

Structural Calculations for CBKD-80 Series KDKITPRD3715

Prepared for:

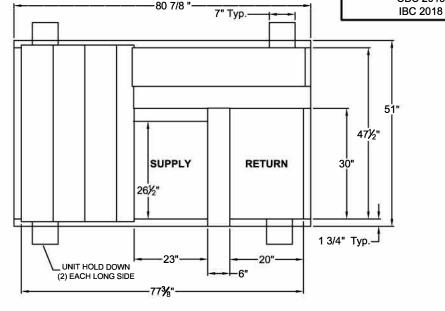
PROVENT / RRS

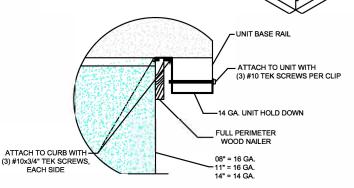
3847 Wabash Drive Mira Loma, CA 91725

Date: October 1, 2021

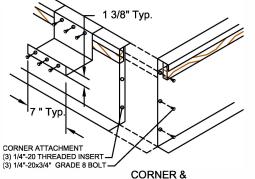
Project Number: PV2101

For wood, concrete and steel attachments see Roof Anchorage Detail, Form No. CB-60.

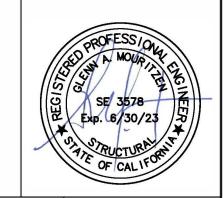

Will conform to seismic code requirements for knock-down or pre-assembled application. (Contact factory for assembled version.)


STRUCTURALLY CALCULATED HOLD DOWN CLIPS FOR KNOCK-DOWN **ROOF CURBS FOR YORK UNITS**

ZT, ZH, ZJ, ZR 037-150 **ZF, XP, ZB 078-150**


ProVent P/N	Α	WEIGHT	SEISMIC KIT P/N	WEIGHT
CBKDPRD371508	8"	115 Lbs	KDKITPRD371508	8 Lbs
CBKDPRD371511	11"	129 Lbs	KDKITPRD371511	10 Lbs
CBKDPRD371514	14"	144 Lbs	KDKITPRD371514	11 Lbs

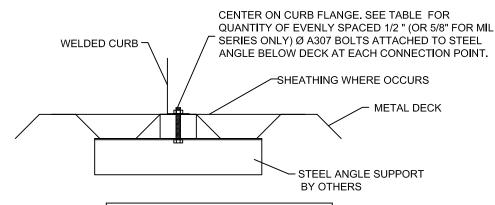
Meets seismic requirements for the following codes: CBC 2019



HOLD DOWN DETAIL

HOLD DOWN DETAIL

ProVent


3847 WABASH DRIVE MIRA LOMA, CA 91725

PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITTED TO:	יו
COMPANY:	ŀ
JOB NAME:	L
EQUIPMENT:	ŀ
NOTES:	ŀ
	l

FORM NO:		PART NUMBER:	
CBKD-80		KDKITPRD3715 Series	
DATE:	REV:	DRAWN BY:	
9/9/2021	6	ALL	

STEEL ATTACHMENT

NO O	FANCHO	RAGE	BOLTS	REQUIRED
.40.0				I VE GOIL VED

CURB	LONG SIDE	SHORT SIDE
LXS	2 @ 34.5" O.C.	2 @ 19" O.C.
LXL	2 @ 34.5" O.C.	2 @ 29" O.C.
SUN3672	2 @ 60.5" O.C.	2 @ 39" O.C.
PRD3715	2 @ 68.88" O.C.	2 @ 39" O.C.
PRS	2 @ 58.88" O.C.	2 @ 28.69" O.C.
PRL	2 @ 72" O.C.	2 @ 41.5" O.C.
SLU180	3 @ 51.38" O.C.	2 @ 71.5" O.C.
SLM1830	3 @ 56.88" O.C	3 @ 35.75" O.C.

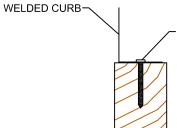
ASSUMES:

CONC SLAB fc= 4000PSI MINIMUM 6" MIN THICKNESS NORMAL WEIGHT CONCRETE OR SAND LIGHT WEIGHT

CONCRETE ATTACHMENT

WELDED CURB-

Meets seismic requirements for the following codes: CBC 2019 IBC 2018


ROOF ANCHORAGE DETAIL			
CBKD Series	CBWC Series		
LXS	LXS		
LXL	LXL		
SUN3672	SUN3672		
PRD3715	PRD3715		
PRS	PRS		
PRL	PRL		
SLU180	SLU180		
SLM1830	SLM1830		

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 3/4" Ø THREADED ROD IN HILTI HIT-HY 200 EPOXY WITH 4" EMBED

	NO. OF ANCHORAGE BOLTS REQUIRED			
CURB	LONG SIDE	SHORT SIDE		
LXS	4 @ 11.5" O.C.	3 @ 9.5" O.C.		
LXL	4 @ 11.5" O.C.	3 @ 14.5" O.C.		
SUN3672	4 @ 20.17" O.C.	3 @ 12.38" O.C.		
PRD3715	9 @ 8.61" O.C.	7 @ 6.5" O.C.		
PRS	5 @ 14.72" O.C.	4 @ 9.56" O.C.		
PRL	6 @ 14.4" O.C.	5 @ 10.38" O.C.		
SLU180	8 @ 14.68" O.C.	7 @ 11.92" O.C.		
SLM1830	12 @ 10.34" O.C.	10 @ 7.94" O.C.		

* SIX INCHES FROM EACH CORNER EVENLY SPACED.
** CENTERED.

WOOD ATTACHMENT

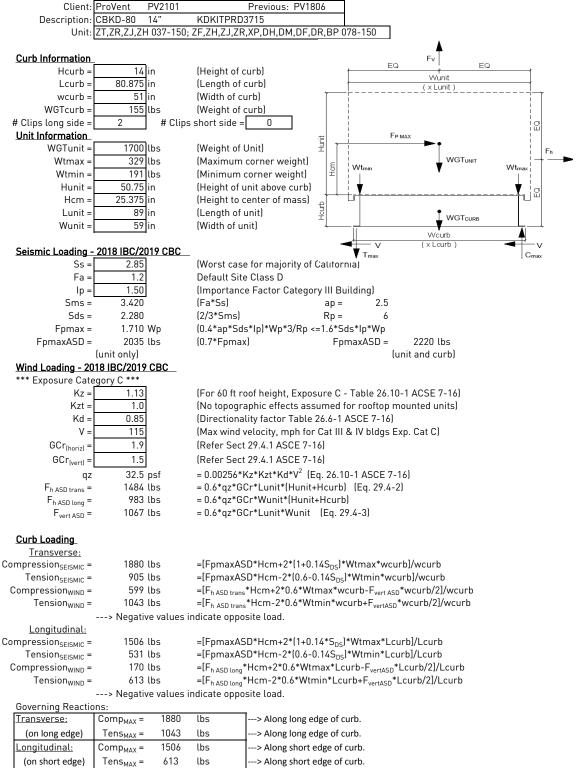
CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 1/2" Ø SIMPSON SDS OR EQUIVALENT SCREWS (3 1/2 " MIN. EMBED. INTO WOOD FRAMING)

5/8" Ø LAG SCREW W/MIN. 3.5" EMBED (SGMIN=0.43) (FOR MIL SERIES ONLY)

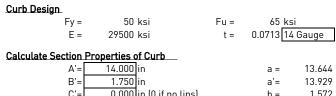
	REQUIRED		
CURB	LONG SIDE	SHORT SIDE	
LXS	4 @ 12.83" O.C.	3 @ 11.5" O.C.	
LXL	4 @ 12.83" O.C.	3 @ 16.5" O.C.	
SUN3672	4 @ 21.5" O.C.	3 @ 14.38" O.C.	
PRD3715	9 @ 9.11" O.C.	8 @ 6.14" O.C.	
PRS	4 @ 20.96" O.C.	3 @ 16.34" O.C.	
PRL	5 @ 19" O.C.	4 @ 15.17" O.C.	
SLU180	9 @ 13.34" O.C.	7 @ 12.58" O.C.	
SLM1830	13 @ 9.81" O.C.	12 @ 6.86" O.C.	

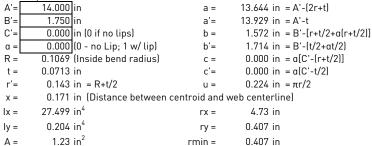
FOUR INCHES FROM EACH CORNER EVENLY SPACED

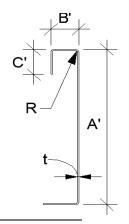
NO. OF ANCHORAGE SCREWS



3847 WABASH DRIVE MIRA LOMA, CA 91725


PHONE (951) 685-1101 FAX (619) 872-9799


SUBMITTED TO:	CB-60		
JOB NAME:			
EQUIPMENT:	DATE:	REV:	DRAWN BY:
NOTES:	10/07/2021	7	FMM



---> Negative values indicate opposite load.

1.80

Axial Compression

Pu =	1.017 k	(Max Axial Comp)	
Pn/Ωc =	17.057 k		
Fe =	30.16 ksi	$P_n ext{ } F_n A ext{ } If$,
λc =	1.29	$\frac{\Omega_c}{\Omega_c} = \frac{\Omega_c}{\Omega_c}$ If	
Fn =	24.98 ksi	c c Ij	•

$$\frac{1}{C_c} = \frac{F_n A}{\Omega_c} \qquad If \ \lambda_c \le 1.5; \ \ F_n = \left(0.658^{\lambda_c^2}\right) F_y \\ If \ \lambda_c > 1.5; \ \ F_n = \frac{0.877}{\lambda_c^2} F_y \qquad \lambda_c = \sqrt{\frac{F_y}{F_e}} \qquad F_e = \frac{\pi^2 E}{\left(k l/r\right)^2}$$

Ly = 50 in Lateral unbraced length $/r_y$ = 98 (assume k=0.8)

Compression Check = 0.K.

Check Web Crippling

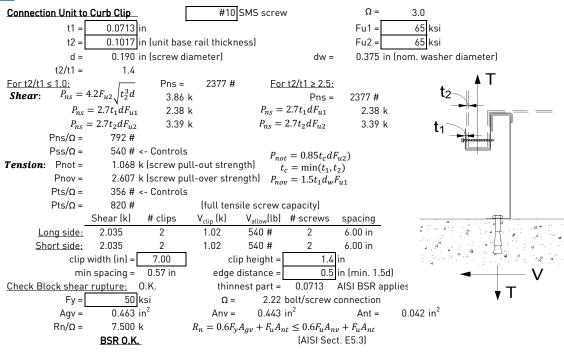
h =	, 14 in	Check limits:	C = 4.00	
t =	0.0713 in	$h/t = 196.35 \le 200$	$C_R = 0.14$ (See table C3.4.1-2, fastene	
N =	7.00	$N/t = 98.18 \le 210$	$C_N = 0.35$ to support, one flange, end	ı
$\Omega_{\rm w}$ =	1.75	$N/h = 0.5 \le 2.0$	$C_h = 0.02$ loading)	
P _n =	2.422 k	$R/t = 1.50 \le 9.0$	$\left(\begin{array}{c} \Gamma_{D} \end{array}\right) \left(\begin{array}{c} \Gamma_{N} \end{array}\right) \left(\begin{array}{c} \Gamma_{N} \end{array}\right)$	
$P_n/\Omega_w =$	1.384 k	P_n :	$=Ct^2F_y\sin(90)\left(1-C_R\sqrt{\frac{R}{t}}\right)\left(1+C_N\sqrt{\frac{N}{t}}\right)\left(1-C_h\sqrt{\frac{h}{t}}\right)$	
Long side: $Pu_{Trans} =$	0.940 k	<u>O.K.</u> # clips = 2		
Short side: Pu _{Long} =	0.753 k	O.K. # clips = 2		

Check Web Stiffener 16Ga x 3/4" x 7" (C-channel)

Officer Web Sufferior	_ 10	00 X 0/4 X / (0 CII	armet,	
width of stiffener =	7.000 in		ts =	0.0566 16 Gauge
web of stiff. w =	6.717 in		Rs =	0.0849 in
***Check w/ts ≤ 1.2	28√E/Fys		Ωc =	1.70
w/ts =	118.675			
1.28 √ (E/Fys) =	31.091	> w/ts over limit	Use C3.7.2	
$P_n = 0.7(P_{wc} + P_{wc})$	$A_e F_y \ge P_{wc}$			
Pwc =	2.422 k	Ae =	= 0.380 in ²	
Pn =	15.002 k	Pn/Ω =	= 8.825 k	

Corner Connections 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts

Not Reg'd


Tcrnmax =	555 lbs		Max(F _{pmaxASD} /4 -OR- Fh _{ASDtrans} /4 corner connections)						
Vcrnmax =	940 lbs	;	Max(Tens/2 -OR- Comp/2 corner connections per sid						
	Bolt:	Tall =	2480	lbs	Vall =	1208	lbs		
Threaded	Insert:	Tall =	2860	lbs	Vall =	1536	lbs		
# of Bolts required for Tension = 0.2									
# of Bolts required for Shear =					0.8				

of Bolts Used = 2.0
Check Combined Stress in Bolts & Inserts: 0.501 Q.K.

<u>Check 1/8" welded connection</u> <--- USE WELD Ω =

Assume L/t > 25: 25*t = 1.783 in
$$P_n/\Omega = \frac{1}{\Omega} 0.75t L F_u \ge V_{req}$$
 $L_{req'd} = \frac{V_{req}\Omega}{0.75t E_u}$

Connection of Curb	to Supporting Structu	<u>ire</u>					
Roof Loading	SEISMIC: (0.6-0.14S _E	_{os})D + 0.7E	WIND: 0.6D + W				
<u>Transverse:</u>	Uplift _{MAX} =	2417 lbs	Shear _{MAX} =	1110 lbs			
Compression _{SEISMIC} =	2938 lbs	=[FpmaxASD*(Hcm+H	lcurb)+(1+0.14S _{DS})*WGT _{ur}	_{iit+curb} *wcurb/2]/wcurb			
$Tension_{SEISMIC} =$	2417 lbs	=[FpmaxASD*(Hcm+H	lcurb)-(0.6-0.14S _{DS})*WGT	_{unit+curb} *wcurb/2]/wcurb			
$Compression_{WIND} =$	1168 lbs	=[F _{h ASD trans} *(Hcm+Hci	urb)+0.6*WGT _{unit+curb} *wcu	rb/2-F _{vert ASD} *wcurb/2]/wcurb			
Tension _{WIND} =	1123 lbs	=[F _{h ASD trans} *(Hcm+Hc	urb)-0.6*WGT _{unit+curb} *wcu	rb/2+F _{vertASD} *wcurb/2]/wcurb			
<u>Longitudinal:</u>	Uplift _{MAX} =		Shear _{MAX} =				
Compression _{SEISMIC} =	2305 lbs	•	lcurb)+(1+0.14S _{DS})*WGT _{ur}				
Tension _{SEISMIC} =	1784 lbs		lcurb)-(0.6-0.14S _{DS})*WGT				
$Compression_{WIND} =$	502 lbs	=[F _{h ASD long} *(Hcm+Hcu	ırb)+0.6*WGT _{unit+curb} *Lcur	b/2-F _{vert ASD} *Lcurb/2]/Lcurb			
Tension _{WIND} =	456 lbs	=[Fh ASD long*(Hcm+Hcu	ırb)-0.6*WGT _{unit+curb} *Lcur	b/2+F _{vertASD} *Lcurb/2]/Lcurb			
Wood Attachmen	t: 1/4"φ x 3.5	" Simpson SDS screws	w/ 2.25" thr<u>eaded eml</u> (S	Gmin = 0.43)			
	Tall _{metal} =		Vall _{metal} = 1097 lb	S			
<u>Transverse:</u>	Tall _{wood} =	616 lbs	$Vall_{wood} = 672$ lb	S			
# of Sci	rews Req'd for Uplift =	3.92	COMBINED LOADING:	0.797 O.K.			
# of Screws Req'd for Shear = 1.65 Screw Spacing = 12.1 in o.c.							
Total # of screws Required = 7							
1/4" ϕ x 3.5" Simpson SDS screws @ 12.1 in o.c. along long side of curb w/ 2.25" threaded embed							
<u>Longitudinal:</u>							
# of Sci	rews Req'd for Uplift =	2.9	COMBINED LOADING:	0.758 O.K.			
# of Scr	ews Req'd for Shear =	1.7	Screw Spacing =	8.6 in o.c.			
Total # of screws Required = 6							
1/4"φ x 3.5" Simpson SDS screws @ 8.6 in o.c. along short side of curb w/ 2.25" threaded embed							
Steel Deck Attachment: 1/2" φ A30 <u>7 Bolts to st</u> eel angle below deck							
_	Tall _{bolt} =		Vall _{bolt} = 2209 lb				
Tnoneuconee	Tall	200/1166	Vall 2102 lb				

1/4" x 3.5" Simpson SDS screws @ 8.6 in o.c. along short side of curb w/ 2.25" threaded embed							
Steel Deck Attachment:	1/2" φ A307 Bol	ts to sto	eel angle l	elow deck			
	Tall _{bolt} =	3927	lbs	$Vall_{bolt} =$	2209 lbs		
<u>Transverse:</u>	Tall _{metal} =	2086	lbs	$Vall_{metal} =$	2192 lbs		
# of Bolts Req'd	for Uplift =	1.16		COMBINED LOAD	ING:	0.504 O.K.	
# of Bolts Req'd	for Shear =	0.51		Bolt Spa	cing =	68.9 in o.c.	
Total # of Bolts	Required =	2					
1/2" φ A307 Bolts to steel an	gle below deck @	68.9 in	o.c. along l	ong side of curb			
Longitudinal:							
# of Bolts Req'd	for Uplift =	0.86		COMBINED LOAD	ING:	0.344 O.K.	
# of Bolts Req'd	for Shear =	0.51		Req'd Min Spa	cing =	39.0 in o.c.	
Total # of Bolts	Required =	2					

1/2" φ A307 Bolts to steel angle below deck @ 39 in o.c. along short side of curb

For Concrete anchorage: SEISMIC $(0.6-0.14S_{DS})D + 0.7\Omega_o E$ Ω o = 2.0 Concrete Attachment: 3/4" ϕ thrd'd rods in Hilti Hit-HY 200 epoxy w/ 4" embed $\mathsf{Tall}_{\mathsf{LRFD}} =$ $Vall_{LRFD} =$ 1722 lbs 2032 lbs $\propto = (1 + 0.2SDS)D + 2.5E = 1.708$ (D = 0.758, E = 0.242)920.9 lbs $Tall_{ASD} = Tall_{LRFD}/\alpha =$ $Vall_{ASD} = Vall_{LRFD}/\alpha =$ 1086.6 lbs Uplift_{MAX} = 3168 lbs Shear_{MAX} = 2220 lbs Transverse: ${\sf Compression}_{\sf SEISMIC} =$ 4652 lbs $= \! [\Omega o * FpmaxASD*(Hcm + Hcurb) + (1 + 0.14S_{DS}) * WGT_{unit+curb}* wcurb/2] / wcurb$ $\mathsf{Tension}_{\mathsf{SEISMIC}} =$ 3168 lbs $= [\Omega o*FpmaxASD*(Hcm+Hcurb)-(0.6-0.14S_{DS})*WGT_{unit+curb}*wcurb/2]/wcurb$ $\mathsf{Shear}_{\mathsf{SEISMIC}} =$ =Ωo*FpmaxASD/2 2220 lbs Min Bolts Req'd Uplift = 3.44 spacing = 22.96 in o.c. 452.6 lbs Tapplied = 2.04 spacing = Min Bolts Req'd Shear = 34.44 in o.c. Vapplied = 170.8 lbs $V_{apllied} \le 1.2 = 0.65$ Try using bolts $T_{applied}$ COMBINED LOADING = spaced at 11 48 $T_{allow,ASD} + \overline{V_{allow,ASD}}$ in o.c. Use 7 - 3/4" φ thrd'd rods in Hilti Hit-HY 200 epoxy @ 11.5 in o. max. along long side of curb w/ 4" embed $Uplift_{MAX} =$ 1902 lbs Shear_{MAX} = Longitudinal: Compression_{SFISMIC} = 3386 lbs = $[\Omega \circ \text{FpmaxASD*}(\text{Hcm+Hcurb})+(1+0.14S_{DS})*\text{WGT}_{\text{unit+curb}}*\text{Lcurb}/2]/\text{Lcurb}$ $Tension_{SEISMIC} =$ 1902 lbs = $[\Omega o*FpmaxASD*(Hcm+Hcurb)-(0.6-0.14S_{DS})*WGT_{unit+curb}*Lcurb/2]/Lcurb$ Shear_{SEISMIC} = 2220 lbs $=\Omega o*FpmaxASD/2$ 19.50 in o.c. Tapplied = Min Bolts Req'd Uplift = 2.07 spacing = 316.9 lbs Vapplied = 170.8 lbs Min Bolts Req'd Shear = 2.04 spacing = 19.50 in o.c. $\frac{V_{apllied}}{1.2}$ $T_{applied}$ Try using bolts COMBINED LOADING = = 0.50 $\overline{T_{allow,ASD}}$ $\overline{V_{allow,ASD}}$ spaced at 7.80 in o.c. Use 6 - 3/4" \$\phi\$ thrd'd rods in Hilti Hit-HY 200 epoxy @ 7.8 in o.c. max. along short side of curb w/ 4" embed

CLIDD DECICAL CLI	MAMADY	CDVD 00	KDKITDDD33	45	11	7T 7D 71 711 027 4FO.	
COKR DESIGN SO	JRB DESIGN SUMMARY: CBKD-		KDKITPRD3715			ZT,ZR,ZJ,ZH 037-150;	
CURB RAIL	CURB RAIL THICKNESS:		14 Gauge			ZF,ZH,ZJ,ZR,XP,DH,DM,DF,DR,BP	
UNIT CLIP	THICKNESS:	0.0713 in	14 Gauge			078-150	
# OF CLIPS (LONG SIDE) - 2 clips with 2 - #10 SMS screws each clip							
WEB STIFFENER: NOT REQUIRED							
# OF CLIPS (SHORT SIDE) - 2 clips with 2 - #10 SMS screws each clip							
WEB STIFFENER: NOT REQUIRED							
CORNER CONNECTION: Use 2 - 1/4" A SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts							
CURB		WOOD		<u>STEEL</u>		CONCRETE	
ANCHORAGE	1/4"φ x 3.5	" Simpson S	SDS screws	1/2" φ A307 Bol	ts to	3/4" φ thrd'd rod in Hilti HIT-HY	
ANCHORAGE	w/ 2.25	5" threaded	embed	steel angle below	v deck	200 epoxy, min. 4" embed	
LONG DIRECTION	7	@ 12.15 in c).C.	2 @ 68.88 in c).C.	7 @ 11.48 in o.c.	
SHORT DIRECTION	6	6 @ 8.6 in o.	c.	2 @ 39 in o.d	Ç.	6 @ 7.8 in o.c.	