

Structural Calculations for CBKD-152 Series KDKITLXS

Prepared for:

PROVENT / RRS

3847 Wabash Drive Mira Loma, CA 91725

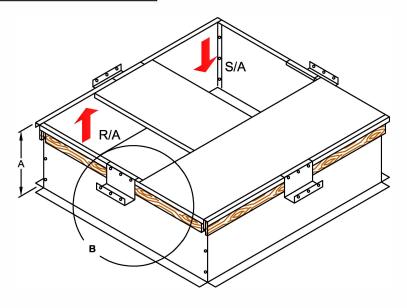
Date: October 1, 2021

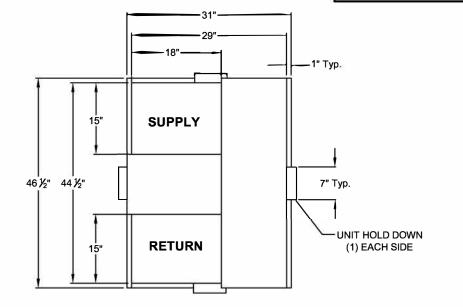
Project Number: PV2101

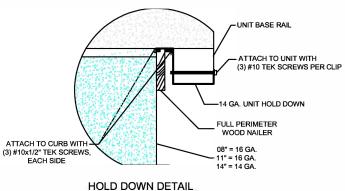
For wood, concrete and steel attachments see Roof Anchorage Detail, Form No. CB-60.

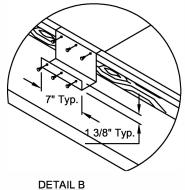
Will conform to seismic code requirements for knock-down or pre-assembled application. (Contact factory for assembled version.)

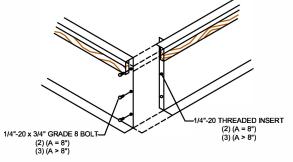
STRUCTURALLY CALCULATED HOLD DOWN CLIPS FOR KNOCK-DOWN **ROOF CURBS FOR YORK UNITS**


P***A ALL MODELS


SEISMIC KIT P/N	WEIGHT	Α	ProVent P/N
KDKITI X	43 Lbs	8"	CBKDLXS08
KDKIILX	54 Lbs	11"	CBKDLXS11
Moote egiemic rogu	65 Lbs	14"	CBKDLXS14

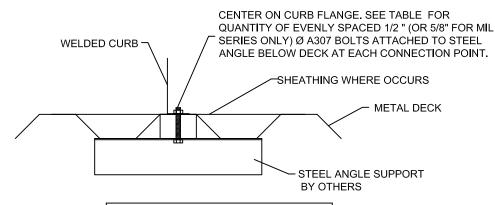

ITLX 5 Lbs ismic requirements


WEIGHT


for the following codes: CBC 2019 IBC 2018

CORNER DETAIL

ProVent


3847 WABASH DRIVE MIRA LOMA, CA 91725

PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITTED TO:
COMPANY:
JOB NAME:
EQUIPMENT:
NOTES:

FORM NO: CBKD-152		PART NUMBER: KDKITLXS	
DATE:	REV:	DRAWN BY:	
3/26/2021	7	ALL	

STEEL ATTACHMENT

NO O	FANCHO	RAGE	BOLTS	REQUIRED
.40.0				I VE GOIL VED

CURB	LONG SIDE	SHORT SIDE
LXS	2 @ 34.5" O.C.	2 @ 19" O.C.
LXL	2 @ 34.5" O.C.	2 @ 29" O.C.
SUN3672	2 @ 60.5" O.C.	2 @ 39" O.C.
PRD3715	2 @ 68.88" O.C.	2 @ 39" O.C.
PRS	2 @ 58.88" O.C.	2 @ 28.69" O.C.
PRL	2 @ 72" O.C.	2 @ 41.5" O.C.
SLU180	3 @ 51.38" O.C.	2 @ 71.5" O.C.
SLM1830	3 @ 56.88" O.C	3 @ 35.75" O.C.

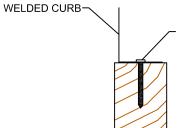
ASSUMES:

CONC SLAB fc= 4000PSI MINIMUM 6" MIN THICKNESS NORMAL WEIGHT CONCRETE OR SAND LIGHT WEIGHT

CONCRETE ATTACHMENT

WELDED CURB-

Meets seismic requirements for the following codes: CBC 2019 IBC 2018


ROOF ANCHORAGE DETAIL			
CBKD Series	CBWC Series		
LXS	LXS		
LXL	LXL		
SUN3672	SUN3672		
PRD3715	PRD3715		
PRS	PRS		
PRL	PRL		
SLU180	SLU180		
SLM1830	SLM1830		

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 3/4" Ø THREADED ROD IN HILTI HIT-HY 200 EPOXY WITH 4" EMBED

	NO. OF ANCHORAGE BOLTS REQUIRED			
CURB	LONG SIDE	SHORT SIDE		
LXS	4 @ 11.5" O.C.	3 @ 9.5" O.C.		
LXL	4 @ 11.5" O.C.	3 @ 14.5" O.C.		
SUN3672	4 @ 20.17" O.C.	3 @ 12.38" O.C.		
PRD3715	9 @ 8.61" O.C.	7 @ 6.5" O.C.		
PRS	5 @ 14.72" O.C.	4 @ 9.56" O.C.		
PRL	6 @ 14.4" O.C.	5 @ 10.38" O.C.		
SLU180	8 @ 14.68" O.C.	7 @ 11.92" O.C.		
SLM1830	12 @ 10.34" O.C.	10 @ 7.94" O.C.		

* SIX INCHES FROM EACH CORNER EVENLY SPACED.
** CENTERED.

WOOD ATTACHMENT

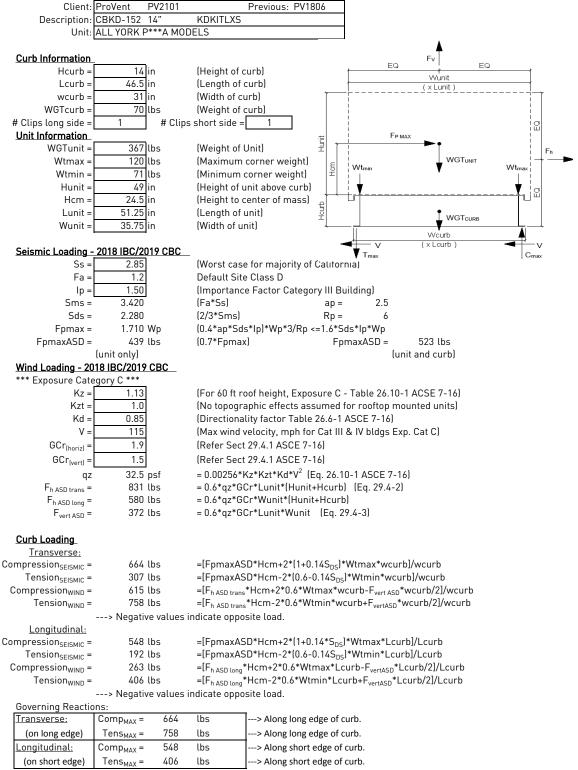
CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 1/2" Ø SIMPSON SDS OR EQUIVALENT SCREWS (3 1/2 " MIN. EMBED. INTO WOOD FRAMING)

5/8" Ø LAG SCREW W/MIN. 3.5" EMBED (SGMIN=0.43) (FOR MIL SERIES ONLY)

	REQUIRED	
CURB	LONG SIDE	SHORT SIDE
LXS	4 @ 12.83" O.C.	3 @ 11.5" O.C.
LXL	4 @ 12.83" O.C.	3 @ 16.5" O.C.
SUN3672	4 @ 21.5" O.C.	3 @ 14.38" O.C.
PRD3715	9 @ 9.11" O.C.	8 @ 6.14" O.C.
PRS	4 @ 20.96" O.C.	3 @ 16.34" O.C.
PRL	5 @ 19" O.C.	4 @ 15.17" O.C.
SLU180	9 @ 13.34" O.C.	7 @ 12.58" O.C.
SLM1830	13 @ 9.81" O.C.	12 @ 6.86" O.C.

FOUR INCHES FROM EACH CORNER EVENLY SPACED

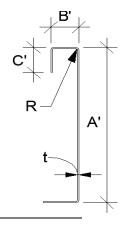
NO. OF ANCHORAGE SCREWS



3847 WABASH DRIVE MIRA LOMA, CA 91725

PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITTED TO:	CB-60		
JOB NAME:			
EQUIPMENT:	DATE:	REV:	DRAWN BY:
NOTES:	10/07/2021	7	FMM


---> Negative values indicate opposite load.

E = 29500 ksi t = 0.0713 14 Gauge

Calculate Section Properties of Curb

Α'=	14.000	in	a =	13.644	in = A'-(2r+t)
B'=	1.750	in	a'=	13.929	in = A'-t
C'=	0.000	in (0 if no lips)	b =	1.572	in = B'-[r+t/2+a(r+t/2
a =	0.000	(0 - no Lip; 1 w/ lip)	b'=	1.714	in = B'-(t/2+at/2)
R=	0.1069	(Inside bend radius)	C =	0.000	in = $a[C'-(r+t/2)]$
t =	0.0713	in	c'=	0.000	in = a(C'-t/2)
r'=	0.143	in = R+t/2	u =	0.224	$in = \pi r/2$
x =	0.171	in (Distance between	centroid and web	cente	rline)
lx =	27.499	in ⁴	rx =	4.73	in
ly =	0.204	in ⁴	ry =	0.407	in
A =	1.23	in ²	rmin =	0.407	in

Axial Compression

Pu =	0.416 k	(Max Axial Co	mp)	Ωc =	1.80
$Pn/\Omega c =$	17.057 k		$E_{\lambda} = 1 \Gamma_{\lambda} E_{\lambda} = (0.6 \Gamma 0 \lambda_{\lambda}^{2}) E_{\lambda}$	_	
Fe =	30.16 ksi	$P_n F_n A$	If $\lambda_c \le 1.5$; $F_n = \left(0.658^{\lambda_c^2}\right) F_y$	$\lambda_c = \left \frac{F_y}{F} \right $	$_{E}$ $-\frac{\pi^{2}E}{}$
λc =	1.29	$\frac{\Omega_c}{\Omega_c} = \frac{\Omega_c}{\Omega_c}$	If $\lambda_c \le 1.5$; $F_n = (0.658^{\lambda_c^2}) F_y$ If $\lambda_c > 1.5$; $F_n = \frac{0.877}{\lambda^2} F_y$	$\lambda_c = \sqrt{\frac{F_e}{F_e}}$	$F_e = \frac{k L}{(kl/)^2}$
Fn =	24.98 ksi		$\lambda_c > 1.3, \lambda_c = \lambda_c^2$	V	(r)
Ly =	50 in	Lateral unbra	iced length		

Compression Check = 0.K.

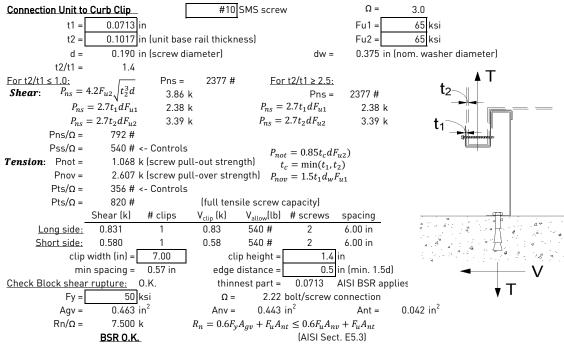
98

Check Web Crippling

 $k_v L_v / r_v =$

h =	14 in	Check limits:	C = 4.00
t =	0.0713 in	$h/t = 196.35 \le 200$	$C_R = 0.14$ (See table C3.4.1-2, fastened
N =	7.00	$N/t = 98.18 \le 210$	$C_N = 0.35$ to support, one flange, end
$\Omega_{\rm w}$ =	1.75	$N/h = 0.5 \le 2.0$	$C_h = 0.02$ loading)
P _n =	2.422 k	$R/t = 1.50 \le 9.0$	$\left(\begin{array}{c} \Gamma_{\mathbf{p}} \right) \left(\begin{array}{c} \Gamma_{\mathbf{q}} \end{array}\right) \left(\begin{array}{c} \Gamma_{\mathbf{p}} \end{array}\right)$
$P_n/\Omega_w =$	1.384 k	$P_n = 0$	$Ct^2F_y\sin(90)\left(1-C_R\sqrt{\frac{R}{t}}\right)\left(1+C_N\sqrt{\frac{N}{t}}\right)\left(1-C_h\sqrt{\frac{h}{t}}\right)$
Long side: $Pu_{Trans} =$	0.664 k	<u>O.K.</u> # clips = 1	$\int \int $
Short side: Pul ong =	0.548 k	O.K. # clips = 1	

Check Web Stiffener


(assume k=0.8)

width of stiffener =	7.000 in		ts =	0.0566 16 Gauge	9
web of stiff. w =	6.717 in		Rs =	0.0849 in	
***Check w/ts ≤ 1.	28√E/Fys		Ωc =	1.70	
w/ts =	118.675				
1.28 √ (E/Fys) =	31.091	> w/ts over limit	Use C3.7.2		
$P_n = 0.7(P_{wc} +$	$A_e F_y \ge P_{wc}$				
Pwc =	2.422 k	Ae =	0.380 in ²		
Pn =	15.002 k	Pn/Ω =	8.825 k		
			Not Reg'd		

Corner Connections 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts

Tcrnmax = 208 lbs $Max(F_{pmaxASD}/4 - OR - Fh_{ASDtrans}/4 corner connections)$						nections)			
Vcrnmax =	379 lbs		Max(Tens/2	-0R-	Comp/2	corner	connectio	ns per sid	e)
	Bolt:	Tall =	2480	lbs		Vall =	1208	lbs	
Threaded	l Insert:	Tall =	2860	lbs		Vall =	1536	lbs	
# of Bolts required for Tension = 0.1							=		
# of Bolts required for Shear =					0.3				
	olts Used =		2.0						

Check Combined Stress in Bolts & Inserts: 0.199 Q.K.

Connection of Curb to Supporting Structure

COMMON OF CALL	, 10 0 appo. 1111 g 0 11 ao11				
Roof Loading	SEISMIC: (0.6-0.14S _t	_{os})D + 0.7E	WIND: 0.6D + W		
<u>Transverse:</u>	Uplift _{MAX} =	1087 lbs	Shear _{MAX} =	416 lbs	
Compression _{SEISMIC} =	938 lbs	=[FpmaxASD*(Hcm+F	lcurb)+(1+0.14S _{DS})*WGT _{unit}	_{t+curb} *wcurb/2]/wcu	rb
Tension _{SEISMIC} =	815 lbs	=[FpmaxASD*(Hcm+F	lcurb)-(0.6-0.14S _{DS})*WGT _u	_{nit+curb} *wcurb/2]/wc	urb
$Compression_{WIND} =$	977 lbs	= $[F_{h ASD trans}*(Hcm+Hc$	urb)+0.6*WGT _{unit+curb} *wcur	b/2-F _{vert ASD} *wcurb,	/2]/wcurb
Tension _{WIND} =	1087 lbs	=[F _{h ASD trans} *(Hcm+Hc	urb)-0.6*WGT _{unit+curb} *wcur	b/2+F _{vertASD} *wcurb,	/2]/wcurb
<u>Longitudinal:</u>	Uplift _{MAX} =		Shear _{MAX} =		
Compression _{SEISMIC} =	721 lbs	=[FpmaxASD*(Hcm+F	lcurb)+(1+0.14S _{DS})*WGT _{unit}	_{t+curb} *Lcurb/2]/Lcur	.p
Tension _{SEISMIC} =	599 lbs	=[FpmaxASD*(Hcm+H	lcurb)-(0.6-0.14S _{DS})*WGT _u	nit+curb*Lcurb/2]/Lcu	urb
$Compression_{WIND} =$	425 lbs	=[Fh ASD long*(Hcm+Hcu	urb)+0.6*WGT _{unit+curb} *Lcurb	o/2-F _{vert ASD} *Lcurb/2	2]/Lcurb
Tension _{WIND} =	535 lbs	=[Fh ASD long*(Hcm+Hct	urb)-0.6*WGT _{unit+curb} *Lcurb	o/2+F _{vertASD} *Lcurb/2	?]/Lcurb
Wood Attachmen	t: 1/4"φ x 3.5	" Simpson SDS screws	w/ 2.25" threaded emt (SG	9min = 0.43)	
	Tall _{metal} =	997 lbs	Vall _{metal} = 1097 lbs	;	

TTOOL ACCUSTITION.	1/ - Ψ × 0.0	Onnipoon obc	, SCI CIT. 11, 2.20	till caaca cill	(50111111 - 0.40)
	Tall _{metal} =	997 lb:	s Vall _{me}	etal = 1097	lbs
<u>Transverse:</u>	Tall _{wood} =	616 lb:	s Vall _w	ood = 672	lbs
# of Screws Re	q'd for Uplift =	1.77	COMBIN	IED LOADING:	0.795 O.K.
# of Screws Rea	q'd for Shear =	0.62	Sc	rew Spacing =	19.3 in o.c.
Total # of scre	ws Required =	3			
4 /4 1 0 5 6: 00 6	0.400:				

$\underline{1/4}$ " φ x 3.5" Simpson SDS screws @ 19.3 in o.c. along long side of curb w/ 2.25" threaded embed

1/2" ϕ A307 Bolts to steel angle below deck @ 19 in o.c. along short side of curb

Longitudinal:

of Screws Req'd for Uplift = 1.0 COMBINED LOADING: 0.702 0.K. # of Screws Req'd for Shear = 0.4 Screw Spacing = 23.0 in o.c. Total # of screws Required = 2

1/4"φ x 3.5" Simpson SDS screws @ 23 in o.c. along short side of curb w/ 2.25" threaded embed							
Steel Deck Attachment: 1/2" \(\phi \) A307 Bolts to steel angle below deck							
	Tall _{bolt} =	3927 lbs	Vall _{bolt} = 2209 lbs	5			
<u>Transverse:</u>	Tall _{metal} =	2086 lbs	Vall _{metal} = 2192 lbs	5			
# of Bolts Red	q'd for Uplift =	0.52	COMBINED LOADING:	0.126 O.K.			
# of Bolts Red	'd for Shear =	0.19	Bolt Spacing =	34.5 in o.c.			
Total # of Bolts Required = 2							
1/2" φ A307 Bolts to steel	angle below deck @	34.5 in o.c. a	long long side of curb				
Longitudinal:							
# of Bolts Red	q'd for Uplift =	0.29	COMBINED LOADING:	0.050 O.K.			
# of Bolts Red	'd for Shear =	0.13	Req'd Min Spacing =	19.0 in o.c.			
Total # of Bo	lts Required =	2					

For Concrete anchorage: SEISMIC $(0.6-0.14S_{DS})D + 0.7\Omega_o E$ Ω o = 2.0 Concrete Attachment: 3/4" ϕ thrd'd rods in Hilti Hit-HY 200 epoxy w/ 4" embed $\mathsf{Tall}_{\mathsf{LRFD}} =$ $Vall_{LRFD} =$ 2032 lbs $\alpha = (1 + 0.2SDS)D + 2.5E = 1.708$ 1722 lbs (D = 0.758, E = 0.242)920.9 lbs 1086.6 lbs $Tall_{ASD} = Tall_{LRFD}/\alpha =$ $Vall_{ASD} = Vall_{LRFD}/\alpha =$ Uplift_{MAX} = 1238 lbs Shear_{MAX} = 523 lbs Transverse: ${\sf Compression}_{\sf SEISMIC} =$ 1588 lbs $= [\Omega o*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*WGT_{unit+curb}*wcurb/2]/wcurb$ $= [\Omega o * FpmaxASD*(Hcm+Hcurb) - (0.6-0.14S_{DS})*WGT_{unit+curb}*wcurb/2]/wcurb$ 1238 lbs $\mathsf{Tension}_{\mathsf{SEISMIC}} =$ $\mathsf{Shear}_{\mathsf{SEISMIC}} =$ $=\Omega o*FpmaxASD/2$ 523 lbs Min Bolts Req'd Uplift = 1.34 spacing = 34.50 in o.c. 412.6 lbs Tapplied = Min Bolts Req'd Shear = 2.00 spacing = 34.50 in o.c. Vapplied = 104.6 lbs $V_{apllied} \le 1.2 = 0.54$ Try using 3 bolts $T_{applied}$ COMBINED LOADING = spaced at 17.25 $T_{allow,ASD} + \overline{V_{allow,ASD}}$ in o.c Use 3 - 3/4" φ thrd'd rods in Hilti Hit-HY 200 epoxy @ 17.3 in o. max. along long side of curb w/ 4" embed $Uplift_{MAX} =$ 805 lbs Shear_{MAX} = Longitudinal: Compression_{SFISMIC} = 1154 lbs = $[\Omega \circ \text{FpmaxASD*}(\text{Hcm+Hcurb})+(1+0.14S_{DS})*\text{WGT}_{\text{unit+curb}}*\text{Lcurb}/2]/\text{Lcurb}$ $Tension_{SEISMIC} =$ 805 lbs = $[\Omega o*FpmaxASD*(Hcm+Hcurb)-(0.6-0.14S_{DS})*WGT_{unit+curb}*Lcurb/2]/Lcurb$ $Shear_{SEISMIC} =$ 523 lbs $=\Omega o*FpmaxASD/2$ 9.50 in o.c. Tapplied = Min Bolts Req'd Uplift = 0.87 spacing = 402.4 lbs 2.00 spacing = Vapplied = 104.6 lbs Min Bolts Req'd Shear = 19.00 in o.c. $\frac{V_{apllied}}{1.2}$ $T_{applied}$ Try using bolts COMBINED LOADING = = 0.53 $\overline{T_{allow,ASD}}$ $\overline{V_{allow,ASD}}$ spaced at 19.00 in o.c.

Use 2 - 3/4" ϕ thrd'd rods in Hilti Hit-HY 200 epoxy @ 19 in o.c. max. along short side of curb w/ 4" embed

CURB DESIGN SU	MMARY:	CBKD-152	KDKITLXS	Unit	: ALL YORK P***A MODELS			
CURB RAIL	. THICKNESS:	0.0713 in	14 Gauge					
UNIT CLIP	THICKNESS:	0.0713 in	14 Gauge					
# OF CLIPS (LONG SIDE) - 1 clips with 2 - #10 SMS screws each clip								
WEE	WEB STIFFENER: NOT REQUIRED							
# OF CLIPS (SI	# OF CLIPS (SHORT SIDE) - 1 clips with 2 - #10 SMS screws each clip							
WEB STIFFENER: NOT REQUIRED								
CORNER CONNECTION: Use 2 - 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts								
CURB		WOOD		STEEL	<u>CONCRETE</u>			
ANCHORAGE	1/4"φ x 3.5	" Simpson S	SDS screws	1/2" φ A307 Bolts to	3/4" φ thrd'd rod in Hilti HIT-HY			
ANCHORAGE	w/ 2.2	5" threaded	embed	steel angle below dec	200 epoxy, min. 4" embed			
LONG DIRECTION	3	@ 19.25 in c	o.c.	2 @ 34.5 in o.c.	3 @ 17.25 in o.c.			
SHORT DIRECTION		2 @ 23 in o.d	С.	2 @ 19 in o.c.	2 @ 19 in o.c.			