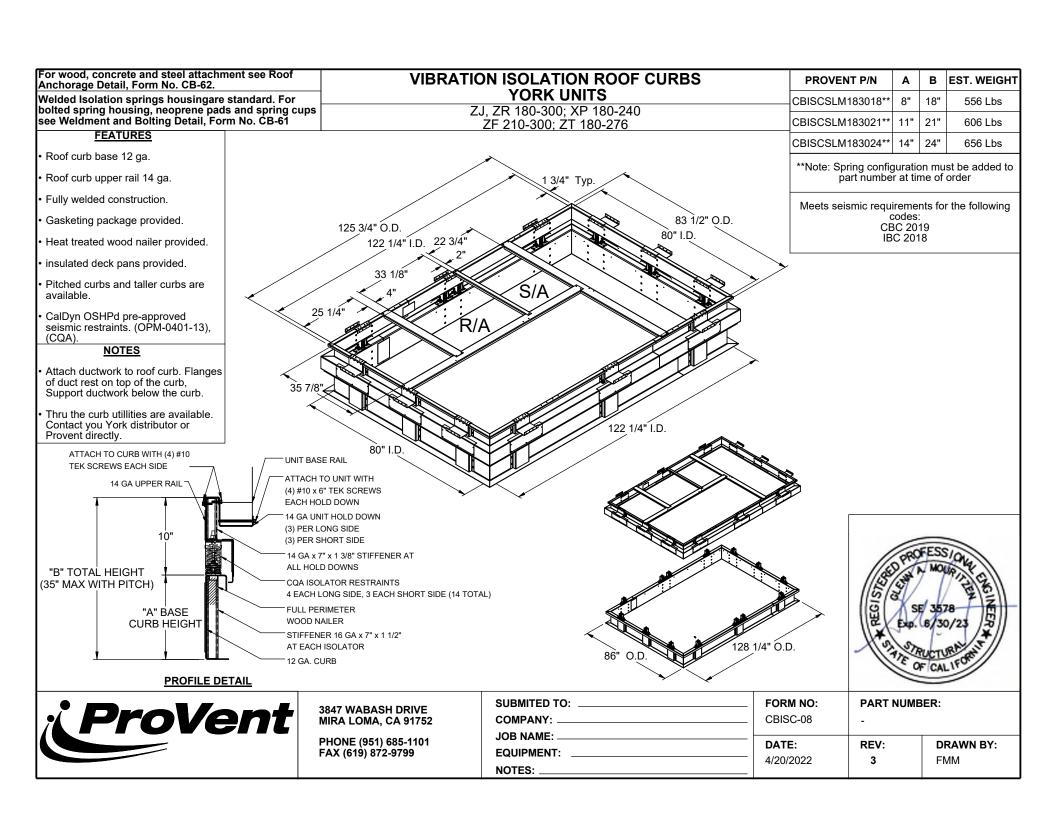
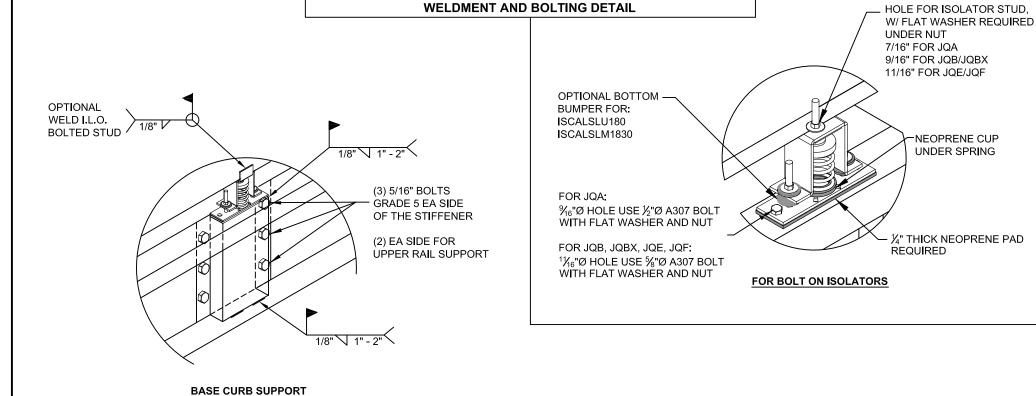


Structural Calculations for CBISC-08 Series

CBISCSLM1830** SERIES


Prepared for:

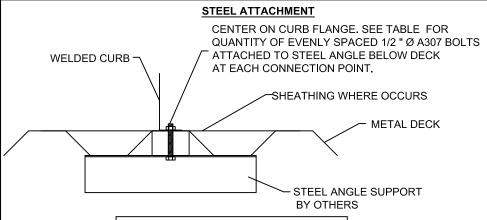

PROVENT / RRS

3847 Wabash Drive Mira Loma, CA 91725

Date: July 13, 2022

Project Number: PV2203

3847 WABASH DRIVE MIRA LOMA, CA 91725


PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITTED TO:	F
COMPANY:	(
JOB NAME:	H
EQUIPMENT:	[
NOTES:	(

FORM NO: CB-61

 DATE:
 REV:
 DRAWN BY:

 02/08/18
 1
 ALL

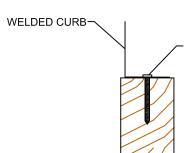
	NO. OF ANCHORAGE BOLTS REQUIRED		
CURB	LONG SIDE	SHORT SIDE	
LXS	3 @ 19.25" O.C.	2 @ 23" O.C.	
LXL	3 @ 19.25" O.C.	2 @ 33" O.C.	
SUN3672	4 @ 21" O.C.	2 @ 27.25" O.C.	
PRD3715	6 @ 14.28" O.C.	3 @ 20.75" O.C.	
PRS	4 @ 20.46" O.C.	2 @ 31.13" O.C.	
PRL	3 @ 36.13" O.C.	2 @ 44" O.C.	
SLU180	4 @ 35.08" O.C.	3 @ 37" O.C.	
SLM1830	5 @ 29.06" O.C	4 @ 24.67" O.C.	
SAV1518	4 @ 37.38" O.C	3 @ 35.56" O.C.	
SAV2025	4 @ 42.04" O.C	3 @ 35.56" O.C.	
SAV28	5 @ 35.63" O.C	3 @ 35.56" O.C.	

ASSUMES:

CONC SLAB fc= 4000PSI MINIMUM 6" MIN THICKNESS NORMAL WEIGHT CONCRETE OR SAND LIGHT WEIGHT Meets seismic requirements for the following codes: CBC 2019 IBC 2018 ROOF ANCHORAGE DETAIL
CBISC Series
LXS
LXL
SUN3672
PRD3715
PRS
PRL
SLU180
SLM1830
SAV1518
SAV2025
SAV28

CONCRETE ATTACHMENT

WELDED CURB


CENTER ON CURB FLANGE.
SEE TABLE FOR QUANTITY OF EVENLY
SPACED 3/4" Ø THREADED ROD IN HILTI
HIT-HY 200 EPOXY WITH 4" EMBED

NO.	OF	ANCHOR.	AGE BO	LTS I	REQUIRED

CURB	LONG SIDE	SHORT SIDE
LXS	7 @ 6.42" O.C.	4 @ 7.67" O.C.
LXL	7 @ 6.42" O.C.	5 @ 8.25" O.C.
SUN3672	9 @ 7.88" O.C.	4 @ 9.08" O.C.
PRD3715	14 @ 5.49" O.C.	9 @ 5.19" O.C.
PRS	10 @ 6.82" O.C.	5 @ 7.78" O.C.
PRL	11 @ 7.23" O.C.	6 @ 8.8" O.C.
SLU180	12 @ 9.57" O.C.	8 @ 10.57" O.C.
SLM1830	18 @ 6.84" O.C.	11 @7.4" O.C.
SAV1518	12 @ 10.19" O.C.	6 @ 14.23" O.C.
SAV2025	14 @ 14.97" O.C.	6 @ 14.23" O.C.
SAV28	14 @ 10.96" O.C.	6 @ 14.23" O.C.

* SIX INCHES FROM EACH CORNER EVENLY SPACED.
** CENTERED.

WOOD ATTACHMENT

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED

'4" Ø x 4.5" SIMPSON SDS SCREWS W/ 2.75"
THREADED EMBED (SGMIN=0.50)

FOUR INCHES FROM EACH CORNER EVENLY SPACED

	NO. OF ANCHORAGE SCREWS REQUIRED			
CURB	LONG SIDE	SHORT SIDE		
LXS	7 @ 7.08" O.C.	5 @ 6.75" O.C.		
LXL	7 @ 7.08" O.C.	7 @ 6.17" O.C.		
SUN3672	9 @ 8.38" O.C.	5 @ 7.81" O.C.		
PRD3715	15 @ 5.38" O.C.	10 @ 5.06" O.C.		
PRS	10 @ 7.26" O.C.	6 @ 7.03" O.C.		
PRL	12 @ 6.93" O.C.	8 @ 6.86" O.C.		
SLU180	14 @ 8.4" O.C.	10 @ 8.67" O.C.		
SLM1830	19 @ 6.68" O.C.	13 @ 6.5" O.C.		
SAV1518	13 @ 9.68" O.C.	9 @ 9.39" O.C.		
SAV2025	15 @ 9.29" O.C.	9 @ 9.39" O.C.		
SAV28	16 @ 9.77" O.C.	9 @ 9.39" O.C.		

SE 3578
EMP. 6/30/23

STRUCTURE

OF CALIFORN

ProVent

3847 WABASH DRIVE MIRA LOMA, CA 91752

PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITTED TO:	F
COMPANY:	C
JOB NAME:	
EQUIPMENT:	D.
NOTES:	6,

FORM NO:
CB-62
DATE: REV: DRAWN BY:

6/30/2022 2 FMM

Client:	ProVent	PV2203		Upper curb rail
Project:	CBISC-08	Iso Curb	CBISCSLM1830	
Unit:	ZJ,ZR 180-	300; XP 180	0-240, ZF 210-300	

Unit: ZJ,ZR I	8U-3UU; XP I	80-240, ZF 210-300			
Upper Curb Information			EQ	F _V EQ	
Hcurb upper =	5.5 in	(Height of upper curb rail)	[
Lcurb = 12	5.75 in	(Length of upper curb)		(x Lunk)	i
wcurb =	83.5 in	(Width of upper curb)		7	
WGTupper =	107 lbs	(Weight of upper curb)	:		1
# Clips long side = 3	# Clip	ps short side = 3	FPWAX		
Unit Information		ps short side = 3			[]
WGTunit = 3	305 lbs	(Weight of Unit)	Wtmps	↓ WGT _{BNJ7} W	/tmax p
Wtmax =	950 lbs	(Maximum corner weight)	- 	•	<u> </u>
Wtmin =	702 lbs	(Minimum corner weight)			m. l
Hunit = 52.	.625 in	(Height of unit above curb) 🆼	in the second se		- 9
Hcm = 26.3	125 in	(Height to center of mass)	E B 7		7
Lunit = 13	6.25 in	(Length of unit)		WGT _{CURB}	
Wunit =	92 in	(Width of unit)			<u> </u>
Seismic Loading - 2018 IE	8C/2019 CBC 2.85	— (Worst case for majority of Cali	fornia)	-	Cmex

Ss =	2.85	(Worst case	(Worst case for majority of California)			
Fa =	1.20	(Default Site	(Default Site Class D - Table 11.4-1 ASCE 7-16)			
lp =	Ip = 1.50 (Importance Factor Category IV Building			uilding)		
Sms =	3.420	(Fa*Ss)	ap =	2.5		
Sds =	2.280	(2/3*Sms)	Rp =	2		
Fpmax = 5.130 Wp		Wp (0.4*ap*Sds	(0.4*ap*Sds*Ip)*Wp*3/Rp <=1.6*Sds*Ip*Wp			
FpmaxASD =	11868	lbs (0.7*Fpmax)	. Fp	maxASD =	12252 lbs	
	(unit only)				(unit + upper rail)	

Wind Loading - 2018 IBC/2019 CBC

Kz =	1.13	(For 60 ft roof height, Exposure C - Table 26.10-1 ACSE 7-16)
Kzt =	1.00	(Max. assumed topographic factor)
Kd =	0.85	(Directionality factor Table 26.6-1 ASCE 7-16)
Ke =	1.00	(Ground Elevation Factor Table 26.9-1 ASCE 7-16)
V =	110	(Wind velocity, mph for Occupancy Cat III-IV bldgs Exp. Cat C, Fig 26.5-1D - ASCE7-16)
$GCr_{(horiz)} =$	1.9	(Refer Sect 29.4.1 ASCE 7-16)
$GCr_{(vert)} =$	1.5	(Refer Sect 29.4.1 ASCE 7-16)
qz	29.8 psf	$= 0.00256*Kz*Kzt*Kd*Ke*V^2$ [Eq. 26.10-1 ASCE 7-16]
h ASD trans =	1865 lbs	= 0.6*qz*GCr*Lunit*(Hunit+Hcurb) (Eq. 29.4-2)
Fh ASD long =	1260 lbs	= 0.6*qz*GCr*Wunit*(Hunit+Hcurb)
$F_{vert ASD} =$	2331 lbs	= 0.6*qz*GCr*Lunit*Wunit (Eq. 29.4-3)

Upper Curb Loading

Т	ra	ทรา	vei	rs	e	:

Compression _{SEISMIC} =	6247 lbs	=[FpmaxASD*Hcm+2*(1+0.14S _{DS})*Wtmax*wcurb]/wcurb
Tension _{SEISMIC} =	3346 lbs	=[FpmaxASD*Hcm-2*(0.6-0.14S _{DS})*Wtmin*wcurb)]/wcurb
Compression _{WIND} =	563 lbs	= $[F_{h ASD trans}*Hcm+2*0.6*Wtmax*wcurb-F_{vert ASD}*wcurb/2]/wcurb$
Tension _{WIND} =	910 lbs	=[F _{h ASD trans} *Hcm-2*0.6*Wtmin*wcurb+F _{vertASD} *wcurb/2]/wcurb
	and the second	

---> Negative values indicate opposite load.

Longitudinal:

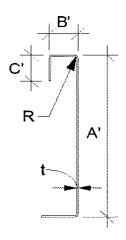
Compression _{SEISMIC} =	4990 lbs	=[FpmaxASD*Hcm+2*(1+0.14*S _{DS})*Wtmax*Lcurb]/Lcurb
Tension _{SEISMIC} =	2089 lbs	=[FpmaxASD*Hcm-2*(0.6-0.14S _{DS})*Wtmin*Lcurb)]/Lcurb
Compression _{WIND} =	238 lbs	= $[F_{h ASD long}*Hcm+2*0.6*Wtmax*Lcurb-F_{vertASD}*Lcurb/2]/Lcurb$
Tension _{WIND} =	586 lbs	=[F _{h ASD long} *Hcm-2*0.6*Wtmin*Lcurb+F _{vertASD} *Lcurb/2]/Lcurb

---> Negative values indicate opposite load.

Governing Reactions:

, , , , , , , , , , , , , , , , , , ,				
<u>Transverse:</u>	Comp _{MAX} =	6247	lbs	> Along long edge of curb.
(on long edge)	Tens _{MAX} =	3346	lbs	> Along long edge of curb.
Longitudinal:	Comp _{MAX} =	4990	lbs	> Along short edge of curb.
(on short edge)	Tens _{MAX} =	2089	lbs	> Along short edge of curb.

^{---&}gt; Negative values indicate opposite load.



Curb Design

$$Fy = 50 \text{ ksi}$$
 $Fu = 65 \text{ ksi}$ $E = 29500 \text{ ksi}$ $t = 0.0713 14 \text{ Gauge}$

Calculate Section Properties of Curb

Α'=	5.500	in	a =	5.144 in = A'-(2r+t)
B'=	1.750	in	a'=	5.429 in = A'-t
C'=	0.000	in (0 if no lips)	b =	1.572 in = B'-[r+t/2+a(r+t/2)]
a =	0.000	(0 - no Lip; 1 w/ lip)	b'=	1.714 in = $B'-(t/2+at/2)$
R=	0.1069	(Inside bend radius)	C =	0.000 in = $a[C'-(r+t/2)]$
t =	0.0713	in	c'=	0.000 in = $a(C'-t/2)$
r'=	0.143	in = R+t/2	u =	$0.224 \text{ in } = \pi r/2$
x =	0.337	in (Distance between c	entroid and wel	b centerline)
lx =	2.687	in ⁴	rx =	2.08 in
ly =	0.169	in ⁴	ry =	0.521 in
A =	0.62	in ²	rmin =	0.521 in

 $Ly = & 80.00 \text{ in} \qquad \text{Lateral unbraced length} \\ k_y L_y / r_y = & 123 \qquad \text{(assume k=0.8)}$

Compression Check = N.G.

Check Web Crippling

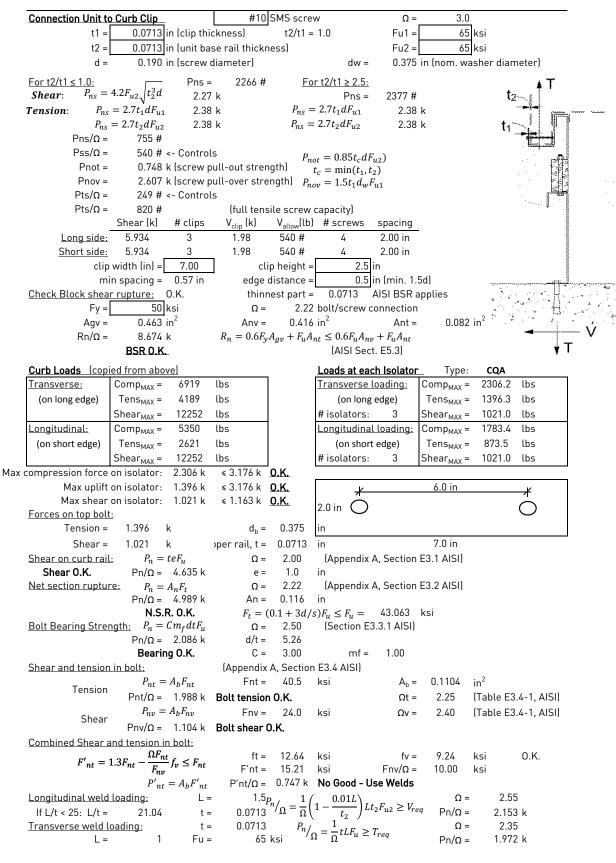
h = t =	5.5 in 0.0713 in	Check li h/t =	mits: 77.14 ≤ 200	C = 7.50 $C_R = 0.08$	(See table C3.4.1-2, fastened
N =	7.00	N/t =	98.18 ≤ 210	$C_N = 0.12$	to support, two flange, end
$\Omega_{\rm w}$ =	1.75	N/h =	$1.273 \le 2.0$	$C_h = 0.048$	loading)
$P_n =$	1.947 k	R/t =	$1.50 \le 12.0$	/ []	$\sqrt{ \left\langle N \right\rangle } \left\langle N \right\rangle $
$P_n/\Omega_w =$	1.112 k		$P_n =$	$Ct^2F_y\sin(90)\left(1-C_R\right)^{\frac{R}{t}}$	$\left(1 + C_N \sqrt{\frac{N}{t}}\right) \left(1 - C_h \sqrt{\frac{h}{t}}\right)$
Long side: Pu _{Trans} =	2.082 k web st	iffener REQ'D	# clips = 3	(1')	
Short side: $Pu_{Long} =$	1.663 k web st	iffener REQ'D	# clips = 3		

Check Web Stiffener 16Ga x 1-3/16in x 7in (C-channel) $P_n = 0.7(P_{wc} + A_e F_y) \ge P_{wc}$ 7.000 in 0.0566 16 Gauge width of stiffener = Pwc = 1.947 k ts = web of stiff. w = 6.717 in Rs= 0.0849 in Pn = 14.669 k ***Check w/ts ≤ 1.28√E/Fys $\Omega_c =$ 1.70 Ae = 0.380 in^2

w/ts = 118.675

1.28v[E/Fys] = 31.091 --> w/ts over limit Use C3.7.2 Pn/ Ω_c = 8.629 k **Q.K.**

Corner Connections 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts


Tcrnmax = 3063 lbs Max(F_{pmaxASD}/4 -OR- Fh_{ASDtrans}/4 corner connections) 3123 lbs Max(Tens/2 -OR- Comp/2 corner connections per side) Vcrnmax = 2480 lbs 1208 lbs Bolt: Tall = Vall = Threaded Insert: Tall = 2860 lbs Vall = 1096 lbs

> # of Bolts required for Tension = 1.2 # of Bolts required for Shear = 2.8

s required for Shear = 2.8 # of Bolts Used = 4.0

Check Combined Stress in Bolts & Inserts: 1.021 N.G.

Client:	ProVent	PV2203		Base curb
			CBISCSLM1830	
Unit:	ZJ,ZR 180-	300; XP 180)-240, ZF 210-300	

<u></u>			4	L
Base Curb Informa			F _√ EO	ĘΩ
Hbase curb =	25 in	(Height of base curb)	KAn	t
Lcurb =	128.25 in	(Length of base curb)	(×Lu	
wcurb =	86 in	(Width of base curb)		
WGTbase =	549 lbs	(Weight of base curb)		!
# Springs long side =	3 # Springs	short side = 3	FPWAX	. L88
Unit Information		Siloit side = 3		!
WGTunit =	3305 lbs	(Weight of Unit)	Wt _{min}	WGTunit Wimax Fa
Wt'max =	977 lbs	(Wtmax+1/4*WGTupper)	' ₩	· · · · · · · · · · · · · · · · · · ·
Wt'min =	729 lbs	(Wtmin+1/4*WGTupper))		1
Hunit =	52.625 in	(Height of unit above curb)	-	
H'cm =	36.3125 in	(Height of unit above curb)		7
Lunit =	136.25 in	(Length of unit)		WGTcure
Wunit =	92 in	(Width of unit)	-1	1
WGTunit+upper+base =	3961 lbs	(Total weight)	• V	⊸ V
Seismic Loading - 2	2018 IBC/2019 CBC		T _{max}	Carex
Ss =	2.85	(Worst case for majority of Californ	ia)	
Fa =	1.20	(Default Site Class D - Table 11.4-1	ASCE 7-16)	
lp =	1.50	(Importance Factor Category III Bui	ilding)	
Sms =	3.420	(Fa*Ss) ap =	2.5	
Sds =	2.280	(2/3*Sms) Rp =	2	
Fpmax =	5.130 Wp	(0.4*ap*Sds*Ip)*Wp*3/Rp <=1.6*Sd	s*lp*Wp	
FpmaxASD =	12252 lbs	(0.7*Fpmax) Fpm	naxASD = 14224	lbs
	unit + upper rail)	·	(unit + upper rail + b	ase curb)
Wind Loading - 201				
Kz =	1.13	(For 60 ft roof height, Exposure C -	Table 26.10-1 ACSE 7	7-16)
Kzt =	1.00	(Max. assumed topographic factor)		
Kd =	0.85	(Directionality factor Table 26.6-1 A	ASCE 7-16)	
Ke =	1.00	(Ground Elevation Factor Table 26.9	9-1 ASCE 7-16)	
V =	110	(Wind velocity, mph for Occupancy (Cat III-IV bldgs Exp. C	Cat C, Fig 26.5-1D - ASCE7-16)
GCr _(horiz) =	1.9	(Refer Sect 29.4.1 ASCE 7-16)		-
GCr _(vert) =	1.5	(Refer Sect 29.4.1 ASCE 7-16)		
qz	29.8 psf	= 0.00256*Kz*Kzt*Kd*Ke*V ² (Eq. 20	6 10-1 ΔSCF 7-16)	
F _{h ASD trans} =	2812 lbs	= 0.6*qz*GCr*Lunit*(Hunit+Hbase of		2)
F _{h ASD long} =	1899 lbs	= 0.6*qz*GCr*Wunit*(Hunit+Hbase		-,
F _{vert ASD} =	2331 lbs	= 0.6*qz*GCr*Lunit*Wunit (Eq. 29		
· vert ASD	2001 100	010 42 00. 20 (24.27	0,	
Base Curb Loading Transverse:	_			
Compression _{SFISMIC} =	7751 lbs	=[FpmaxASD*H'cm+2*(1+0.14S _{DS})*'	Wt'max*wcurb]/wcur	ър
Tension _{SEISMIC} =	4764 lbs	=[FpmaxASD*H'cm-2*(0.6-0.14S _{DS})		
Compression _{WIND} =	1194 lbs	$= [F_{h ASD trans} * H' cm + 2*0.6*Wt' max*w]$		
Tension _{WIND} =	1478 lbs	$= [F_{h ASD trans}^{*} + H'cm - 2*0.6*Wt'min*wc$		
		ndicate opposite load.	- VertASD SST B/2	
Longitudinal:	. regulite falues			

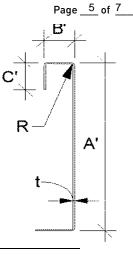
Longitudinal:

Compression _{SEISMIC} =	6047 lbs	=[FpmaxASD*H'cm+2*(1+0.14*S _{DS})*Wt'max*Lcurb]/Lcurb
Tension _{SEISMIC} =	3060 lbs	=[FpmaxASD*H'cm-2*(0.6-0.14S _{DS})*Wt'min*Lcurb)]/Lcurb
Compression _{WIND} =	544 lbs	= $[F_{h ASD long}*H'cm+2*0.6*Wt'max*Lcurb-F_{vertASD}*Lcurb/2]/Lcurb$
Tension _{WIND} =	828 lbs	= $[F_{h ASD long}^*H'cm-2*0.6*Wt'min*Lcurb+F_{vertASD}*Lcurb/2]/Lcurb$

---> Negative values indicate opposite load.

Governing Reactions:

<u>Transverse:</u>	Comp _{MAX} =	7751	lbs	> Along long edge of curb.
(on long edge)	Tens _{MAX} =	4764	lbs	> Along long edge of curb.
Longitudinal:	Comp _{MAX} =	6047	lbs	> Along short edge of curb.
(on short edge)	Tens _{MAX} =	3060	lbs	> Along short edge of curb.


^{---&}gt; Negative values indicate opposite load.

6593 Riverdale St. San Diego, CA 92120 (619)727-4800

Curb Design

Calculate Section Properties of Curb

-	1 10001000	/ V W I W			
Α'=	25.000	in	a =	24.492 in	= A'-(2r+t)
B'=	1.750	in	a'=	24.898 in	= A'-t
C'=	1.000	in (0 if no lips)	b =	1.242 in	= B'-[r+t/2+a(r+t/2)]
a =	1.000	(0 - no Lip; 1 w/ lip)	b'=	1.648 in	= B'-(t/2+at/2)
R=	0.1525	(Inside bend radius)	c =	0.746 in	= a[C'-(r+t/2)]
t =	0.1017	in	c'=	0.949 in	$= \alpha(C'-t/2)$
r'=	0.203	in = R+t/2	u =	0.319 in	$=\pi r/2$
x =	0.187	in (Distance between	centroid and we	b centerli	ne)
lx =	205.037	in	rx =	8.23 in	
ly =	0.672	in	ry =	0.471 in	
A =	3.02	in ²	rmin =	0.471 in	
-					

Axial Compression

Pu =	6.126 k	(Max Axial Comp)	Ω_{c} =	1.80
Pn/Ωc =	9.973 k	162 < 15. E = (0.6	τολε ²) ε	
Fe =	6.77 ksi	$\underline{P_n} - \underline{F_n A} \qquad If \ \lambda_c \le 1.5; \ F_n = \left(0.6\right)$		$_{F}$ $_{-}$ $\pi^{2}E$
λc =	2.72	$\frac{\pi}{\Omega_c} = \frac{\pi}{\Omega_c}$ If $\lambda_c > 1.5$; $F_n = \frac{0.87}{\lambda_c}$	$\frac{77}{F_e}$ $\frac{\kappa_c - \sqrt{\overline{F_e}}}{F_e}$	$r_e = \frac{1}{(kl/1)^2}$
Fn =	5.93 ksi	$\lambda_c > 1.5, \lambda_c > 1.5$	2 1 9	(7r)
Ly =	122.25 in	Lateral unbraced length		
$k_y L_y / r_y =$	207	(assume k=0.8)		

Compression Check = 0.K.

Check Web Crippling

h =	25 in	Check li	mits:	C = 4.00	(C+
t =	0.1017 in	h/t =	$245.82 \le 200$	$C_R = 0.14$	(See table C3.4.1-2, fastened
N =	7.00	N/t =	68.83 ≤ 210	$C_{N} = 0.35$	to support, one flange, end
$\Omega_{\rm w}$ =	1.75	N/h =	$0.28 \le 2.0$	$C_h = 0.02$	loading)
$P_n =$	4.106 k	R/t =	$1.50 \le 9.0$	/ [2	\overline{N}
$P_n/\Omega_w =$	2.346 k		$P_n =$	$Ct^2F_y\sin(90)\left(1-C_R\right)\frac{R}{t}$	$\left(1+C_N\right)\left(1-C_h\right)\left(1-C_h\right)$
Long side: $Pu_{Trans} =$	2.584 k web	stiffener REQ'D	# clips = 3	\ \\'\'	$\mathcal{M} = \mathcal{M} = $
Short side: Pulong =	2.016 k	<u>0.K.</u>	# clips = 3		

***h/t > 200; use web stiffeners

<u>Check Web Stiffener</u> 16Ga x 1.5in x 7in (C-channel)

Corner Connections 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts

	., .	T			,		
Tcrnmax =	3556 lbs		Max(F _{pmaxAS}	_{sD} /4 -0	R- Fh _{ASDtrans} /4 c	orner coni	nections)
Vcrnmax =	3876 lbs		Max(Tens/2	-0R-	Comp/2 corner	connection	ns per side)
	Bolt:	Tall =	2480	lbs	Vall =	1208	lbs
Threaded	Insert:	Tall =	2860	lbs	Vall =	1536	lbs
# o	f Bolts requ	uired fo	r Tension =		1.4		•

of Bolts required for Shear = 3.2 # of Bolts Used = 5.0

Check Combined Stress in Bolts & Inserts: 0.928 Q.K.

Curb Loads (copi	ed from upper rail cal	<u>csl</u>	Loads at each Isolator Type: CQA				
Transverse:	Comp _{MAX} = 6919	lbs	<u>Transverse loading:</u> Comp _{MAX} = 2306.2 lbs				
(on long edge)	Tens _{MAX} = 4189	lbs	(on long edge) Tens _{MAX} = 1396.3 lbs				
, , ,	Shear _{MAX} = 12252	lbs	# isolators: 3 Shear _{MAX} = 1021.0 lbs				
Longitudinal:	$Comp_{MAX} = 5350$	lbs	Longitudinal loading: Comp _{MAX} = 1783.4 lbs				
(on short edge)	Tens _{MAX} = 2621	lbs	(on short edge) Tens _{MAX} = 873.5 lbs				
(* * * * * * * * * * * * * * * * * * *	Shear _{MAX} = 12252	lbs	# isolators: 3 Shear _{MAX} = 1021.0 lbs				
Max compression force		≤ 3.176 k 0.K.	mov				
Max uplift	on isolator: 1.396 k	≤ 3.176 k <u>0.K.</u>	پر 6.0 in				
Max shear	on isolator: 1.021 k	≤ 1.163 k <u>0.K.</u>	20:2				
Forces on bottom	bolts:		2.0 in O				
d _b =	0.5 in						
base curb, t =	0.1017 in		7.0 in				
Tension =	0.698 k/bolt		$t_{2\sim 1}$				
Shear =	0.511 k/bolt						
Shear on base cur	\underline{b} : $P_n = teF_u$	$\Omega = 2.00$	(Appendix A, Section E3.1 AISI) t ₁				
	$Pn/\Omega = 6.611 k$	e = 1.0	in				
	Shear O.K.						
Net section ruptur	$P_n = A_n F_t$	$\Omega = 2.22$	(Appendix A, Section E3.2 AISI)				
	$Pn/\Omega = 8.428 \text{ k}$	An = 0.153	in 🕌				
	N.S.R. O.K.	$F_t = (0.1 + 3a)$	$d/s)F_u \le F_u = 55.250$ ksi				
Bolt Bearing Strength: $P_n = Cm_f dt F_u$ $\Omega = 2.50$ (Section E3.3.1 AISI)							
	$Pn/\Omega = 3.966 \text{ k}$	d/t = 4.92					
	Bearing O.K.	C = 3.00	mf = 1.00				
Shear and tension	in bolt:	(Appendix A, Secti	on E3.4 AISI)				
Tension	$P_{nt} = A_b F_{nt}$	Fnt = 45.0 ks	si $A_b = 0.1963 \text{ in}^2$				
Telision	$Pnt/\Omega = 3.927 k$	Bolt tension O.K.	Ωt = 2.25				
Shear	$P_{nv} = A_b F_{nv}$	Fnv = 27.0 ks	si $\Omega v = 2.40$				
Sileai	$Pnv/\Omega = 2.209 k$	Bolt shear O.K.	***(Table E3.4-1, AISI)***				
Combined Shear a	•		↓ T				
$F'_{nt} = 1$	$1.3F_{nt} - \frac{\Omega F_{nt}}{F_{nv}} f_v \le F_{nt}$	ft = 7.11 F'nt = 45.00	ksi $fv = 2.60$ ksi 0.K.				
nt	160						
Connection of Cur	$P'_{nt} = A_b F'_{nt}$		k Combined Not Applicable -> F'nt = Fnt				
	b to Supporting Struct SEISMIC: (0.6-0.14S		WIND: 0.6D + W				
Roof Loading Transverse:	Uplift _{MAX} =		Shear _{MAX} = 7112 lbs				
	12753 lbs						
Compression _{SEISMIC} =	9585 lbs		n+Hbase curb)+(1+0.14S _{DS})*WGT _{unit+upper+base} *wcurb/2]/wcurb				
Tension _{SEISMIC} =			n+Hbase curb)-(0.6-0.14S _{DS})*WGT _{unit+upper+base} *wcurb/2]/wcurb				
Compression _{WIND} =	2028 lbs		Hbase curb)+0.6*WGT _{unit+upper+base} *wcurb/2-F _{vert ASD} *wcurb/2]/wcurb				
Tension _{WIND} =	1982 lbs		Hbase curb)-0.6*WGT _{unit+upper+base} *wcurb/2+F _{vertASD} *wcurb/2]/wcurb				

WIND		- ITASD tong 1		unit+u	ippei +base		VEIT ASD	
Tension _{WIND} =	885 lbs	=[F _{h ASD long} *(F	l'cm+Hbase curb)-0.	6*WGT _{unit+u}	_{ipper+base} *Lc	urb/2+1	F _{vertASD} *Lcurb/2]/	Lcurb
Wood Attachment:	1/4"φ x 4.5	" Simpson SD	S screw: w/ 2.75" thr	eaded emb	(SGmin = 0).5)		
	Tall _{metal} =	1397 lb	s Vall _{metal} =	1230	lbs			
<u>Transverse:</u>	$Tall_{wood} =$	760 lb	s Vall _{wood} =	672	lbs			
# of Screws	s Req'd for Uplift =	12.61	COMBINED	LOADING:	0.994	4 O.K.		
# of Screws	Req'd for Shear =	10.58	Req'd Min	Spacing =	6.68	in o.c.		
Total # of	screws required =	19		•	•	_		

6244 lbs

 $Shear_{MAX} =$

=[FpmaxASD*[H'cm+Hbase curb]+(1+0.14S $_{\rm DS}$]*WGT $_{\rm unit+upper+base}$ *Lcurb/2]/Lcurb

 $= [FpmaxASD*(H'cm+Hbase\ curb)-(0.6-0.14S_{DS})*WGT_{unit+upper+base}*Lcurb/2]/Lcurb$

 $= [F_{h \, ASD \, long}*(H'cm + Hbase \, curb) + 0.6*WGT_{unit+upper+base}*Lcurb/2 - F_{vert \, ASD}*Lcurb/2]/Lcurb$

7112 lbs

Uplift_{MAX} =

9413 lbs

6244 lbs

931 lbs

Longitudinal:

 $\mathsf{Tension}_{\mathsf{SEISMIC}} =$

 ${\sf Compression_{WIND}} =$

 $Compression_{SEISMIC} =$

Use 19 - 1/4"φ x 4.5" Simpson SDS screws @ 6.7 in o.c. along long side of curb w/ 2.75" threaded embed

0.963 O.K.

Longitudinal: # of Screws Req'd for Uplift = 8.22 COMBINED LOADING:

6.50 in o.c. # of Screws Reg'd for Shear = 10.58 Screw Spacing = Total # of screws required = 13 Use 13 - 1/4" x 4.5" Simpson SDS screws @ 6.5 in o.c. along short side of curb w/ 2.75" threaded embed Steel Deck Attachment: 1/2" ϕ A307 Bolts to steel angle below deck 3927 lbs 2209 lbs Tall_{bolt} = Vallbolt = Transverse: 2975 lbs 3072 lbs $Tall_{metal} =$ Vall_{metal} = # of Bolts Req'd for Uplift = 3.22 COMBINED LOADING: 0.997 O.K. # of Bolts Req'd for Shear = 29.06 in o.c. Bolt Spacing = 3.22 Total # of bolts required = 5 Use 5 - 1/2" φ A307 Bolts to steel angle below deck @ 29.1 in o.c. along long side of curb Longitudinal: # of Bolts Reg'd for Uplift = 2.10 COMBINED LOADING: 0.777 O.K. # of Bolts Reg'd for Shear = 3.22 Bolt Spacing = 24.67 in o.c. Total # of bolts required = 4 Use 4 - 1/2" φ A307 Bolts to steel angle below deck @ 24.7 in o.c. along short side of curb **For Concrete anchorage:** SEISMIC $(0.6-0.14S_{DS})D + 0.7\Omega_{o}E$ Concrete Attachment: 3/4" ϕ thrd'd rods in Hilti Hit-HY 200 epoxy w/ 4" embed $Tall_{LRFD} =$ $Vall_{LRFD} =$ 1957 lbs 4540 lbs $\propto = (1 + 0.2SDS)D + 2.5E = 1.708$ $Vall_{ASD} = Vall_{LRFD}/\alpha =$ $Tall_{ASD} = Tall_{LRFD}/\alpha =$ 1146 lbs 2658 lbs (D = 0.758, E = 0.242) $\overline{\mathsf{Up}}\mathsf{lift}_{\mathsf{MAX}} =$ 19725 lbs $Shear_{MAX} =$ 14224 lbs **Transverse:** $= [\Omega o*FpmaxASD*(H'cm+Hbase\ curb) + (1+0.14S_{DS})*WGT_{unit+curb+base}*wcurb/2]/wcurb$ Compression_{SEISMIC} = 22894 lbs =[Ωo*FpmaxASD*(H'cm+Hbase curb)-(0.6-0.14S_{DS})*WGT_{unit+curb+base}*wcurb/2]/wcurb Tension_{SEISMIC} = 19725 lbs =Ωo*FpmaxASD/2 $Shear_{SEISMIC} =$ 14224 lbs Tapplied = Min Bolts Req'd Uplift = 17.22 spacing = 6.84 in o.c. 1095.9 lbs Vapplied = Min Bolts Req'd Shear = 5.35 spacing = 23.25 in o.c. 490.5 lbs $\frac{V_{apllied}}{2} \le 1.2$ $T_{applied}$ Try using 18 bolts COMBINED LOADING = = 1.14 $V_{allow,ASD}$ spaced at 6.84 in o.c. $T_{allow,ASD}$ Use 18 - 3/4" ϕ thrd'd rods in Hilti Hit-HY 200 epoxy @ 6.8 in o.c. max. along long side of curb w/ 4" embed Longitudinal: Uplift_{MAX} = 13044 lbs $Shear_{MAX} =$ 14224 lbs $Compression_{SEISMIC} =$ = $[\Omega o*FpmaxASD*[H'cm+Hbase curb]+(1+0.14S_{DS})*WGT_{unit+curb+base}*Lcurb/2]/Lcurb$ 16213 lbs 13044 lbs = $[\Omega o*FpmaxASD*(H'cm+Hbase curb)-(0.6-0.14S_{DS})*WGT_{unit+curb+base}*Lcurb/2]/Lcurb$ Tension_{SEISMIC} = 14224 lbs =Ωo*FpmaxASD/2 $Shear_{SEISMIC} =$ Min Bolts Req'd Uplift = 11.39 spacing = 6.73 in o.c. Tapplied = 1003.4 lbs Min Bolts Req'd Shear = 5.35 spacing = 14.80 in o.c. Vapplied = 490.5 lbs bolts $T_{applied}$ $V_{apllied}$ Try using COMBINED LOADING = 1.06 spaced at 7.40 $T_{allow,ASD}$ $\overline{V_{allow,ASD}}$ in o.c.

Use 11 - 3/4" φ thrd'd rods in Hilti Hit-HY 200 epoxy @ 7.4 in o.c. max. along short side of curb w/ 4" embed

CURB DESIGN SU	MMARY:	CBISC-08	CBISCSLM18	30	Unit	ZJ,ZR 180-300; XP 180-240, ZF 210-		
UPPER CURB RAIL	THICKNESS:	0.1017 in	12 Gauge			300		
UNIT CLIP	THICKNESS:	0.0713 in	14 Gauge					
# OF CLIPS (I	# OF CLIPS (LONG SIDE) - 3 clips with 4 - #10 SMS screws each clip							
WEE	/EB STIFFENER: 16Ga x 1-3/16in x 7in (C-channel) stiffener at each clip							
# OF CLIPS (SHORT SIDE) - 3 clips with 4 - #10 SMS screws each clip								
WEB STIFFENER: 16Ga x 1-3/16in x 7in (C-channel) stiffener at each clip								
VIBRATION ISOI	VIBRATION ISOLATOR TYPE: CQA Top stud diameter: 3/8 (3)				(3) - CQA Isolators long side			
Anchor bolt diameter: 1/2 Anchor hole diameter: 9/16 (3) - CQA Isolators short side								
BASE CURB THICKNESS: 0.1017 in 12 Gauge *** Must weld top of CQA***								
WEB STIFFENER: 16Ga x 1.5in x 7in (C-channel) stiffener at each clip on base curb								
CORNER CONNECTION: Use minimum 5 - 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts								
CURB		WOOD		STEEL		<u>CONCRETE</u>		
ANCHORAGE 1/4" $\phi \times 4$		' Simpson SE	S screws w/	1/2" φ A307 Bolts to		3/4" φ thrd'd rods in Hilti Hit-HY		
ANCHORAGE	2.75" thread	led embed (SGmin = 0.5)	steel angle below deck		200 epoxy w/ 4" embed		
LONG DIRECTION	19	@ 6.68 in o	.c. 5 @ 29.06 in o.c.		6 in o.c.	18 @ 6.84 in o.c.		
SHORT DIRECTION	1	3 @ 6.5 in o.	.c. 4 @ 24.67 in o.c. 11 @ 7.4 in o.c.			11 @ 7.4 in o.c.		