

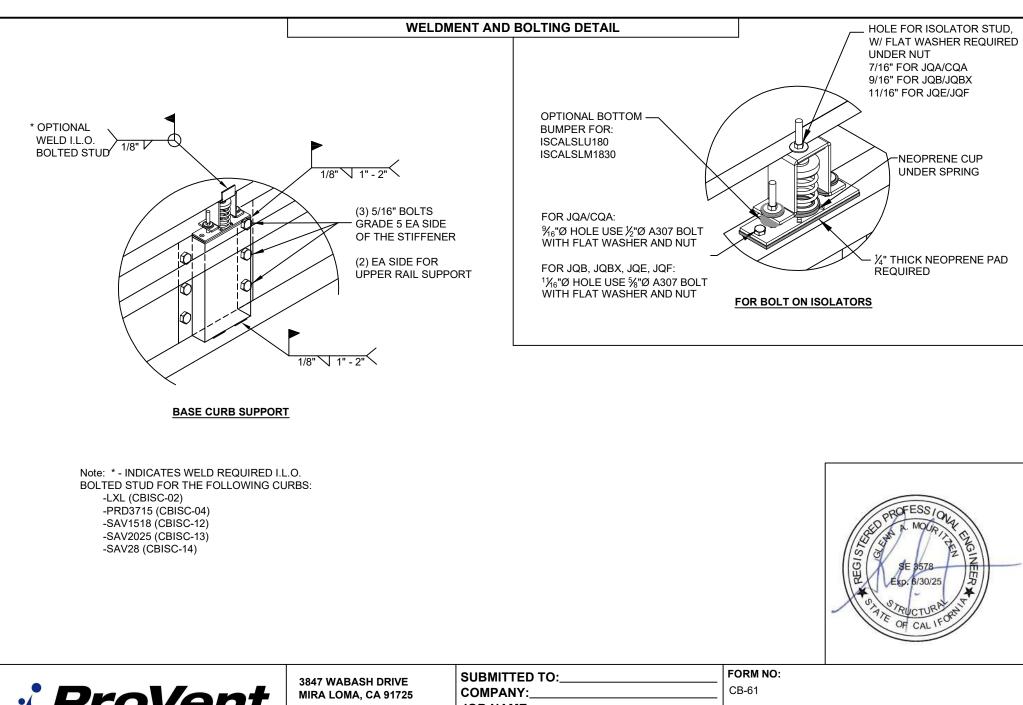
6593 Riverdale St. San Diego, CA 92120 619-727-4800

Structural Calculations

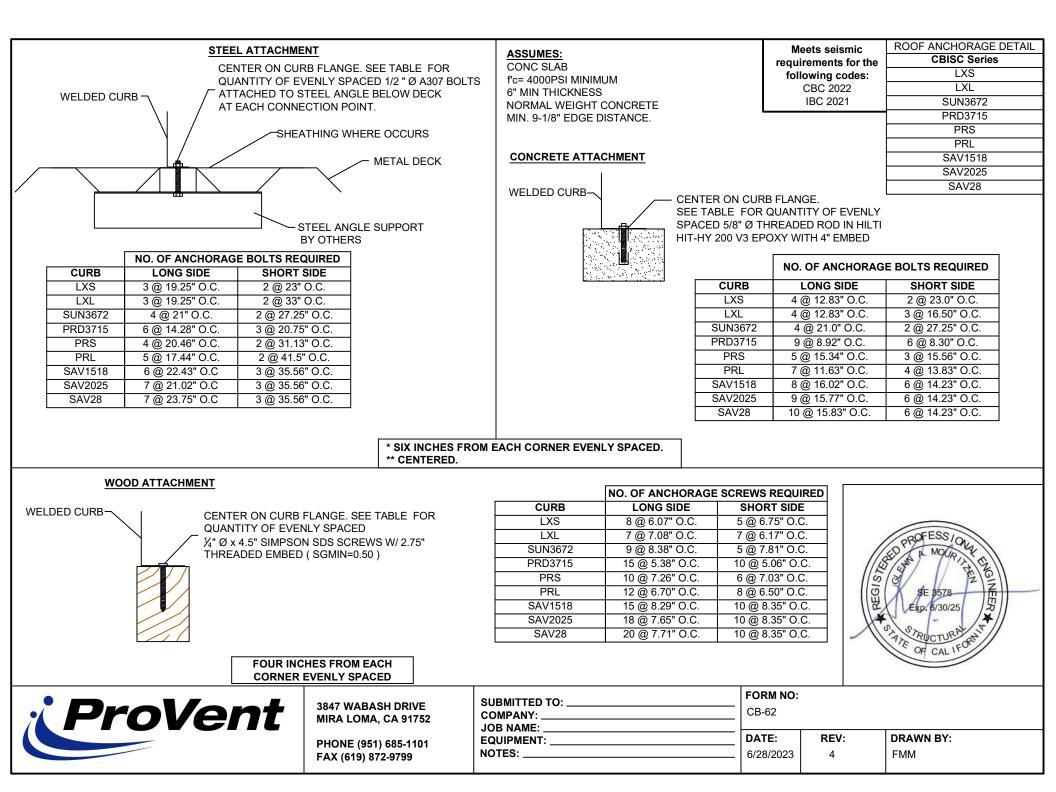
for

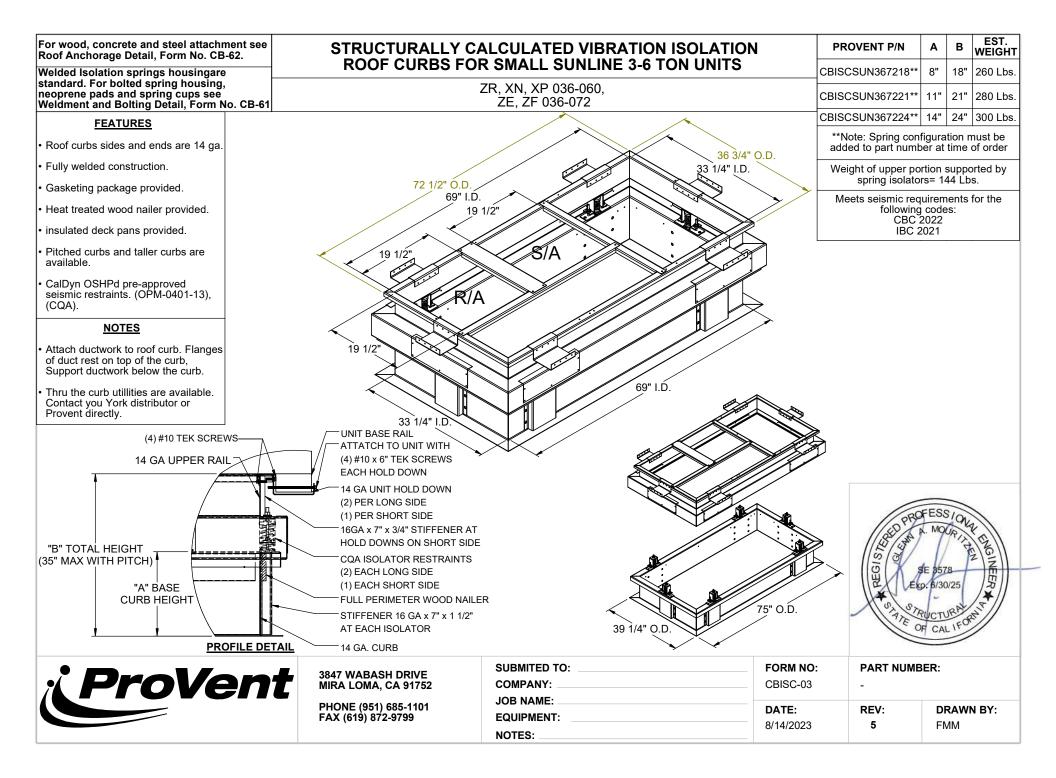
CBISC-03 Series

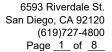
CBISCSUN3672** SERIES



Prepared for:


PROVENT / RRS


3847 Wabash Drive Mira Loma, CA 91725


Date: August 23, 2023 Project Number: PV2312

oVent	3847 WABASH DRIVE	SUBMITTED TO:	FORM NO:			
	MIRA LOMA, CA 91725	COMPANY:	CB-61			
	PHONE (951) 685-1101 FAX (619) 872-9799	JOB NAME: EQUIPMENT: NOTES:	DATE: 08/14/23	REV: 2	DRAWN BY: FMM	

Client:	ProVent	PV231	l2 U	pper curb ra	il				
Project:	CBISC-03	Iso Cu	rb CBISCSUN3672						
Unit:	ZR, XN, XP ()36-060	; ZE, ZF 036-072						
									
Upper Curb Inform		-				EQ	Fv	EQ	
Hcurb upper =		5 in	(Height of upper curb ra	ail)	1		* Wunit		
Lcurb =	72.5		(Length of upper curb)	·			(× Lunit)		
wcurb =	36.75		(Width of upper curb)						
WGTupper =		4 lbs	(Weight of upper curb)	-	i	F			
# Clips long side =	2	4	# Clips short side = 1		_	Fp max			0.81
Unit Information		_			Wt _{min}		WGT		Wt _{max}
WGTunit =		5 lbs	(Weight of Unit)	Hcm	VV Umin		▼ WGR	JNIT	Fh
Wtmax =	254	4 lbs	(Maximum corner weig	ht)					V I
Wtmin =	180) lbs	(Minimum corner weig	ht)	trj				-j.j
Hunit =	32.625	5 in	(Height of unit above cu	urb) _대 한	ber				
Hcm =	16.3125	5 in	(Height to center of ma	ss) Hcurt	₽ '		_		
Lunit =	82.25	5 in	(Length of unit)				L wgta	CURB	
Wunit =	44.875	5 in	(Width of unit)	4			•		
		_			-	v		-	∢ —v
Seismic Loading - 2	021 IBC/202	2CBC			Tm:	ax			Cmax
Ss =	2.85	5	(Worst case for majorit	y of Californ	ia)				
Fa =	1.20	C	(Default Site Class D - T	able 11.4-1 /	SCE 7-1	6)			
Ip =	1.50	D	(Importance Factor Cat	egory III Buil	ding)				
Sms =	3.420	5	(Fa*Ss)	ар	=	2.5			
Sds =	2.280	C	(2/3*Sms)	Rp	=	2			
Fpmax =	5.130) Wp	(0.4*ap*Sds*Ip)*Wp*3	/Rp <=1.6*S	ds*lp*W	p			
FpmaxASD =	3034	4 lbs	(0.7*Fpmax)		FpmaxA	SD =	3551 lbs		
·	(unit only)				•	(unit	+ upper rail)		
Wind Loading - 202		СВС				•	,		
Kz =			(For 60 ft roof height, E	xposure C - T	Fable 26.	10-1 ACS	7-16)		
Kzt =	1.00		(Max. assumed topogra	-			-,		
Kd =	0.85		(Directionality factor Ta	• •	SCE 7-16	5)			
Ke =	1.00		(Ground Elevation Facto			·			
V =	110	_	(Wind velocity, mph for			,). Cat C. Fig 26	5.5-1D - AS	CE7-16)
GCr _(horiz) =	1.9		(Refer Sect 29.4.1 ASCE						
GCr _(vert) =	1.5	_	(Refer Sect 29.4.1 ASCE						
		_	•		C 10 1 ·				
qz		8 psf 9 lbs	= 0.00256*Kz*Kzt*Kd*H = 0.6*qz*GCr*Lunit*(H						
F _{h ASD trans} =		3 lbs	= 0.6*qz*GCr*Unit*(H		• •	.4-2)			
F _{h ASD long} =					,				
F _{vert ASD} =	680	5 lbs	= 0.6*qz*GCr*Lunit*W	unit (Eq. 29	1.4-3)				
Upper Curb Loadin	a								
	Б								
<u>Transverse:</u> Compression _{seismic} =	2014	5 lbs	=[FpmaxASD*Hcm+2*(1+0 145)*\	Ntmax*v	vcurb1/w	urb		
			=[FpmaxASD*Hcm+2*(C						
Tension _{SEISMIC} =		5 lbs 9 lbs							
Compression _{WIND} =			$=[F_{h ASD trans} * Hcm + 2*0.6]$						
Tension _{WIND} =	450	5 lbs	=[F _{h ASD trans} *Hcm-2*0.6	vv ti i ili . MC	JID+Fvert	ASD wcurt	y∠j/wcurb		

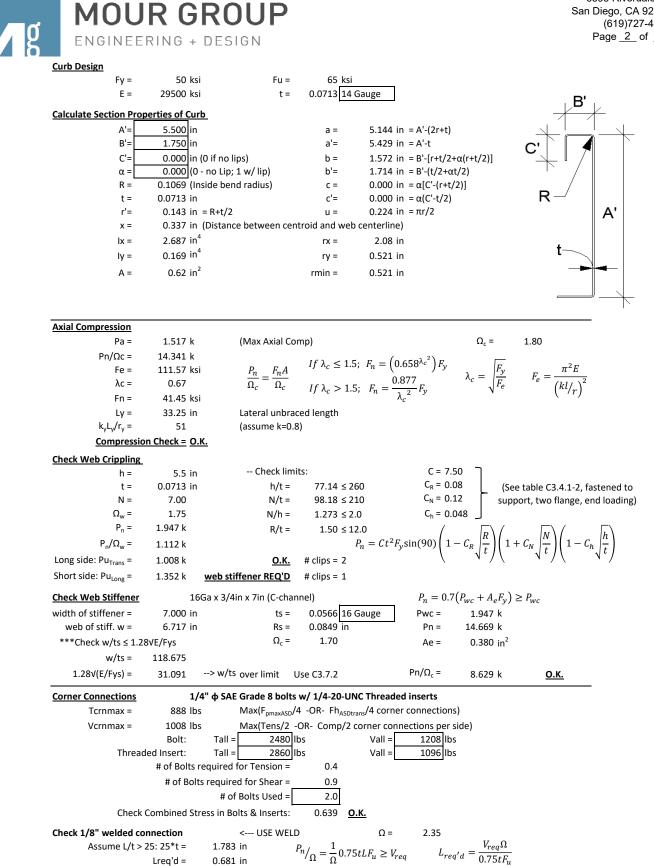
---> Negative values indicate opposite load.

	-0	
Longitudinal:		
Compression _{SEISMIC} =	1352 lbs	=[Fp
Tension _{SEISMIC} =	582 lbs	=[Fp
Compression _{WIND} =	52 lbs	=[F _h
Tension _{WIND} =	218 lbs	=[F _h

MOUR GROUP

ENGINEERING + DESIGN

Ø

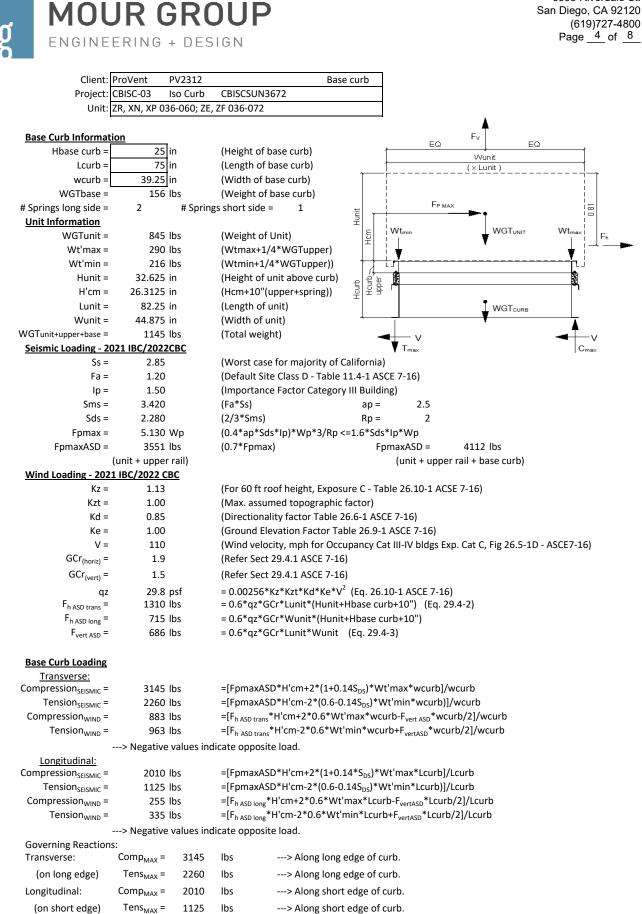

$$\label{eq:stars} \begin{split} &= [FpmaxASD*Hcm+2*(1+0.14*S_{DS})*Wtmax*Lcurb]/Lcurb\\ &= [FpmaxASD*Hcm-2*(0.6-0.14S_{DS})*Wtmin*Lcurb)]/Lcurb\\ &= [F_{h \ ASD \ long}*Hcm+2*0.6*Wtmax*Lcurb-F_{vertASD}*Lcurb/2]/Lcurb\\ &= [F_{h \ ASD \ long}*Hcm-2*0.6*Wtmin*Lcurb+F_{vertASD}*Lcurb/2]/Lcurb \end{split}$$

---> Negative values indicate opposite load.

Governing Reactions:

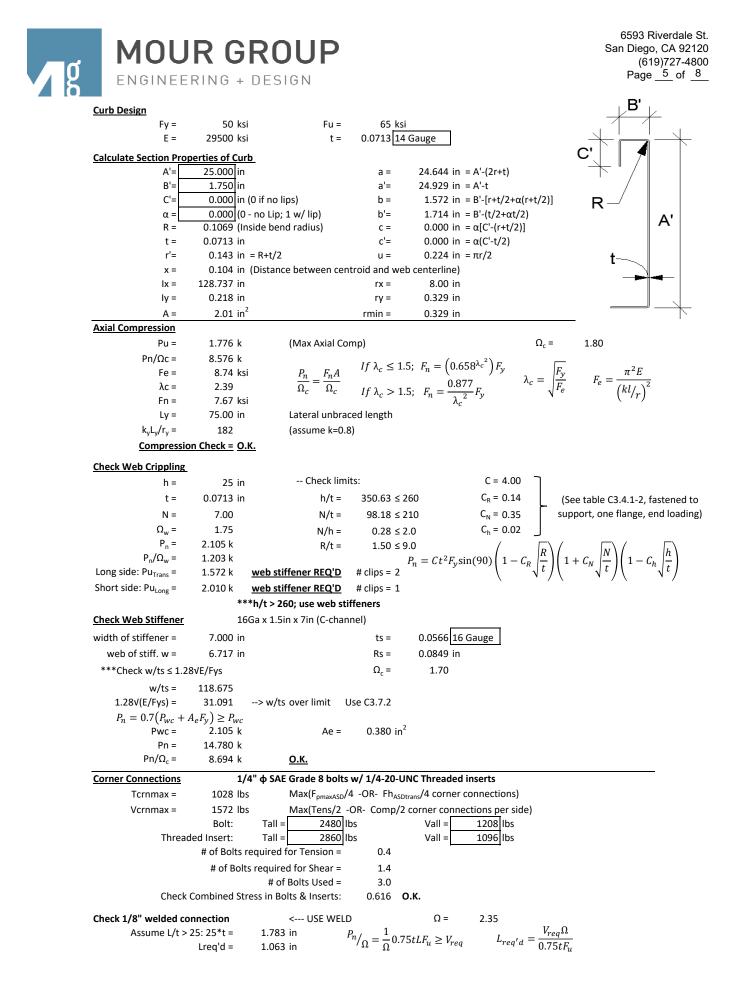
ooverning neuerion	5.			
Transverse:	Comp _{MAX} =	2016	lbs	> Along long edge of curb.
(on long edge)	Tens _{MAX} =	1246	lbs	> Along long edge of curb.
Longitudinal:	Comp _{MAX} =	1352	lbs	> Along short edge of curb.
(on short edge)	Tens _{MAX} =	582	lbs	> Along short edge of curb.
			10 A	

---> Negative values indicate opposite load.



6593 Riverdale St. San Diego, CA 92120 (619)727-4800 Page 2 of 8

MOUR GROUP


g

Connection Unit to		#10 SMS scr		Ω = 3.0	l
t1 =	0.0713 in (clip th			1 = 65	
t2 =	0.0713 in (unit ba			2 = 65	
d =	0.190 in (screw	diameter)	dw = 0.3	375 in (nom. was	sher diameter)
For t2/t1 ≤ 1.0:	Pns Pns	= 2266 #	For t2/t1 ≥ 2.5:		۸T
Shear: $P_{ns} =$	$4.2F_{u2}\sqrt{t_2^3d}$ 2.2	7 k	Pns = 237	7 #	t₂∥
Tension : P _{ns}	$= 2.7t_1 dF_{u1}$ 2.3	8 k P _{ns}	$g = 2.7t_1 dF_{u1} $.38 k	-
P_{ns}	$= 2.7t_2 dF_{u2}$ 2.3	8 k <i>P_{ns}</i>	$= 2.7t_2 dF_{u2}$ 2	.38 k	t ₁
Pns/Ω =	755 #				
$Pss/\Omega =$	540 # <- Contro	s	$P_{not} = 0.85t_c dF_{u2})$		
Pnot =	0.748 k (screw p	oull-out strength)	$t_c = \min(t_1, t_2)$		
Pnov =	2.607 k (screw p	oull-over strength)	$P_{nov} = 1.5t_1 d_w F_{u1}$		
$Pts/\Omega =$	249 # <- Contro	s			
Pts/Ω =	820 #	(full tensile screw	capacity)		U
	Shear (k) # clips	V _{clip} (k) V _{allow} (lb) # screws spacir	Ig	
Long side:	1.517 2	0.76 540 #	4 2.00 i	n	
Short side:	1.517 1	1.52 540 #		n	
	width (in) = 7.00	clip heigh			
	nin spacing = 0.57 in	edge distance			
Check Block shear r			t = 0.0713 AISI BSF		
Fy =	50 ksi 0.463 in ²		22 bolt/screw connection 16 in ² Ar		in ²
Agv = Rn/Ω =	0.463 m 8.674 k		Ar =	nt = 0.082	
K1/12 =	8.674 K BSR O.K.	$n_n = 0.0r_y A_{gv} + P_t$	$A_{nt} \leq 0.6F_uA_{nv} + F_uA$ (AISI Sect. E5.3)	nt	ĻΤ
					, '
Curb Loads (copied			Loads at each Isolate		CQA
Transverse:	Comp _{MAX} = 2760	lbs	Transverse loading:	Comp _{MAX} =	1380.1 lbs
(on long edge)	Tens _{MAX} = 1969	lbs	(on long edge)	Tens _{MAX} =	984.5 lbs
	Shear _{MAX} = 3551	lbs	# isolators: 2	Shear _{MAX} =	591.9 lbs
Longitudinal:	Comp _{MAX} = 1721	lbs	Longitudinal loading	Comp _{MAX} =	1720.9 lbs
(on short edge)	Tens _{MAX} = 930	lbs	(on short edge)	Tens _{MAX} =	929.7 lbs
- /	Shear _{MAX} = 3551	lbs	# isolators: 1	Shear _{MAX} =	591.9 lbs
ax compression force			<u> </u>	WIGA	
•	t on isolator: 0.985 k		_k	6.0 in	, V
	r on isolator: 0.592 k				*
Forces on top bolt:			2.0 in		O
Tension =	0.985 k	d _b = 0.375	in		
Shear =	0.592 k	pper rail, t = 0.0713	3 in	7.0 in	
Shear on curb rail:	$P_n = teF_u$	Ω = 2.00	(Appendix A, Sectio	n E3.1 AISI)	
Shear O.K.	Pn/Ω = 4.635 k		in		
Net section rupture	$P_n = A_n F_t$	Ω = 2.22	(Appendix A, Sectio	n E3.2 AISI)	
	Pn/Ω = 4.989 k				
	N.S.R. O.K.		$(l/s)F_u \le F_u = 43.06$		
Bolt Bearing Streng	,		(Section E3.3.1 AIS)	
	$Pn/\Omega = 2.086 k$	•	mf = 1.00		
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	mt - 1 00		
	Bearing O.K.	C = 3.00			
Shear and tension in	Bearing O.K.	(Appendix A, Sectio	n E3.4 AISI)		:2
	Bearing O.K. <u>bolt:</u> $P_{nt} = A_b F_{nt}$	(Appendix A, Sectio Fnt = 40.5	n E3.4 AISI) ksi A	A _b = 0.1104	
Shear and tension in	Bearing O.K. <u>n bolt:</u> $P_{nt} = A_b F_{nt}$ Pnt/ Ω = 1.988 k	(Appendix A, Sectio Fnt = 40.5 Bolt tension O.K.	n E3.4 AISI) ksi A	$A_{b} = 0.1104$ $A_{t} = 2.25$	(Table E3.4-1, AISI)
Shear and tension in	Bearing O.K. <u>h bolt:</u> $P_{nt} = A_b F_{nt}$ Pnt/ $\Omega = 1.988$ k $P_{nv} = A_b F_{nv}$	(Appendix A, Sectio Fnt = 40.5 Bolt tension O.K. Fnv = 24.0	n E3.4 AISI) ksi A	A _b = 0.1104	
<u>Shear and tension in</u> Tension Shear	Bearing O.K. <u>h bolt:</u> $P_{nt} = A_b F_{nt}$ Pnt/ $\Omega = 1.988$ k $P_{nv} = A_b F_{nv}$ Pnv/ $\Omega = 1.104$ k	(Appendix A, Sectio Fnt = 40.5 Bolt tension O.K. Fnv = 24.0	n E3.4 AISI) ksi A	$A_{b} = 0.1104$ $A_{t} = 2.25$	(Table E3.4-1, AISI)
<u>Shear and tension in</u> Tension Shear <u>Combined Shear an</u>	Bearing O.K. <u>h bolt:</u> $P_{nt} = A_b F_{nt}$ Pnt/ $\Omega = 1.988$ k $P_{nv} = A_b F_{nv}$ Pnv/ $\Omega = 1.104$ k <u>d tension in bolt:</u>	(Appendix A, Sectio Fnt = 40.5 Bolt tension O.K. Fnv = 24.0 Bolt shear O.K.	n E3.4 AISI) ksi A C ksi C	$A_{b} = 0.1104$ $A_{t} = 2.25$ $A_{t} = 2.40$	(Table E3.4-1, AISI) (Table E3.4-1, AISI)
<u>Shear and tension in</u> Tension Shear <u>Combined Shear an</u>	Bearing O.K. <u>h bolt:</u> $P_{nt} = A_b F_{nt}$ Pnt/ $\Omega = 1.988$ k $P_{nv} = A_b F_{nv}$ Pnv/ $\Omega = 1.104$ k <u>d tension in bolt:</u>	(Appendix A, Sectio Fnt = 40.5 Bolt tension O.K. Fnv = 24.0 Bolt shear O.K. ft = 8.91	n E3.4 AISI) ksi A ksi C ksi C	$x_b = 0.1104$ bt = 2.25 v = 2.40 v = 5.36	(Table E3.4-1, AISI) (Table E3.4-1, AISI) ksi O.K.
<u>Shear and tension in</u> Tension Shear <u>Combined Shear an</u>	Bearing O.K. <u>h bolt:</u> $P_{nt} = A_b F_{nt}$ Pnt/ $\Omega = 1.988$ k $P_{nv} = A_b F_{nv}$ Pnv/ $\Omega = 1.104$ k <u>d tension in bolt:</u> $1.3F_{nt} - \frac{\Omega F_{nt}}{F_{nv}} f_v \le F_{nt}$	(Appendix A, Sectio Fnt = 40.5 Bolt tension O.K. Fnv = 24.0 Bolt shear O.K. ft = 8.91 F'nt = 30.94	n E3.4 AISI) ksi A ksi C ksi C ksi Fnv/	$x_b = 0.1104$ bt = 2.25 v = 2.40 v = 5.36	(Table E3.4-1, AISI) (Table E3.4-1, AISI)
Shear and tension in Tension Shear Combined Shear an $F'_{nt} =$	Bearing O.K. h bolt: $P_{nt} = A_b F_{nt}$ Pnt/ $\Omega = 1.988$ k $P_{nv} = A_b F_{nv}$ Pnv/ $\Omega = 1.104$ k d tension in bolt: $1.3F_{nt} - \frac{\Omega F_{nt}}{F_{nv}} f_v \leq F_{nt}$ $P'_{nt} = A_b F'_{nt}$	$\begin{array}{rcl} (Appendix A, Sectio \\ Fnt = & 40.5 \\ \textbf{Bolt tension O.K.} \\ Fnv = & 24.0 \\ \textbf{Bolt shear O.K.} \\ \hline \\ \textbf{ft} = & 8.91 \\ F'nt = & 30.94 \\ P'nt/\Omega = & 1.519 \end{array}$	n E3.4 AISI) ksi A ksi Ω ksi Ω ksi Fnv/ k Combined O.K.	$v_b = 0.1104$ tt = 2.25 v = 2.40 v = 5.36 $\Omega = 10.00$	(Table E3.4-1, AISI) (Table E3.4-1, AISI) ksi O.K. ksi
Shear and tension in Tension Shear Combined Shear an $F'_{nt} = T$ Longitudinal weld to	Bearing O.K. h bolt: $P_{nt} = A_b F_{nt}$ Pnt/ $\Omega = 1.988$ k $P_{nv} = A_b F_{nv}$ Pnv/ $\Omega = 1.104$ k d tension in bolt: $1.3F_{nt} - \frac{\Omega F_{nt}}{F_{nv}} f_v \le F_{nt}$ $P'_{nt} = A_b F'_{nt}$ bading:	$\begin{array}{rcl} (Appendix A, Sectio \\ Fnt = & 40.5 \\ \textbf{Bolt tension O.K.} \\ Fnv = & 24.0 \\ \textbf{Bolt shear O.K.} \\ \hline \\ \textbf{ft} = & 8.91 \\ F'nt = & 30.94 \\ P'nt/\Omega = & 1.519 \end{array}$	n E3.4 AISI) ksi A ksi Ω ksi Ω ksi Fnv/ k Combined O.K.	$v_b = 0.1104$ tt = 2.25 v = 2.40 v = 5.36 $\Omega = 10.00$	(Table E3.4-1, AISI) (Table E3.4-1, AISI) ksi O.K. ksi 2.55
Shear and tension in Tension Shear Combined Shear an $F'_{nt} =$	Bearing O.K. h bolt: $P_{nt} = A_b F_{nt}$ Pnt/ $\Omega = 1.988$ k $P_{nv} = A_b F_{nv}$ Pnv/ $\Omega = 1.104$ k d tension in bolt: $1.3F_{nt} - \frac{\Omega F_{nt}}{F_{nv}} f_v \leq F_{nt}$ $P'_{nt} = A_b F'_{nt}$ bading: 21.04 t	(Appendix A, Section Fnt = 40.5 Bolt tension O.K. Fnv = 24.0 Bolt shear O.K. ft = 8.91 F'nt = 30.94 P'nt/ Ω = 1.519 = $\frac{1.5p_n}{\Omega}/\Omega = \frac{1}{\Omega}$	n E3.4 AISI) ksi A ksi C ksi C ksi Fnv/	$v_b = 0.1104$ tt = 2.25 v = 2.40 v = 5.36 $\Omega = 10.00$	(Table E3.4-1, AISI) (Table E3.4-1, AISI) ksi O.K. ksi 2.55 2.153 k

6593 Riverdale St.

---> Negative values indicate opposite load.

g MOUR GROUP ENGINEERING + DESIGN

	from upper rail c	alcs)		_	Loads at each	Isolator	Type:	CQA	
Transverse:	Comp _{MAX} = 2	760 lbs			Transverse loa	ading:	Comp _{MAX} =	1380.1	lbs
(on long edge)	Tens _{MAX} = 1	.969 lbs			(on long e	edge)	Tens _{MAX} =	984.5	lbs
	Shear _{MAX} = 3	551 lbs			# isolators:	2	Shear _{MAX} =	591.9	lbs
Longitudinal:	Comp _{MAX} = 1	.721 lbs		İ	Longitudinal lo	oading:	Comp _{MAX} =	1720.9	lbs
(on short edge)	Tens _{MAX} = 9	930 lbs			(on short	edge)	Tens _{MAX} =	929.7	lbs
	Shear _{MAX} = 3	551 lbs			# isolators:	1	Shear _{MAX} =	591.9	lbs
ax compression force	on isolator: 1.	721k ≤	3.176 k	<u>О.К.</u>					
Max uplift	on isolator: 0.9	985 k ≤	3.176 k	<u>О.К.</u>	_ <u>+</u> _		6.0 in		¥
Max shear	on isolator: 0.5	592 k ≤	1.163 k	<u>О.К.</u>	2.0 in				\cap
Forces on bottom bo	<u>olts:</u>				2.0				\cup
d _b =	0.5 in								
base curb, t =	0.0713 in						7.0 in		↓ Τ
Tension =	0.492 k/b	olt						t2-	
Shear =	0.296 k/b								
Shear on base curb:	$P_n = teF_n$		Ω=	2.00	(Appendix A	, Section E	3.1 AISI)		
	$Pn/\Omega = 4.6$	535 k	e =	1.0	in			1	
	Shear C								
Net section rupture:			Ω=		(Appendix A	, Section E	3.2 AISI)		
	$Pn/\Omega = 5.9$		An =		in				
	N.S.R. C				$(s)F_u \le F_u =$		ksi		U
Bolt Bearing Strengtl			Ω=		(Section E3.3	3.1 AISI)			
	$Pn/\Omega = 2.7$		d/t =			1.00			
	Bearing C		C =		mf =	1.00			
Shear and tension in				A, Section 45.0 ksi		0.1963	. 2		
Tension	$P_{nt} = A_b I$						in		
	Pnt/ $\Omega = 3.9$ $P_{nv} = A_b P_{nv}$			27.0 ksi	Ωt = Ωv =	2.25 2.40			
Shear	$Pnv/\Omega = 2.2$				***(Table		1)***	i stanici se	
Combined Shear and		100 K DO	it shear o		(Tuble	LJ.+ 1, AIJ	')		T T
		< F	ft =	5.01	ksi	fv =	1.51	ksi	О.К.
$F_{nt} = 1$	$1.3F_{nt} - \frac{\Omega F_{nt}}{F_{nv}}f_v$	$\leq F_{nt}$	F'nt =	45.00	ksi	Fnv/Ω =	11.25	ksi	
				2 0 2 7 1			0 -> E'nt - E	nt	
	$P'_{nt} = A$	$_{b}F'_{nt}$	P'nt/Ω =	3.927 K	Combined No	t Applicabl	e -> 1 m = 1		
			P'nt/Ω =	3.927 K	Combined No	t Applicabl	e -> 1 iii = 1		
		ructure		3.927 K).6D + W	e -> 1 iit = 1		
Connection of Curb	to Supporting Str SEISMIC: (0.6-	ructure			WIND: 0		2056		Т
Connection of Curb	to Supporting Str SEISMIC: (0.6-	ructure -0.14S _{DS})D ift _{MAX} =	+ 0.7E 5215	lbs	WIND: 0).6D + W Shear _{MAX} =	2056	lbs] 2]/wcurb
Connection of Curb Roof Loading Transverse:	to Supporting Str SEISMIC: (0.6- Upli	ructure -0.14S _{DS})D ift _{MAX} = =[F	+ 0.7E 5215 pmaxASD	lbs)*(H'cm+Ht	WIND: C	0.6D + W Shear _{MAX} = 0.14S _{DS})*W	2056 GT _{unit+upper+b}	lbs _{ase} *wcurb/	
Connection of Curb : <u>Roof Loading</u> <u>Transverse:</u> Compression _{SEISMIC} = Tension _{SEISMIC} =	to Supporting Str SEISMIC: (0.6- Upli 6131 lbs 5215 lbs	ructure -0.14S _{DS})D ift _{MAX} = =[F =[F	+ 0.7E 5215 pmaxASD pmaxASD	lbs)*(H'cm+Ht)*(H'cm+Ht	WIND: C S Dase curb)+(1+C Dase curb)-(0.6-	0.6D + W 6hear _{MAX} = 0.14S _{DS})*W 0.14S _{DS})*W	2056 GT _{unit+upper+b} /GT _{unit+upper+}	lbs _{lase} *wcurb/ _{base} *wcurb	/2]/wcurb
Connection of Curb (<u>Roof Loading</u> <u>Transverse:</u> Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} =	to Supporting Str SEISMIC: (0.6- Upli 6131 lbs 5215 lbs 1713 lbs	ructure -0.14S _{DS})D ift _{MAX} = =[F =[F	+ 0.7E 5215 pmaxASD pmaxASD	lbs)*(H'cm+Ht)*(H'cm+Ht (H'cm+Hba	WIND: C soase curb)+(1+C pase curb)-(0.6- se curb)+0.6*W	0.6D + W Shear _{MAX} = 0.14S _{DS})*W 0.14S _{DS})*W VGT _{unit+upper}	2056 GT _{unit+upper+b} /GT _{unit+upper+} _{+base} *wcurb	lbs _{lase} *wcurb/ _{base} *wcurb /2-F _{vert ASD} *	/2]/wcurb wcurb/2]/wcurl
Connection of Curb (<u>Roof Loading</u> <u>Transverse:</u> Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} = Tension _{WIND} =	to Supporting Str SEISMIC: (0.6- Upli 6131 lbs 5215 lbs 1713 lbs 1712 lbs	ructure -0.14S _{DS})D ift _{MAX} = =[F =[F =[F	+ 0.7E 5215 pmaxASD pmaxASD h ASD trans h ASD trans	lbs)*(H'cm+Hł)*(H'cm+Hł (H'cm+Hba (H'cm+Hba	WIND: C soase curb)+(1+C pase curb)-(0.6- se curb)+0.6*W se curb)-0.6*W	0.6D + W Shear _{MAX} = 0.14S _{DS})*W 0.14S _{DS})*W /GT _{unit+upper} /GT _{unit+upper}	2056 GT _{unit+upper+b} /GT _{unit+upper+} _{+base} *wcurb _{+base} *wcurb,	i lbs _{ase} *wcurb/ _{base} *wcurb /2-F _{vert ASD} * /2+F _{vert ASD} *	/2]/wcurb
Connection of Curb (<u>Roof Loading</u> <u>Transverse:</u> Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} = <u>Longitudinal:</u>	to Supporting Str SEISMIC: (0.6- Upli 6131 lbs 5215 lbs 1713 lbs 1712 lbs Upli	ructure -0.14S _{DS})D ift _{MAX} = =[F =[F =[F =[ft _{MAX} =	+ 0.7E 5215 pmaxASD pmaxASD h ASD trans h ASD trans 2652	lbs)*(H'cm+Ht)*(H'cm+Ht (H'cm+Hba (H'cm+Hba lbs	WIND: C Soase curb)+(1+C Dase curb)-(0.6- Se curb)+0.6*W se curb)-0.6*W	0.6D + W hear _{MAX} = 0.14S _{DS})*W 0.14S _{DS})*W (GT _{unit+upper} (GT _{unit+upper} Shear _{MAX} =	2056 GT _{unit+upper+b} /GT _{unit+upper+} + _{base} *wcurb, + _{base} *wcurb, 2056	i lbs hase *wcurb/ hase *wcurb /2-F _{vert ASD} * /2+F _{vert ASD} * b lbs	/2]/wcurb wcurb/2]/wcurl wcurb/2]/wcurl]
Connection of Curb of <u>Roof Loading</u> <u>Transverse:</u> Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} = <u>Longitudinal:</u> Compression _{SEISMIC} =	to Supporting Str SEISMIC: (0.6- Upli 6131 lbs 5215 lbs 1713 lbs 1712 lbs Upli 3568 lbs	ructure -0.14S _{DS})D ift _{MAX} = =[F =[F =[F =[F =[F	+ 0.7E 5215 pmaxASD pmaxASD h ASD trans* h ASD trans* 2652 pmaxASD	lbs *(H'cm+Hb (H'cm+Hba (H'cm+Hba (H'cm+Hba lbs *(H'cm+Hb	WIND: C soase curb)+(1+C pase curb)-(0.6- se curb)+0.6*W se curb)-0.6*W se curb)-0.6*W	0.6D + W Shear _{MAX} = 0.14S _{DS})*W 0.14S _{DS})*W VGT _{unit+upper} Shear _{MAX} = 0.14S _{DS})*W	2056 GT _{unit+upper+b} /GT _{unit+upper+b} _{+base} *wcurb, _{+base} *wcurb, 2056 GT _{unit+upper+b}	i lbs hase*wcurb/ /2-F _{vert ASD} * /2+F _{vertASD} * i lbs hase*Lcurb/2	/2]/wcurb wcurb/2]/wcurl wcurb/2]/wcurl]]]/Lcurb
Connection of Curb 6 <u>Roof Loading</u> <u>Transverse:</u> Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} = <u>Longitudinal:</u> Compression _{SEISMIC} = Tension _{SEISMIC} =	to Supporting Str SEISMIC: (0.6- Upli 6131 lbs 5215 lbs 1713 lbs 1712 lbs Upli 3568 lbs 2652 lbs	ructure -0.14S _{DS})D ift _{MAX} = =[F =[F =[F ift _{MAX} = =[F	+ 0.7E 5215 pmaxASD pmaxASD h ASD trans* 2652 pmaxASD pmaxASD	lbs)*(H'cm+Ht (H'cm+Hba (H'cm+Hba (H'cm+Hba)*(H'cm+Ht)*(H'cm+Ht	WIND: 0 Soase curb)+(1+C Soase curb)-(0.6- se curb)-0.6*W se curb)-0.6*W Soase curb)+(1+C Soase curb)+(1+C Soase curb)-(0.6-	$0.6D + W$ $0.14S_{DS} W$ $0.14S_{DS} W$ $0.14S_{DS} W$ $VGT_{unit+upper}$ $(GT_{unit+upper} Ghear_{MAX} = 0.14S_{DS}) W$ $0.14S_{DS} W$	2056 GT _{unit+upper+b} /GT _{unit+upper+b} _{*base} *wcurb, 2056 GT _{unit+upper+b} /GT _{unit+upper+b}	i lbs hase *wcurb/ /2-F _{vert ASD} * /2+F _{vertASD} * i lbs hase *Lcurb/2 hase *Lcurb/2	/2]/wcurb wcurb/2]/wcurł wcurb/2]/wcurł] 2]/Lcurb (2]/Lcurb
Connection of Curb 6 Roof Loading Transverse: Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} = Longitudinal: Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} =	to Supporting Str SEISMIC: (0.6- Upli 6131 lbs 5215 lbs 1713 lbs 1712 lbs Upli 3568 lbs 2652 lbs 489 lbs	Functure -0.14S _{DS})D ift _{MAX} = =[F =[F	+ 0.7E 5215 pmaxASE pmaxASE h ASD trans* <u>h ASD trans</u> pmaxASE pmaxASE h ASD long*(lbs)*(H'cm+Ht (H'cm+Hba (H'cm+Hba lbs)*(H'cm+Ht)*(H'cm+Ht H'cm+Hbas	WIND: 0 Soase curb)+(1+C Soase curb)-(0.6- Soase curb)+0.6*W Soase curb)-0.6*W Soase curb)+(1+C Soase curb)-(0.6- Soase	$0.6D + W$ $0.14S_{DS} W$	2056 GT _{unit+upper+b} /GT _{unit+upper+} +base *wcurb, +base *wcurb, 2056 GT _{unit+upper+b} /GT _{unit+upper+} +base *Lcurb/:	i lbs hase *wcurb/ /2-F _{vert ASD} * /2+F _{vertASD} * i lbs hase *Lcurb/2 -base *Lcurb/2 2-F _{vert ASD} *L	/2]/wcurb wcurb/2]/wcurl wcurb/2]/wcurł] 2]/Lcurb (2]/Lcurb curb/2]/Lcurb
Connection of Curb (<u>Roof Loading</u> <u>Transverse:</u> Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} = <u>Longitudinal:</u> Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} = Tension _{WIND} =	to Supporting Str SEISMIC: (0.6- Upli 6131 lbs 5215 lbs 1713 lbs 1712 lbs Upli 3568 lbs 2652 lbs 489 lbs 489 lbs	-0.14S _{DS})D ift _{MAX} = =[F =[F =[F =[F =[F =[F =[F =[+ 0.7E 5215 pmaxASE pmaxASE h ASD trans h ASD trans pmaxASE pmaxASE h ASD long * (h ASD long * (lbs)*(H'cm+Ht (H'cm+Hba (H'cm+Hba lbs)*(H'cm+Ht H'cm+Hbas (H'cm+Hbas (H'cm+Hbas	WIND: 0 Soase curb)+(1+0 Soase curb)-(0.6- se curb)-0.6*W se curb)-0.6*W Soase curb)-(0.6- Soase curb)-(0.6- Se curb)-0.6*W se curb)-0.6*W	0.6D + W Shear _{MAX} = 0.14S _{DS})*W 0.14S _{DS})*W /GT _{unit+upper} /GT _{unit+upper} 0.14S _{DS})*W 0.14S _{DS})*W /GT _{unit+upper}	2056 GT _{unit+upper+b} /GT _{unit+upper+b} +base [*] Wcurb, 2056 GT _{unit+upper+b} /GT _{unit+upper+b} +base [*] Lcurb/2 base [*] Lcurb/2	i lbs ibse /2-F _{vert ASD} /2+F _{vertASD} i lbs ibse *Lcurb/2 2-F _{vert ASD} *L 2+F _{vertASD} *L	/2]/wcurb wcurb/2]/wcurl wcurb/2]/wcurł] 2]/Lcurb (2]/Lcurb curb/2]/Lcurb
Connection of Curb 6 Roof Loading Transverse: Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} = Longitudinal: Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} =	to Supporting Str SEISMIC: (0.6- Upli 6131 lbs 5215 lbs 1713 lbs 1712 lbs Upli 3568 lbs 2652 lbs 489 lbs 489 lbs t: 1/4"	ructure -0.14S _{DS})D ift _{MAX} = =[F =[F =[F =[F =[F =[F =[F -[F -[F -[F	+ 0.7E 5215 pmaxASE pmaxASE h ASD trans* h ASD trans* 2652 pmaxASE pmaxASE h ASD long*(h ASD long*(impson SI	Ibs)*(H'cm+Hb (H'cm+Hba (H'cm+Hba Ibs)*(H'cm+Hb)*(H'cm+Hbas (H'cm+Hbas S screws	WIND: 0 Soase curb)+(1+0 Soase curb)-(0.6- Se curb)+0.6*W Se curb)-0.6*W Soase curb)+(1+0 Soase curb)+(0.6- Se curb)+0.6*W Se curb)+0.6*W w/ 2.75" three	0.6D + W hear _{MAX} = 0.14S _{DS})*W 0.14S _{DS})*W (GT _{unit+upper} hear _{MAX} = 0.14S _{DS})*W 0.14S _{DS})*W 0.14S _{DS})*W GT _{unit+upper} aded emb	2056 GT _{unit+upper+b} /GT _{unit+upper+b} +base*wcurb, 2056 GT _{unit+upper+b} /GT _{unit+upper+b} /GT _{unit+upper+k} +base*Lcurb/2 (SGmin = 0.	i lbs ibse /2-F _{vert ASD} /2+F _{vertASD} i lbs ibse *Lcurb/2 2-F _{vert ASD} *L 2+F _{vertASD} *L	/2]/wcurb wcurb/2]/wcurl wcurb/2]/wcurł] 2]/Lcurb (2]/Lcurb curb/2]/Lcurb
Connection of Curb of Roof Loading Transverse: Compression _{SEISMIC} = Tension _{WIND} = Compression _{WIND} = Longitudinal: Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} = Tension _{WIND} = Wood Attachment	to Supporting Str SEISMIC: (0.6- Upli 6131 lbs 5215 lbs 1713 lbs 1712 lbs Upli 3568 lbs 2652 lbs 489 lbs 489 lbs 174"	ructure -0.14S _{DS})D ift _{MAX} = =[F =[F =[F =[F =[F =[F =[F =[F =[F =[+ 0.7E 5215 pmaxASE pmaxASE h ASD trans* h ASD trans* 2652 pmaxASE pmaxASE h ASD long*(h ASD long*(impson SI 997	lbs *(H'cm+Hb (H'cm+Hba (H'cm+Hba)*(H'cm+Hba *(H'cm+Hbas H'cm+Hbas (H'cm+Hbas DS screws lbs	WIND: 0 Soase curb)+(1+C pase curb)-(0.6- se curb)+0.6*W se curb)-0.6*W pase curb)+(1+C pase curb)+(0.6- se curb)+0.6*W se curb)-0.6*W w/ 2.75" three Vall _{metal} =	0.6D + W Shear _{MAX} = 0.14S _{DS})*W 0.14S _{DS})*W /GT _{unit+upper} /GT _{unit+upper} 0.14S _{DS})*W 0.14S _{DS})*W 0.14S _{DS})*W 0.14S _{DS})*W 1014S _{DS} 1097	2056 GT _{unit+upper+b} +base *wcurb, +base *wcurb, 2056 GT _{unit+upper+b} /GT _{unit+upper+b} +base *Lcurb/2 (SGmin = 0. lbs	i lbs ibse /2-F _{vert ASD} /2+F _{vertASD} i lbs ibse *Lcurb/2 2-F _{vert ASD} *L 2+F _{vertASD} *L	/2]/wcurb wcurb/2]/wcurl wcurb/2]/wcurł] 2]/Lcurb (2]/Lcurb curb/2]/Lcurb
Connection of Curb of Roof Loading Transverse: Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} = Longitudinal: Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} = Tension _{WIND} = Tension _{WIND} = Tension _{WIND} =	to Supporting Str SEISMIC: (0.6- Upli 6131 lbs 5215 lbs 1713 lbs 1712 lbs Upli 3568 lbs 2652 lbs 489 lbs 489 lbs t: 1/4" Ta Ta	Future -0.14S _{DS})D ift _{MAX} = =[F =[Allwood =	+ 0.7E 5215 pmaxASE pmaxASE h ASD trans* A ASD trans* 2652 pmaxASE pmaxASE pmaxASE maxASE maxASE pm	lbs *(H'cm+Hb (H'cm+Hba (H'cm+Hba)*(H'cm+Hba *(H'cm+Hbas H'cm+Hbas (H'cm+Hbas DS screws lbs	WIND: 0 see curb)+(1+C base curb)-(0.6- see curb)+0.6*W see curb)-0.6*W base curb)-(0.6- see curb)-(0.6- we curb)-(0.6- <t< td=""><td>0.6D + W Shear_{MAX} = 0.14S_{DS})*W 0.14S_{DS})*W VGT_{unit+upper} (GT_{unit+upper} 0.14S_{DS})*W 0.14S_{DS})*W 0.14S_{DS})*W (GT_{unit+upper} GT_{unit+upper} aded emb 1097 672</td><td>2056 GT_{unit+upper+b} /GT_{unit+upper+b} +base*wcurb, 2056 GT_{unit+upper+b} /GT_{unit+upper+b}</td><td>i lbs ibs /2-F_{vert ASD} /2+F_{vertASD} /2+F_{vertASD} i lbs ibs /2-F_{vert ASD} /2-F_{vertASD} *L 2+F_{vertASD} *L 2+F_{vertASD}</td><td>/2]/wcurb wcurb/2]/wcurl wcurb/2]/wcurł] 2]/Lcurb (2]/Lcurb curb/2]/Lcurb</td></t<>	0.6D + W Shear _{MAX} = 0.14S _{DS})*W 0.14S _{DS})*W VGT _{unit+upper} (GT _{unit+upper} 0.14S _{DS})*W 0.14S _{DS})*W 0.14S _{DS})*W (GT _{unit+upper} GT _{unit+upper} aded emb 1097 672	2056 GT _{unit+upper+b} /GT _{unit+upper+b} +base*wcurb, 2056 GT _{unit+upper+b} /GT _{unit+upper+b}	i lbs ibs /2-F _{vert ASD} /2+F _{vertASD} /2+F _{vertASD} i lbs ibs /2-F _{vert ASD} /2-F _{vertASD} *L 2+F _{vertASD} *L 2+F _{vertASD}	/2]/wcurb wcurb/2]/wcurl wcurb/2]/wcurł] 2]/Lcurb (2]/Lcurb curb/2]/Lcurb
Connection of Curb of Roof Loading Transverse: Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} = Longitudinal: Compression _{SEISMIC} = Tension _{SEISMIC} = Compression _{WIND} = Tension _{WIND} = Tension _{WIND} = Tension _{WIND} = Tension _{WIND} = Wood Attachment <u>Transverse:</u> # of S	to Supporting Str SEISMIC: (0.6- Upli 6131 lbs 5215 lbs 1713 lbs 1712 lbs Upli 3568 lbs 2652 lbs 489 lbs 489 lbs 174"	ructure -0.14S _{DS})D ift _{MAX} = =[F =[F =[F =[F =[F =[F =[F =[F =[F =[+ 0.7E 5215 pmaxASE pmaxASE h ASD trans* h ASD trans* 2652 pmaxASE pmaxASE h ASD long*(h ASD long*(impson SI 997	lbs *(H'cm+Hb (H'cm+Hba (H'cm+Hba)*(H'cm+Hba *(H'cm+Hbas H'cm+Hbas (H'cm+Hbas DS screws lbs	WIND: 0 Soase curb)+(1+C pase curb)-(0.6- se curb)+0.6*W se curb)-0.6*W pase curb)+(1+C pase curb)+(0.6- se curb)+0.6*W se curb)-0.6*W w/ 2.75" three Vall _{metal} =	0.6D + W Shear _{MAX} = 0.14S _{DS})*W 0.14S _{DS})*W VGT _{unit+upper} CGT _{unit+upper} GT _{unit+upper} GT _{unit+upper} Aded emb 1097 672 LOADING:	2056 GT _{unit+upper+b} /GT _{unit+upper+b} +base *wcurb, 2056 GT _{unit+upper+b} /GT _{unit+upper+b}	i lbs ibs /2-F _{vert ASD} /2+F _{vertASD} /2+F _{vertASD} i lbs ibs /2-F _{vert ASD} /2-F _{vertASD} *L 2+F _{vertASD} *L 2+F _{vertASD}	/2]/wcurb wcurb/2]/wcurl wcurb/2]/wcurł] 2]/Lcurb (2]/Lcurb curb/2]/Lcurb

Use 9 - 1/4" ϕ x 4.5" Simpson SDS screws @ 8.4 in o.c. along long side of curb w/ 2.75" threaded embed

MOUR GROUP ENGINEERING + DESIGN

Longitudinal:						
	crews Req'd for Uplift =	3.49	COMB	INED LOADING:	0.917 O.K.	
# of So	crews Reg'd for Shear =	3.06	S	crew Spacing =	7.81 in o.c.	
	I # of screws required =					
Use 5 - 1/4"ф x 4.	5" Simpson SDS screws	@ 7.8 in o.c. al	ong short side of c	urb w/ 2.75" thread	ed embed	
Steel Deck A	ttachment: 1/2" φ A30	07 Bolts to stee	l angle below deck			
	Tall _{bolt} =	: 3927 lk	os Vall _b	olt = 2209 lbs		
Transverse:	Tall _{metal} =	2086 lk	os Vall _{me}	etal = 2192 lbs		
# of	Bolts Req'd for Uplift =	2.50	COMB	INED LOADING:	0.781 O.K.	
# of	Bolts Req'd for Shear =	0.94		Bolt Spacing =	21.00 in o.c.	
	tal # of bolts required =					
	07 Bolts to steel angle I	oelow deck @ 2	1 in o.c. along long	side of curb		
Longitudinal:		1 27	COMP		0 474 0 14	
	Bolts Req'd for Uplift = Bolts Req'd for Shear =		COMB	INED LOADING: Bolt Spacing =	0.474 O.K. 27.25 in o.c.	
	tal # of bolts required =				27.25 11 0.0.	
	07 Bolts to steel angle I		7.3 in o.c. along sh	ort side of curb		
For Concrete		(0.6-0.14S _{DS})D		Ωo = 2.5		
Concrete A	ttachment: 0.625in φ	HAS rods in Hilt	ti HIT-HY 200 V3 ep	oxy w/ 4in embed		A _{Na}
Ероху: Н	lilti HIT-HY 200 V3(ICC	ESR 4868)				
f'c =	4000 psi					CNa
h =		_	nin = h_ef + 2do)	O.K.		
h_ef =	4 in (effectiv 0.625 in (anchor	e embedment)	do =) 75 in (hala diamat		S
da = n =		,).75 in (hole diamet y with spacing effec		•
s =	, `	pacing estimate		y with spacing crice		S
τk,cr / uncr =	1170 2220	psi (from ESR	, 4868, Table 14, Ter	np range B)		• • •
τk,cr / uncr =	1226 2327	psi If $f'_c >$	2500, multipl	$c_{Na} = 10d_{a}$		S
c _N a=	9.0625 in (min. ed	ge distance for	full capacity);	$c_{Na} = 10d_a$	$\frac{\tau_{uncr}}{1100}$	•
	$N_{ag} = \frac{A_{Na}}{A_{Nao}}\varphi_{ec,No}$	(0 (0 N	V.		1100	S
Tension:			• <i>ba</i> (ACI318-	14, 17.4.5.1b)		
Bond strength ***Bond strength	$\varphi_{ec,Na}\varphi_{ed,Na}\varphi_{cp}$					CNa
will govern over	A _{Na} = 1343.52				Ĩ	
concrete breakout	A _{Nao} = 328.52				×	CNa + CNa +
	N _{ba} = 9535		$= \lambda_a \tau_{cr} \pi d_a h_{ef} \alpha_{n,s}$	10,000011000		
	-	lbs (group)		λ_a	= 1.0	
	ØN _{ag} = 19010	lbs (group)	CONTRO	LS λ_a	=1.0 for norma	l weight conc; 0.6 for lightw،
Breakout	$N_{cbg} = \frac{A_{Nc}}{A_{Nco}} \varphi_{ec,N}$	Qed NQ CD NNh	N = 2 k	$\int f' h^{1.5}$		
strength						
	A _{Nc} = 816		N _b = 8601	lbs	$\phi_{conc} =$	0.75
		in ²	kc = 17		Ø _{bond} =	0.65
	N _{cbg} = 48741	lbs (group)			ø _{seis} =	0.75
	ØN _{cbg} = 27417	lbs (group)			Ø _{steel} =	0.65
Shear:	Vsa,eq = 7865	(from ESR486	8, Table 11)	C	t _{v,seismic} =	0.6
Steel strength	øVsa,eq = 3067	,				
	Tall _{LRFD} = 3802	lbs (anchor)	Vall _{LR}	_{FD} = 3067 lbs	$\propto = (1 + 0.23)$	SDS)D + 2.5E = 1.421
Tall _{ASD} =	$Tall_{LRFD}/\alpha = 2225$		$Vall_{ASD} = Vall_{LRFD}$	/α = 1795 lbs	D =0.758	<u>E</u> €.242 ∝ =1.709
Transverse:	Uplift _{MAX} =			Shear _{MAX} =	5140 lbs	
Compression _{SEISMIC} =	6716 lbs	=[Ωo*FpmaxA	SD*(Hcm+Hcurb)+	(1+0.14S _{DS})*WGT _{uni}	*wcurb/2]/	wcurb
			SD*(Hcm+Hcurb)-(0.6-0.145 .)*WGT	*wcurb/21	/wcurb
Tension _{SEISMIC} =	5790 lbs	=[Ωo*FpmaxA		0.0-0.143 _{DS}) WOT _{ur}	iit+cuib ······/_j	
Tension _{seismic} = Shear _{seismic} =	5790 lbs 5140 lbs	=[Ωo*FpmaxA =Ωo*FpmaxAS		0.0-0.143 _{DS}) WOT _{ur}	iit+curb	
	5140 lbs					47.4 lbs
Shear _{seismic} = Min Bolts Re Min Bolts Re	5140 lbs q'd Uplift = 2.60 q'd Shear = 2.86	=Ωo*FpmaxAS	5D/2 31.50 in o.c. 31.50 in o.c.	Ta Va	pplied = 14	47.4 lbs 56.6 lbs
Shear _{SEISMIC} = Min Bolts Re Min Bolts Re Try using	5140 lbs q'd Uplift = 2.60 q'd Shear = 2.86 4 bolts	=Ωo*FpmaxAS spacing =	5D/2 31.50 in o.c. 31.50 in o.c. 2ADING - Tappl	Ta Va ied VapIlied	pplied = 14	47.4 lbs 56.6 lbs
Shear _{SEISMIC} = Min Bolts Re Min Bolts Re Try using spaced at	5140 lbs q'd Uplift = 2.60 q'd Shear = 2.86 4 bolts 21.00 in o.c.	=Ωo*FpmaxAS spacing = spacing = COMBINED LC	SD/2 31.50 in o.c. 31.50 in o.c. DADING = $\frac{T_{appl}}{T_{allow}}$	T_{a} V_{a} $\frac{V_{apllied}}{V_{allow,ASD}} \leq 0$	pplied = 14 pplied = 8 1.2 = 1.13	47.4 lbs 56.6 lbs O.K.
Shear _{SEISMIC} = Min Bolts Re Min Bolts Re Try using spaced at	5140 lbs q'd Uplift = 2.60 q'd Shear = 2.86 4 bolts	=Ωo*FpmaxAS spacing = spacing = COMBINED LC	5D/2 31.50 in o.c. 31.50 in o.c. DADING = $\frac{T_{appl}}{T_{allow,}}$ @ 21 in o.c. max. a	T_{a} V_{a} $\frac{V_{apllied}}{V_{allow,ASD}} \leq 0$	pplied = 14 pplied = 8 1.2 = 1.13	47.4 lbs 56.6 lbs O.K.

g

MOUR GROUP ENGINEERING + DESIGN Compression_{srictur} = 3879 lbs = (00*Formation

(Compression _{seismic} =	3879 lbs		=[Ωo*Fpmax	ASD*(Hcm+ł	Hcurb)+(1+0.1	L4S _{DS})*WGT	unit+curb*Lcu	rb/2]/Lcurl	C
	Tension _{SEISMIC} =	2952 lbs		=[Ωo*Fpmax	ASD*(Hcm+ł	lcurb)-(0.6-0.	14S _{DS})*WG	T _{unit+curb} *Lcu	urb/2]/Lcui	rb
	Shear _{seismic} =	5140 lbs		=Ωo*FpmaxA	ASD/2					
	Min Bolts Red	q'd Uplift =	1.33	spacing =	13.63 i	n o.c.		Tapplied =	1476.2	lbs
	Min Bolts Red	q'd Shear =	2.86	spacing =	13.63 i	n o.c.		Vapplied =	856.6	i lbs
	Try using	2 bolts		COMBINED I		Tapplied	$V_{apllied}$	< 1.2	= 1.14	O.K.
	spaced at	27.25 in o.	с.	COMBINED	LOADING -	T _{allow,ASD}	V _{allow,ASD}		- 1.14	
	<u>Use 2 - 0.625in φ </u>	HAS rods in Hilti	HIT-HY	200 V3 epox	y @ 27.3 in c	.c. max. along	g short side	of curb w/	4in embec	1

CURB DESIGN SUM	MARY:	CBISC-03	CBISCSUN36	72	Unit:	ZR, XN, XP 036-060; ZE, ZF 036-			
UPPER CURB RAIL	PPER CURB RAIL THICKNESS: 0.0713 in 14 Gauge					072			
UNIT CLIP	THICKNESS:	0.0713 in	14 Gauge						
# OF CLIPS (LONG SIDE) - 2 clips with 4 - #10 SMS screws each clip									
WEB STIFFENER: NOT REQUIRED									
# OF CLIPS (SHORT SIDE) - 1 clips with 4 - #10 SMS screws each clip									
WEB STIFFENER: 16Ga x 3/4in x 7in (C-channel) stiffener at each clip									
VIBRATION ISOLATOR TYPE: CQA Top stud diameter: 3/8						(2) - CQA Isolators long side			
Anchor bo	olt diameter:	1/2	le diamter:	9/16	(1) - CQA Isolators short side				
BASE CURB	THICKNESS:	0.0713 in	14 Gauge			Bolt or Weld O.K			
WEE	STIFFENER:	16Ga x 1.5i	n x 7in (C-cha	nnel) stiffene	er at each cl	ip on base curb			
CORNER CO	ONNECTION:	Use minimu	ım 3 - 1/4" φ	SAE Grade 8	bolts w/ 1/	4-20-UNC Threaded inserts			
CURB		WOOD		<u>STE</u>	EL	<u>CONCRETE</u>			
ANCHORAGE	1/4"ф x 4.5"	' Simpson SD	OS screws w/	1/2" ф А30	7 Bolts to	0.625in φ HAS rods in Hilti HIT-HY			
ANCHORAGE	2.75" thre	aded embed	d (SGmin =	steel angle b	pelow deck	200 V3 epoxy w/ 4in embed			
LONG DIRECTION	9	@ 8.38 in o.	с.	4@21	in o.c.	4 @ 21 in o.c.			
SHORT DIRECTION	5	@ 7.81 in o.	с.	2 @ 27.2	5 in o.c.	2 @ 27.25 in o.c.			