

Structural Calculations for CBKD-153 Series KDKITLXL

Prepared for:

PROVENT / RRS

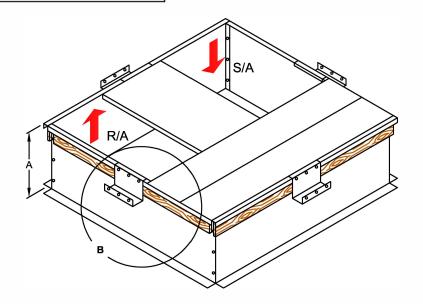
3847 Wabash Drive Mira Loma, CA 91725

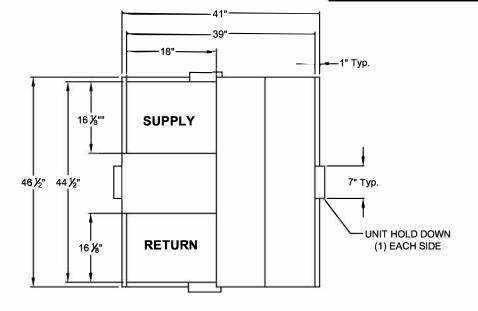
Date: October 1, 2021

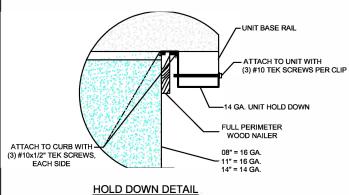
Project Number: PV2101

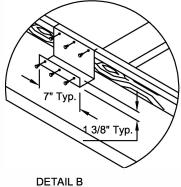
For wood, concrete and steel attachments see Roof Anchorage Detail, Form No. CB-60

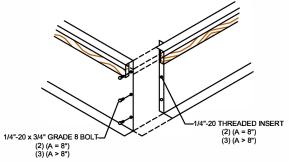
Will conform to seismic code requirements for knock-down or pre-assembled application. (Contact factory for assembled version.)

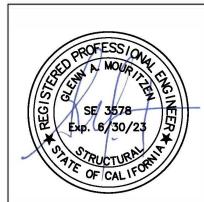

STRUCTURALLY CALCULATED HOLD DOWN CLIPS FOR KNOCK-DOWN **ROOF CURBS FOR YORK UNITS**


P***B ALL MODELS

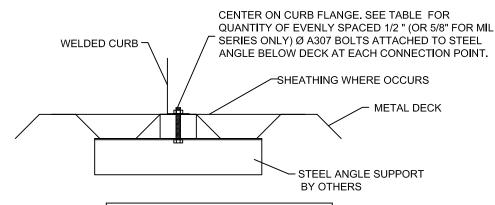

ProVent P/N	Α	WEIGHT	SEISMIC KIT P/N	WEIGHT
CBKDLXL08	8"	53 Lbs	KDKITI X	5 Lbs
CBKDLXL11	11"	64 Lbs	NUNITEX	5 LDS
CBKDLXL14	14"	75 Lbs	Moote enjemic roa	uiromonte


Meets seismic requirements for the following codes:


CBC 2019 IBC 2018



CORNER DETAIL


3847 WABASH DRIVE MIRA LOMA, CA 91725

PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITTED TO:	CI
JOB NAME: EQUIPMENT: NOTES:	3/

FORM NO: CBKD-153			PART NUMBER: KDKITLXL	
DATE:	REV	/ :	DRAWN BY:	
3/26/2021	7		ALL	

STEEL ATTACHMENT

NO O	FANCHO	RAGE	BOLTS	REQUIRED
.40.0				I VE GOIL VED

CURB	LONG SIDE	SHORT SIDE
LXS	2 @ 34.5" O.C.	2 @ 19" O.C.
LXL	2 @ 34.5" O.C.	2 @ 29" O.C.
SUN3672	2 @ 60.5" O.C.	2 @ 39" O.C.
PRD3715	2 @ 68.88" O.C.	2 @ 39" O.C.
PRS	2 @ 58.88" O.C.	2 @ 28.69" O.C.
PRL	2 @ 72" O.C.	2 @ 41.5" O.C.
SLU180	3 @ 51.38" O.C.	2 @ 71.5" O.C.
SLM1830	3 @ 56.88" O.C	3 @ 35.75" O.C.

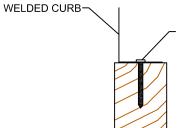
ASSUMES:

CONC SLAB fc= 4000PSI MINIMUM 6" MIN THICKNESS NORMAL WEIGHT CONCRETE OR SAND LIGHT WEIGHT

CONCRETE ATTACHMENT

WELDED CURB-

Meets seismic requirements for the following codes: CBC 2019 IBC 2018


ROOF ANCHORAGE DETAIL					
CBKD Series	CBWC Series				
LXS	LXS				
LXL	LXL				
SUN3672	SUN3672				
PRD3715	PRD3715				
PRS	PRS				
PRL	PRL				
SLU180	SLU180				
SLM1830	SLM1830				

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 3/4" Ø THREADED ROD IN HILTI HIT-HY 200 EPOXY WITH 4" EMBED

	NO. OF ANCHORAGE BOLTS REQUIRED				
CURB	LONG SIDE	SHORT SIDE			
LXS	4 @ 11.5" O.C.	3 @ 9.5" O.C.			
LXL	4 @ 11.5" O.C.	3 @ 14.5" O.C.			
SUN3672	4 @ 20.17" O.C.	3 @ 12.38" O.C.			
PRD3715	9 @ 8.61" O.C.	7 @ 6.5" O.C.			
PRS	5 @ 14.72" O.C.	4 @ 9.56" O.C.			
PRL	6 @ 14.4" O.C.	5 @ 10.38" O.C.			
SLU180	8 @ 14.68" O.C.	7 @ 11.92" O.C.			
SLM1830	12 @ 10.34" O.C.	10 @ 7.94" O.C.			

* SIX INCHES FROM EACH CORNER EVENLY SPACED.
** CENTERED.

WOOD ATTACHMENT

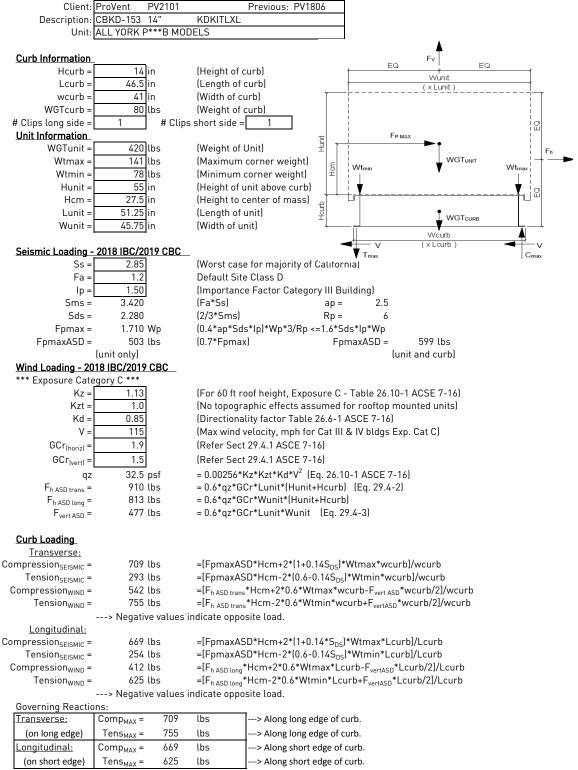
CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 1/2" Ø SIMPSON SDS OR EQUIVALENT SCREWS (3 1/2 " MIN. EMBED. INTO WOOD FRAMING)

5/8" Ø LAG SCREW W/MIN. 3.5" EMBED (SGMIN=0.43) (FOR MIL SERIES ONLY)

	REQUIRED		
CURB	LONG SIDE	SHORT SIDE	
LXS	4 @ 12.83" O.C.	3 @ 11.5" O.C.	
LXL	4 @ 12.83" O.C.	3 @ 16.5" O.C.	
SUN3672	4 @ 21.5" O.C.	3 @ 14.38" O.C.	
PRD3715	9 @ 9.11" O.C.	8 @ 6.14" O.C.	
PRS	4 @ 20.96" O.C.	3 @ 16.34" O.C.	
PRL	5 @ 19" O.C.	4 @ 15.17" O.C.	
SLU180	9 @ 13.34" O.C.	7 @ 12.58" O.C.	
SLM1830	13 @ 9.81" O.C.	12 @ 6.86" O.C.	

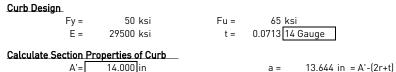
FOUR INCHES FROM EACH CORNER EVENLY SPACED

NO. OF ANCHORAGE SCREWS



3847 WABASH DRIVE MIRA LOMA, CA 91725

PHONE (951) 685-1101 FAX (619) 872-9799


SUBMITTED TO:	CB-60		
JOB NAME:			
EQUIPMENT:	DATE:	REV:	DRAWN BY:
NOTES:	10/07/2021	7	FMM

---> Negative values indicate opposite load.

A'

a'= 13.929 in = A'-t0.000 in (0 if no lips) 1.572 in = B'-[r+t/2+a(r+t/2)] C'= h = 0.000 (0 - no Lip; 1 w/ lip) 1.714 in = B'-(t/2+at/2)b'= a = 0.000 in = $\alpha[C'-(r+t/2)]$ R= 0.1069 (Inside bend radius) c = 0.0713 in c'= $0.000 \text{ in } = \alpha(C'-t/2)$ t = r'= 0.143 in = R+t/2u = $0.224 \text{ in } = \pi r/2$

0.171 in (Distance between centroid and web centerline) x = 27.499 in⁴ Ix = rx = 4.73 in 0.204 in^4 0.407 in ly = ry = 1.23 in² 0.407 in A = rmin =

(assume k=0.8)

Axial Compression

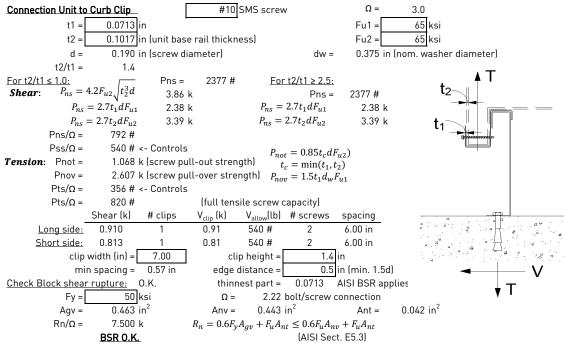
 $k_v L_v / r_v =$ Compression Check = 0.K.

Check Web Crippling

h =	14 in	Check limits:	C = 4.00
t =	0.0713 in	$h/t = 196.35 \le 200$	C _R = 0.14 (See table C3.4.1-2, fastened
N =	7.00	$N/t = 98.18 \le 210$	$C_N = 0.35$ to support, one flange, end
$\Omega_{\rm w}$ =	1.75	$N/h = 0.5 \le 2.0$	$C_h = 0.02$ loading)
P _n =	2.422 k	$R/t = 1.50 \le 9.0$	
$P_n/\Omega_w =$	1.384 k	$P_n =$	$= Ct^2 F_y \sin(90) \left(1 - C_R \sqrt{\frac{R}{t}}\right) \left(1 + C_N \sqrt{\frac{N}{t}}\right) \left(1 - C_h \sqrt{\frac{h}{t}}\right)$
Long side: $Pu_{Trans} =$	0.709 k	<u>0.K.</u> # clips = 1	
Short side: Pu _{Long} =	0.669 k	<u>0.K.</u> # clips = 1	

Check Web Stiffener 16Ga x 3/4" x 7" (C-channel)

98


width of stiffener =
$$7.000$$
 in ts = 0.0566 16 Gauge web of stiff. w = 6.717 in Rs = 0.0849 in ***Check w/ts < 1.28 VE/Fys Ω c = 1.70 w/ts = 118.675 1.28 V(E/Fys) = 31.091 ---> w/ts over limit Use C3.7.2 $P_n = 0.7(P_{wc} + A_e F_y) \ge P_{wc}$ Pwc = 2.422 k Ae = 0.380 in Pn = 15.002 k Pn/ Ω = 8.825 k

Not Reg'd

Corner Connections	1/4°	φSAE	Grade 8 bolts w/	1/4-20-UNC Thr	eaded inserts
Tcrnmax =	228 lbs		Max(F _{pmaxASD} /4 -	OR- Fh _{ASDtrans} /4	corner connections)
Vcrnmax =	378 lbs		Max(Tens/2 -OR	- Comp/2 corne	r connections per side)
	Bolt:	Tall =	2480 lbs	Vall =	1208 lbs
Threaded	Insert:	Tall =	2860 lbs	Vall =	1536 lbs
# 0	of Bolts requ	uired fo	or Tension =	0.1	
#	of Bolts re	quired	for Shear =	0.3	
# of Bolts required for Shear = 0.3				0.3	

of Bolts Used = 0.202 **0.K.** Check Combined Stress in Bolts & Inserts:

<--- USE WELD Check 1/8" welded connection $P_n/\Omega = \frac{1}{\Omega} 0.75tLF_u \ge V_{req}$ $L_{req'd} = \frac{V_{req}\Omega}{0.75tF_u}$ Assume L/t > 25: 25*t = 1.783 in Lreq'd = 0.255 in

Connection of Curb to Supporting Structure							
Roof Loading	SEISMIC: (0.6-0.14S _E	_{os})D + 0.7E	WIND: 0.6D + W				
<u>Transverse:</u>	Uplift _{MAX} =	1010 lbs	Shear _{MAX} =	455 lbs			
Compression _{SEISMIC} =	936 lbs	=[FpmaxASD*(Hcm+F	lcurb)+(1+0.14S _{DS})*WGT _{unit}	_{+curb} *wcurb/2]/wcurb			
Tension _{SEISMIC} =	795 lbs	=[FpmaxASD*(Hcm+F	lcurb)-(0.6-0.14S _{DS})*WGT _{ur}	_{nit+curb} *wcurb/2]/wcurb			
$Compression_{WIND} =$	833 lbs	= $[F_{h ASD trans}*(Hcm+Hc$	urb)+0.6*WGT _{unit+curb} *wcur	b/2-F _{vert ASD} *wcurb/2]/wcurb			
Tension _{WIND} =	1010 lbs	=[Fh ASD trans*(Hcm+Hc	urb)-0.6*WGT _{unit+curb} *wcur	b/2+F _{vertASD} *wcurb/2]/wcurb			
<u>Longitudinal:</u>	Uplift _{MAX} =	814 lbs	Shear _{MAX} =	406 lbs			
Compression _{SEISMIC} =	864 lbs	=[FpmaxASD*(Hcm+F	lcurb)+(1+0.14S _{DS})*WGT _{unit}	_{+curb} *Lcurb/2]/Lcurb			
Tension _{SEISMIC} =	724 lbs	=[FpmaxASD*(Hcm+F	lcurb)-(0.6-0.14S _{DS})*WGT _{ur}	_{nit+curb} *Lcurb/2]/Lcurb			
$Compression_{WIND} =$	637 lbs	$=[F_{h ASD long}*(Hcm+Hcu)]$	ırb)+0.6*WGT _{unit+curb} *Lcurb	/2-F _{vert ASD} *Lcurb/2]/Lcurb			
Tension _{WIND} =	814 lbs	=[Fh ASD long*(Hcm+Hct	urb)-0.6*WGT _{unit+curb} *Lcurb	/2+F _{vertASD} *Lcurb/2]/Lcurb			
Wood Attachment	t: 1/4"φ x 3.5	" Simpson SDS screws	: w/ 2.25" thr<u>eaded eml</u> (SG	6min = 0.43)			
	Tall _{metal} =	997 lbs	Vall _{metal} = 1097 lbs				
<u>Transverse:</u>	Tall _{wood} =	616 lbs	Vall _{wood} = 672 lbs				
# of Scr	ews Req'd for Uplift =	1.64	COMBINED LOADING:	0.772 O.K.			
# of Screws Req'd for Shear = 0.68 Screw Spacing = 19.3 jin o.c.							
Tatal #	of concurs Doguinad	2	·				

Total # of screws Required = 1/4" \$\phi\$ x 3.5" Simpson SDS screws @ 19.3 in o.c. along long side of curb w/ 2.25" threaded embed

Longitudinal: # of Screws Req'd for Uplift = 1.3 COMBINED LOADING: 0.642 O.K. # of Screws Req'd for Shear = 16.5 in o.c. Screw Spacing = 3 Total # of screws Required =

1/4" \$\phi x 3.5" Simpson SDS screws @ 16.5 in o.c. along short side of curb w/ 2.25" threaded embed									
Steel Deck Attachment: 1/2" p A307 Bolts to steel angle below deck									
	$Tall_{bolt} =$	3927 lbs	Vall _{bolt} = 2209 lb	S					
<u>Transverse:</u>	Tall _{metal} =	2086 lbs	Vall _{metal} = 2192 lb	S					
# of Bolts Req'd for Uplift =		0.48	COMBINED LOADING:	0.117 O.K.					
# of Bolts Req'd for Shear =		0.21	Bolt Spacing =	34.5 in o.c.					
Total # of Bo	lts Required =	2							
1/2" φ A307 Bolts to stee	l angle below deck	@ 34.5 in o.c. al	ong long side of curb						
Longitudinal:									
# of Bolts Re	a'd for Uplift =	0.39	COMBINED LOADING:	0.085 O.K.					

0.19 29.0 in o.c. # of Bolts Reg'd for Shear = Reg'd Min Spacing = Total # of Bolts Required = 2 1/2" ♦ A307 Bolts to steel angle below deck @ 29 in o.c. along short side of curb

For Concrete anchorage: SEISMIC $(0.6-0.14S_{DS})D + 0.7\Omega_o E$ Ω o = 2.0 Concrete Attachment: 3/4" ϕ thrd'd rods in Hilti Hit-HY 200 epoxy w/ 4" embed $\mathsf{Tall}_{\mathsf{LRFD}} =$ $Vall_{LRFD} =$ 2032 lbs $\alpha = (1 + 0.2SDS)D + 2.5E = 1.708$ 1722 lbs (D = 0.758, E = 0.242)920.9 lbs 1086.6 lbs $Tall_{ASD} = Tall_{LRFD}/\alpha =$ $Vall_{ASD} = Vall_{LRFD}/\alpha =$ Uplift_{MAX} = 1141 lbs Shear_{MAX} = 599 lbs Transverse: ${\sf Compression}_{\sf SEISMIC} =$ 1541 lbs $= \! [\Omega o * FpmaxASD*(Hcm + Hcurb) + (1 + 0.14S_{DS}) * WGT_{unit+curb}* wcurb/2] / wcurb$ $= [\Omega o * FpmaxASD*(Hcm+Hcurb) - (0.6-0.14S_{DS})*WGT_{unit+curb}*wcurb/2]/wcurb$ $\mathsf{Tension}_{\mathsf{SEISMIC}} =$ 1141 lbs $\mathsf{Shear}_{\mathsf{SEISMIC}} =$ 599 lbs $=\Omega o*FpmaxASD/2$ Min Bolts Req'd Uplift = 1.24 spacing = 34.50 in o.c. 380.5 lbs Tapplied = 2.00 spacing = Min Bolts Req'd Shear = 34.50 in o.c. Vapplied = 119.7 lbs $V_{apllied} \le 1.2 = 0.52$ Try using 3 bolts $T_{applied}$ COMBINED LOADING = spaced at 17.25 in o.c. $T_{allow,ASD} + \overline{V_{allow,ASD}}$ Use 3 - 3/4" φ thrd'd rods in Hilti Hit-HY 200 epoxy @ 17.3 in o. max. along long side of curb w/ 4" embed $Uplift_{MAX} =$ 998 lbs Shear_{MAX} = Longitudinal: Compression_{SFISMIC} = 1398 lbs = $[\Omega \circ \text{FpmaxASD*}(\text{Hcm+Hcurb})+(1+0.14S_{DS})*\text{WGT}_{\text{unit+curb}}*\text{Lcurb}/2]/\text{Lcurb}$ $Tension_{SEISMIC} =$ 998 lbs = $[\Omega o*FpmaxASD*(Hcm+Hcurb)-(0.6-0.14S_{DS})*WGT_{unit+curb}*Lcurb/2]/Lcurb$ Shear_{SEISMIC} = 599 lbs $=\Omega o*FpmaxASD/2$ 14.50 in o.c. Tapplied = Min Bolts Req'd Uplift = 1.08 spacing = 499.0 lbs 2.00 spacing = Vapplied = 119.7 lbs Min Bolts Req'd Shear = 29.00 in o.c. $V_{apllied} \le 1.2$ $T_{applied}$ Try using bolts COMBINED LOADING = = 0.65 $\overline{T_{allow,ASD}}$ $\overline{V_{allow,ASD}}$ spaced at 29.00 in o.c. Use 2 - 3/4" ϕ thrd'd rods in Hilti Hit-HY 200 epoxy @ 29 in o.c. max. along short side of curb w/ 4" embed

CURB DESIGN SU	MMARY:	CBKD-153	KDKITLXL	ι	Jnit:	ALL YORK P***B MODELS	
CURB RAIL	THICKNESS:	0.0713 in	14 Gauge				
UNIT CLIP	THICKNESS:	0.0713 in	14 Gauge				
# OF CLIPS (LONG SIDE) - 1 clips with 2 - #10 SMS screws each clip							
WEB STIFFENER: NOT REQUIRED							
# OF CLIPS (SHORT SIDE) - 1 clips with 2 - #10 SMS screws each clip							
WEB STIFFENER: NOT REQUIRED							
CORNER CONNECTION: Use 2 - 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts							
CURB		WOOD		<u>STEEL</u>		CONCRETE	
ANCHORAGE	1/4"φ x 3.5	" Simpson S	SDS screws	1/2" φ A307 Bolts	s to	3/4" φ thrd'd rod in Hilti HIT-HY	
ANCHORAGE	w/ 2.25	2.25" threaded embed		steel angle below o	deck	200 epoxy, min. 4" embed	
LONG DIRECTION	3	@ 19.25 in c).C.	2 @ 34.5 in o.c.		3 @ 17.25 in o.c.	
SHORT DIRECTION	3	@ 16.5 in o	.C.	2 @ 29 in o.c.		2 @ 29 in o.c.	