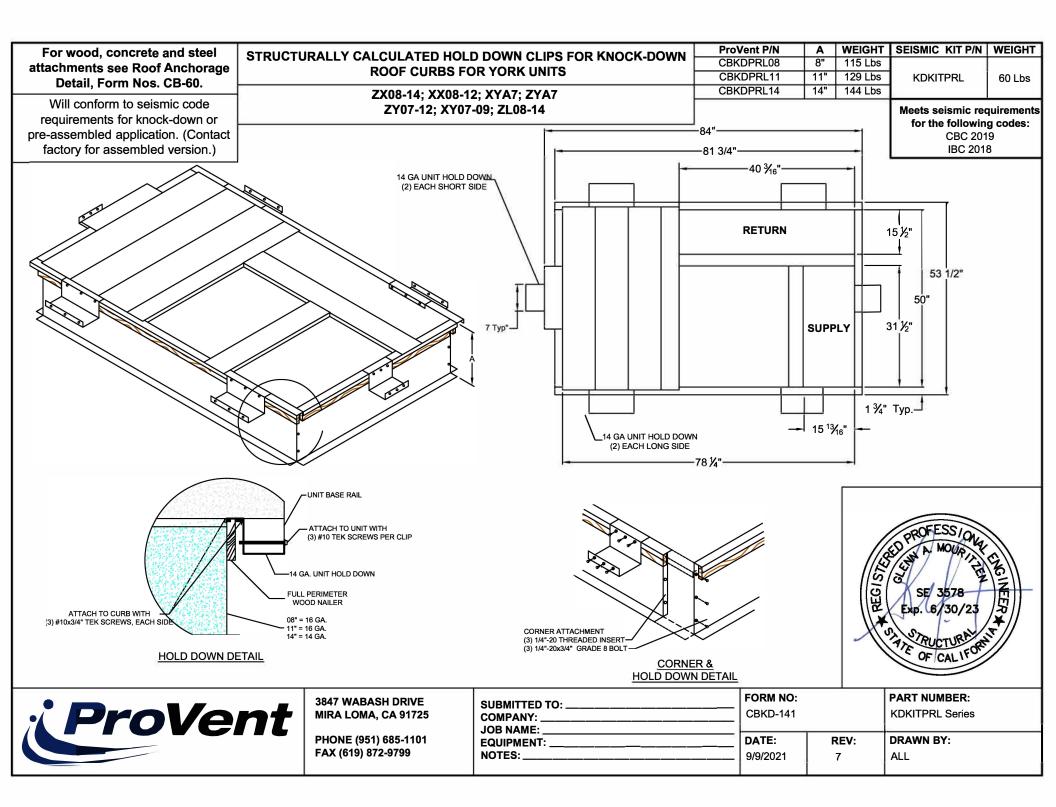
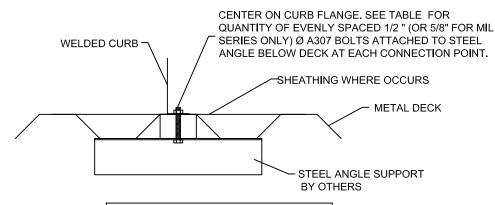


Structural Calculations for CBKD-141 Series KDKITPRL


Prepared for:

PROVENT / RRS


3847 Wabash Drive Mira Loma, CA 91725

Date: October 1, 2021

Project Number: PV2101

STEEL ATTACHMENT

NO O	FANCHO	RAGE	BOLTS	REQUIRED
.40.0				I VE GOIL VED

CURB	LONG SIDE	SHORT SIDE
LXS	2 @ 34.5" O.C.	2 @ 19" O.C.
LXL	2 @ 34.5" O.C.	2 @ 29" O.C.
SUN3672	2 @ 60.5" O.C.	2 @ 39" O.C.
PRD3715	2 @ 68.88" O.C.	2 @ 39" O.C.
PRS	2 @ 58.88" O.C.	2 @ 28.69" O.C.
PRL	2 @ 72" O.C.	2 @ 41.5" O.C.
SLU180	3 @ 51.38" O.C.	2 @ 71.5" O.C.
SLM1830	3 @ 56.88" O.C	3 @ 35.75" O.C.

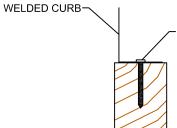
ASSUMES:

CONC SLAB fc= 4000PSI MINIMUM 6" MIN THICKNESS NORMAL WEIGHT CONCRETE OR SAND LIGHT WEIGHT

CONCRETE ATTACHMENT

WELDED CURB-

Meets seismic requirements for the following codes: CBC 2019 IBC 2018


ROOF ANCHORAGE DETAIL				
CBKD Series	CBWC Series			
LXS	LXS			
LXL	LXL			
SUN3672	SUN3672			
PRD3715	PRD3715			
PRS	PRS			
PRL	PRL			
SLU180	SLU180			
SLM1830	SLM1830			

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 3/4" Ø THREADED ROD IN HILTI HIT-HY 200 EPOXY WITH 4" EMBED

	NO. OF ANCHORAG	ICHORAGE BOLTS REQUIRED		
CURB	LONG SIDE	SHORT SIDE		
LXS	4 @ 11.5" O.C.	3 @ 9.5" O.C.		
LXL	4 @ 11.5" O.C.	3 @ 14.5" O.C.		
SUN3672	4 @ 20.17" O.C.	3 @ 12.38" O.C.		
PRD3715	9 @ 8.61" O.C.	7 @ 6.5" O.C.		
PRS	5 @ 14.72" O.C.	4 @ 9.56" O.C.		
PRL	6 @ 14.4" O.C.	5 @ 10.38" O.C.		
SLU180	8 @ 14.68" O.C.	7 @ 11.92" O.C.		
SLM1830	12 @ 10.34" O.C.	10 @ 7.94" O.C.		

* SIX INCHES FROM EACH CORNER EVENLY SPACED.
** CENTERED.

WOOD ATTACHMENT

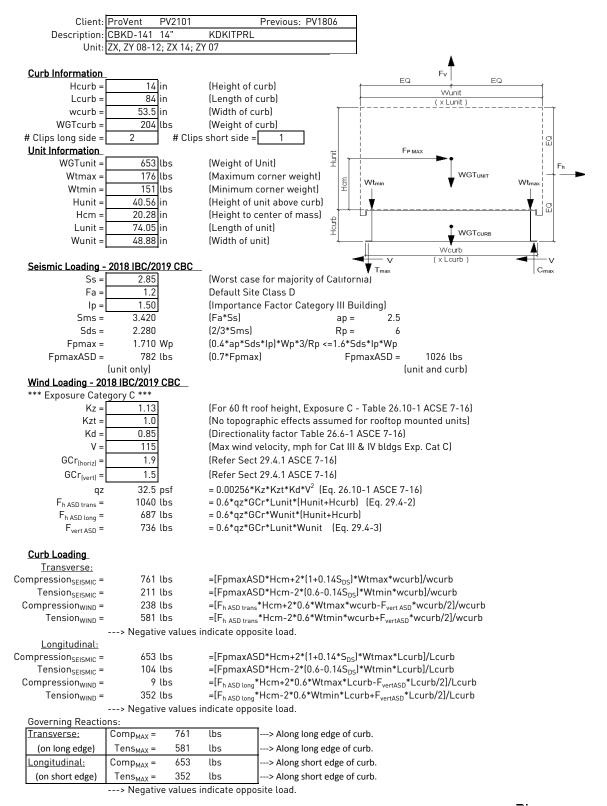
CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 1/2" Ø SIMPSON SDS OR EQUIVALENT SCREWS (3 1/2 " MIN. EMBED. INTO WOOD FRAMING)

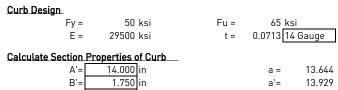
5/8" Ø LAG SCREW W/MIN. 3.5" EMBED (SGMIN=0.43) (FOR MIL SERIES ONLY)

	REQUIRED		
CURB	LONG SIDE	SHORT SIDE	
LXS	4 @ 12.83" O.C.	3 @ 11.5" O.C.	
LXL	4 @ 12.83" O.C.	3 @ 16.5" O.C.	
SUN3672	4 @ 21.5" O.C.	3 @ 14.38" O.C.	
PRD3715	9 @ 9.11" O.C.	8 @ 6.14" O.C.	
PRS	4 @ 20.96" O.C.	3 @ 16.34" O.C.	
PRL	5 @ 19" O.C.	4 @ 15.17" O.C.	
SLU180	9 @ 13.34" O.C.	7 @ 12.58" O.C.	
SLM1830	13 @ 9.81" O.C.	12 @ 6.86" O.C.	

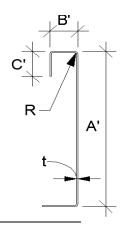
FOUR INCHES FROM EACH CORNER EVENLY SPACED

NO. OF ANCHORAGE SCREWS




3847 WABASH DRIVE MIRA LOMA, CA 91725


PHONE (951) 685-1101 FAX (619) 872-9799


SUBMITTED TO:	CB-60		
JOB NAME:			
EQUIPMENT:	DATE:	REV:	DRAWN BY:
NOTES:	10/07/2021	7	FMM

Axial Compression

Pu =	0.520 k	(Max Axial Comp)	Ωc =	1.80
Pn/Ωc =	17.057 k	$E_{\lambda} < 1.5$, $E_{\lambda} = (0.050 \lambda_s^2) E_{\lambda}$	_	
Fe =	30.16 ksi	$\underline{P_n - F_n A} \qquad If \ \lambda_c \le 1.5; \ F_n = \left(0.658^{\lambda_c^2}\right) F_y$	$\lambda_c = \sqrt{\frac{F_y}{F_e}}$	E _
λc =	1.29	$\frac{\frac{n}{\Omega_c}}{\Omega_c} = \frac{n}{\Omega_c}$ If $\lambda_c > 1.5$; $F_n = \frac{0.877}{\lambda^2} F_y$	$\lambda_c = \sqrt{\frac{F_e}{F_e}}$	r_e —
Fn =	24.98 ksi	$\lambda_c > 1.3, \lambda_n = \lambda_c^2 + \lambda_c^2$	V	
l v =	50 in	Lateral unbraced length		

(assume k=0.8)

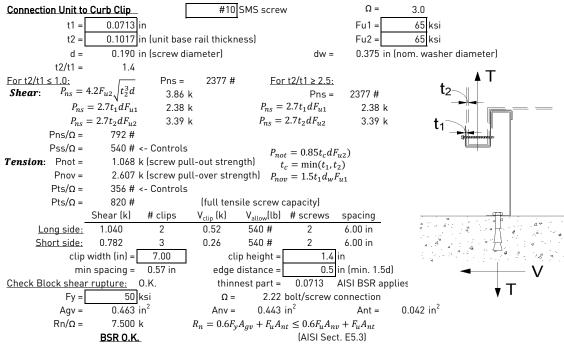
Compression Check = 0.K.

98

Check Web Crippling

h =	14 in	Check limits:	C = 4.00	
t =	0.0713 in	$h/t = 196.35 \le 200$	$C_R = 0.14$ (See table C3.4.1-2, fastened	
N =	7.00	$N/t = 98.18 \le 210$	$C_N = 0.35$ to support, one flange, end	
$\Omega_{\rm w}$ =	1.75	$N/h = 0.5 \le 2.0$	$C_h = 0.02$ loading)	
P _n =	2.422 k	$R/t = 1.50 \le 9.0$		
$P_n/\Omega_w =$	1.384 k	$P_n =$	$= Ct^2 F_y \sin(90) \left(1 - C_R \sqrt{\frac{R}{t}} \right) \left(1 + C_N \sqrt{\frac{N}{t}} \right) \left(1 - C_h \sqrt{\frac{h}{t}} \right)$	
Long side: $Pu_{Trans} =$	0.380 k	<u>0.K.</u> # clips = 2	$\int \int $	
Short side: Pulong =	0.218 k	O.K. # clips = 3		

Check Web Stiffener


width of stiffener =	7.000 in		ts =	0.0566 16 G	au
web of stiff. w =	6.717 in		Rs =	0.0849 in	
***Check w/ts ≤ 1.	.28√E/Fys		Ωc =	1.70	
w/ts =	118.675				
1.28v(E/Fys) =	31.091	> w/ts over limit	Use C3.7.2		
$P_n = 0.7(P_{wc} +$	$A_e F_y $ $\ge P_{wc}$				
Pwc =	2.422 k	Ae =	0.380 in ²		
Pn =	15.002 k	Pn/Ω =	8.825 k		
			Not Reg'd		

Corner Connections 1/4" ϕ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts

Tcrnmax =	260 lbs		Max(F _{pmaxAS}	_{SD} /4 -0	R- Fh _{ASD}	_{Itrans} /4 c	orner con	nections)	
Vcrnmax =	380 lbs		Max(Tens/2	-0R-	Comp/2	corner	connectio	ns per sid	de)
	Bolt:	Tall =	2480	lbs		Vall =	1208	lbs	
Threaded	Insert:	Tall =	2860	lbs		Vall =	1536	lbs	
# (of Bolts req	uired fo	r Tension =	='	0.1	-			
:	# of Rolts r	hariine	for Shear =		በ 3				

of Bolts Used = 2.0
Check Combined Stress in Bolts & Inserts: 0.210

O.K.

Connection of Curb to Supporting Structure

Roof Loading	SEISMIC: (0.6-0.14S _E	_s)D + 0.7E	WIND: 0.6D + W		
<u>Transverse:</u>	Uplift _{MAX} =	982 lbs	Shear _{MAX} =	520 lbs	
Compression _{SEISMIC} =	1223 lbs	=[FpmaxASD*(Hcm+H	lcurb)+(1+0.14S _{DS})*WGT _{uni}	_{it+curb} *wcurb/2]/wc	urb
Tension _{SEISMIC} =	982 lbs	=[FpmaxASD*(Hcm+H	lcurb)-(0.6-0.14S _{DS})*WGT _U	_{unit+curb} *wcurb/2]/w	curb
$Compression_{WIND} =$	556 lbs	=[F _{h ASD trans} *(Hcm+Hci	urb)+0.6*WGT _{unit+curb} *wcu	rb/2-F _{vert ASD} *wcurl	o/2]/wcurb
Tension _{WIND} =	777 lbs	=[F _{h ASD trans} *(Hcm+Hc	urb)-0.6*WGT _{unit+curb} *wcu	rb/2+F _{vertASD} *wcurk	o/2]/wcurb
<u>Longitudinal:</u>	Uplift _{MAX} =		Shear _{MAX} =		
Compression _{SEISMIC} =			lcurb)+(1+0.14S _{DS})*WGT _{uni}		
Tension _{SEISMIC} =	743 lbs	=[FpmaxASD*(Hcm+H	lcurb)-(0.6-0.14S _{DS})*WGTر	_{ınit+curb} *Lcurb/2]/Lc	urb
$Compression_{WIND} =$	169 lbs	$=[F_{h ASD long}*(Hcm+Hcu$	ırb)+0.6*WGT _{unit+curb} *Lcur	b/2-F _{vert ASD} *Lcurb/	'2]/Lcurb
Tension _{WIND} =	391 lbs	=[Fh ASD long*(Hcm+Hcu	ırb)-0.6*WGT _{unit+curb} *Lcurl	b/2+F _{vertASD} *Lcurb/	2]/Lcurb
Wood Attachmen	t: 1/4"φ x 3.5	" Simpson SDS screws	w/ 2.25" threaded emt (S	Gmin = 0.43)	
	Tall=	997 lhs	Vall = 1097 lbs	5	

Wood Attachment:	1/4"φ x 3.5" Sii	mpson SDS scr	ews w/ 2.25" threaded emt (SGmin = 0.43)	
	Tall _{metal} =	997 lbs	Vall _{metal} = 1097 lbs	
<u>Transverse:</u>	Tall _{wood} =	616 lbs	Vall _{wood} = 672 lbs	
# of Screws Req'	d for Uplift =	1.59	COMBINED LOADING: 0.789 O.K.	
# of Screws Req'o	d for Shear =	0.77	Screw Spacing = 38.0 in o.	C.
Total # of screw	s Required =	3		

1/4 $^{\circ}\phi$ x 3.5" Simpson SDS screws @ 38 in $\overline{\text{o.c. along long side of curb w/ 2.25"}}$ threaded embed

Longitudinal:

of Screws Req'd for Uplift = 1.2 COMBINED LOADING: 0.985 0.K. # of Screws Req'd for Shear = 0.8 Screw Spacing = 45.5 in o.c. Total # of screws Required = 2

1/4" \(\pri \times 3.5" \) Simpson SDS screws @ 45.5 in o.c. along short side of curb w/ 2.25" threaded embed

1/2" φ A307 Bolts to steel angle below deck @ 41.5 in o.c. along short side of curb

1/4" ϕ x 3.5" Simpson SDS screws @ 45.5 in o.c. along short side of curb w/ 2.25" threaded embed								
Steel Deck Attachment: 1/2" φ A307 Bolts to steel angle below deck								
	Tall _{bolt} =	3927	lbs	Vall _{bolt} =	2209 lbs			
<u>Transverse:</u>	Tall _{metal} =	2086	lbs	Vall _{metal} =	2192 lbs			
# of Bolts Red	q'd for Uplift =	0.47		COMBINED LOA	DING:	0.118 O.K.		
# of Bolts Req'd for Shear =		0.24		Bolt Sp	acing =	72.0 in o.c.		
Total # of Bol	lts Required =	2						
1/2" φ A307 Bolts to steel angle below deck @ 72 in o.c. along long side of curb								
Longitudinal:								
# of Bolts Red	q'd for Uplift =	0.36		COMBINED LOA	DING:	0.084 O.K.		
# of Bolts Req	'd for Shear =	0.23	_	Req'd Min Sp	acing =	41.5 in o.c.		
Total # of Bo	lts Required =	2						

For Concrete anchorage: SEISMIC $(0.6-0.14S_{DS})D + 0.7\Omega_o E$ Ω o = 2.0 Concrete Attachment: 3/4" ϕ thrd'd rods in Hilti Hit-HY 200 epoxy w/ 4" embed $\mathsf{Tall}_{\mathsf{LRFD}} =$ $Vall_{LRFD} =$ 2032 lbs $\alpha = (1 + 0.2SDS)D + 2.5E = 1.708$ 1722 lbs (D = 0.758, E = 0.242)920.9 lbs $Tall_{ASD} = Tall_{LRFD}/\alpha =$ $Vall_{ASD} = Vall_{LRFD}/\alpha =$ 1086.6 lbs Uplift_{MAX} = 1194 lbs Shear_{MAX} = 1026 lbs Transverse: ${\sf Compression}_{\sf SEISMIC} =$ 1880 lbs $= \! [\Omega o * FpmaxASD*(Hcm + Hcurb) + (1 + 0.14S_{DS}) * WGT_{unit+curb}* wcurb/2] / wcurb$ $\mathsf{Tension}_{\mathsf{SEISMIC}} =$ 1194 lbs $= [\Omega o*FpmaxASD*(Hcm+Hcurb)-(0.6-0.14S_{DS})*WGT_{unit+curb}*wcurb/2]/wcurb$ $\mathsf{Shear}_{\mathsf{SEISMIC}} =$ $=\Omega o*FpmaxASD/2$ 1026 lbs 1.30 spacing = Min Bolts Req'd Uplift = 72.00 in o.c. 398.1 lbs Tapplied = Min Bolts Req'd Shear = 2.00 spacing = 72.00 in o.c. Vapplied = 171.0 lbs $\frac{V_{apllied}}{V_{apllied}} \le 1.2 = 0.59$ $T_{applied}$ + Try using 3 bolts COMBINED LOADING = spaced at 36.00 $T_{allow,ASD} + \overline{V_{allow,ASD}}$ in o.c. Use 3 - 3/4" ϕ thrd'd rods in Hilti Hit-HY 200 epoxy @ 36 in o. max. along long side of curb w/ 4" embed $Uplift_{MAX} =$ 717 lbs Shear_{MAX} = 1026 lbs Longitudinal: Compression_{SFISMIC} = 1403 lbs = $[\Omega \circ \text{FpmaxASD*}(\text{Hcm+Hcurb})+(1+0.14S_{DS})*\text{WGT}_{\text{unit+curb}}*\text{Lcurb}/2]/\text{Lcurb}$ $Tension_{SEISMIC} =$ 717 lbs = $[\Omega o*FpmaxASD*(Hcm+Hcurb)-(0.6-0.14S_{DS})*WGT_{unit+curb}*Lcurb/2]/Lcurb$ Shear_{SEISMIC} = 1026 lbs =Ωo*FpmaxASD/2 20.75 in o.c. Tapplied = Min Bolts Req'd Uplift = 0.78 spacing = 239.0 lbs Vapplied = 171.0 lbs Min Bolts Req'd Shear = 2.00 spacing = 41.50 in o.c. $V_{apllied} \le 1.2$ $T_{applied}$ Try using bolts COMBINED LOADING = = 0.42 $T_{allow,ASD} + \overline{V_{allow,ASD}}$ spaced at 20.75 in o.c.

Use 3 - 3/4" ϕ thrd'd rods in Hilti Hit-HY 200 epoxy @ 20.8 in o.c. max. along short side of curb w/ 4" embed

CURB DESIGN SU	JMMARY: CBKD-14:		KDKITPRL	Unit	ZX, ZY 08-12; ZX 14; ZY 07			
CURB RAIL	THICKNESS:	0.0713 in	14 Gauge		1			
UNIT CLIP	THICKNESS:	0.0713 in	14 Gauge					
# OF CLIPS (LONG SIDE) - 2 clips with 2 - #10 SMS screws each clip								
WEB STIFFENER: NOT REQUIRED								
# OF CLIPS (SHORT SIDE) - 3 clips with 2 - #10 SMS screws each clip								
WEB STIFFENER: NOT REQUIRED								
CORNER CONNECTION: Use 2 - 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts								
CURB ANCHORAGE		WOOD		STEEL	CONCRETE			
	1/4"φ x 3.5	5" Simpson SDS screws		1/2" φ A307 Bolts to	3/4" φ thrd'd rod in Hilti HIT-HY			
	w/ 2.25	5" threaded embed		steel angle below deck	200 epoxy, min. 4" embed			
LONG DIRECTION		3 @ 38 in o.c.		2 @ 72 in o.c.	3 @ 36 in o.c.			
SHORT DIRECTION	2	2 @ 45.5 in o.c.		2 @ 41.5 in o.c.	3 @ 20.75 in o.c.			