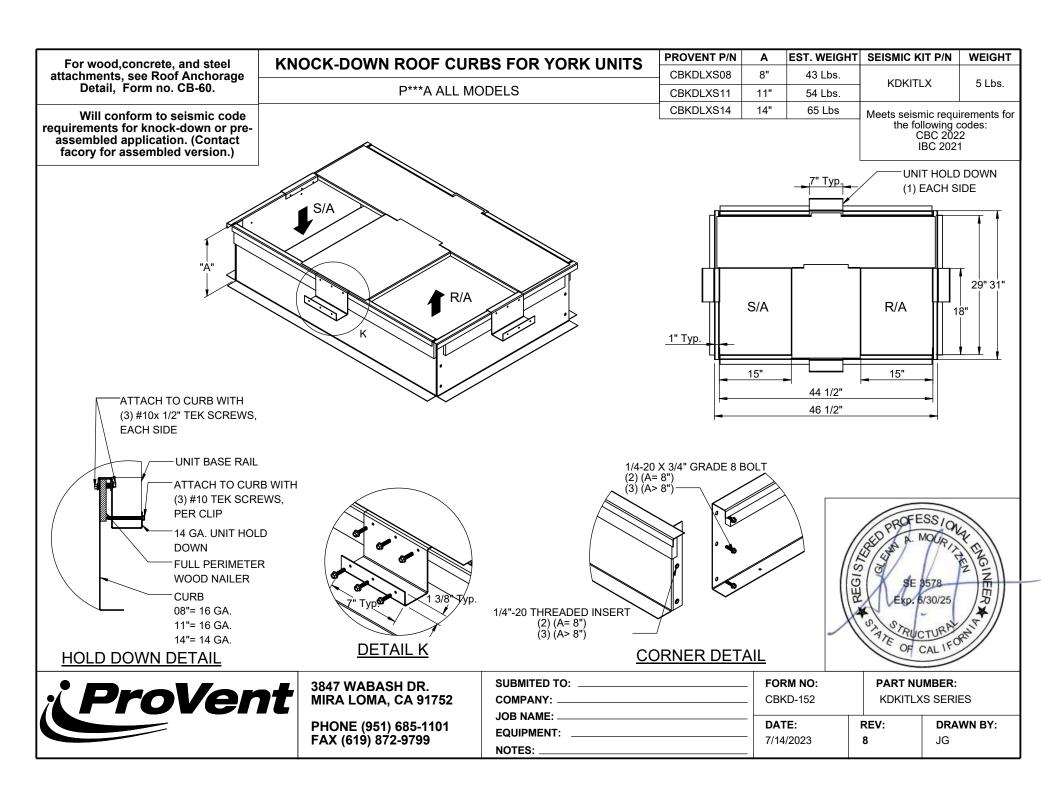
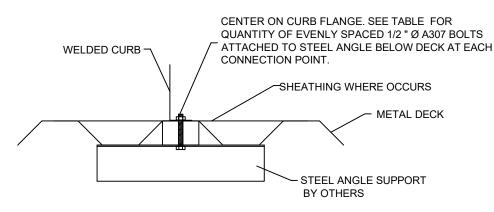


Structural Calculations for CBKD-152 Series

CBKDLXS SERIES**


Prepared for:

PROVENT / RRS

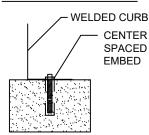

3847 Wabash Drive Mira Loma, CA 91725

Date: September 26, 2023

Project Number: PV2312

STEEL ATTACHMENT

	NO. OF ANCHORAGE BOLTS REQUIRED			
CURB	LONG SIDE	SHORT SIDE		
LXS	2 @ 34.5" O.C.	2 @ 19" O.C.		
LXL	2 @ 34.5" O.C.	2 @ 29" O.C.		
SUN3672	2 @ 60.5" O.C.	2 @ 24.75" O.C.		
PRD3715	2 @ 68.88" O.C.	2 @ 39" O.C.		
PRS	2 @ 58.88" O.C.	2 @ 28.69" O.C.		
PRL	2 @ 72" O.C.	2 @ 41.5" O.C.		
SAV1518	3 @ 54.56" O.C	2 @ 68.13" O.C.		
SAV2025	3 @ 61.56" O.C	2 @ 68.13" O.C.		
SAV28	3 @ 69.75" O.C	2 @ 68.13" O.C.		

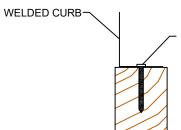

ASSUMES:

CONC SLAB f'c= 4000PSI MINIMUM 4" MIN THICKNESS NORMAL WEIGHT CONCRETE MIN. 7-1/4" EDGE DISTANCE

Meets seismic requirements for the following codes: CBC 2022 IBC 2021

ROOF ANCHORAGE DETAIL				
CBKD Series	CBWC Series			
LXS	LXS			
LXL	LXL			
SUN3672	SUN3672			
PRD3715	PRD3715			
PRS	PRS			
PRL	PRL			
SAV1518	SAV1518			
SAV2025	SAV2025			
SAV28	SAV28			

CONCRETE ATTACHMENT



CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 1/2" Ø THREADED ROD IN HILTI HIT-HY 200 V3 EPOXY WITH 2-1/2" **EMBED**

	NO. OF ANCHORAGE BOLTS REQUIRED			
CURB	LONG SIDE	SHORT SIDE		
LXS	2 @ 34.5" O.C.	2 @ 19.0" O.C.		
LXL	2 @ 34.5" O.C.	2 @ 29" O.C.		
SUN3672	2 @ 60.5" O.C.	2 @ 24.75" O.C.		
PRD3715	4 @ 22.96" O.C.	2 @ 39" O.C.		
PRS	2 @ 58.88" O.C.	2 @ 28.69" O.C.		
PRL	3 @ 36" O.C.	2 @ 41.5" O.C.		
SAV1518	4 @ 36.38" O.C.	2 @ 68.13" O.C.		
SAV2025	4 @ 41.04" O.C.	3 @ 34.06" O.C.		
SAV28	5 @ 34.88" O.C.	3 @ 34.06" O.C.		

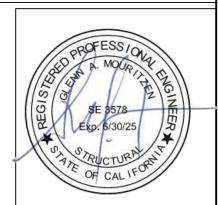
* SIX INCHES FROM EACH CORNER EVENLY SPACED. ** CENTERED.

WOOD ATTACHMENT

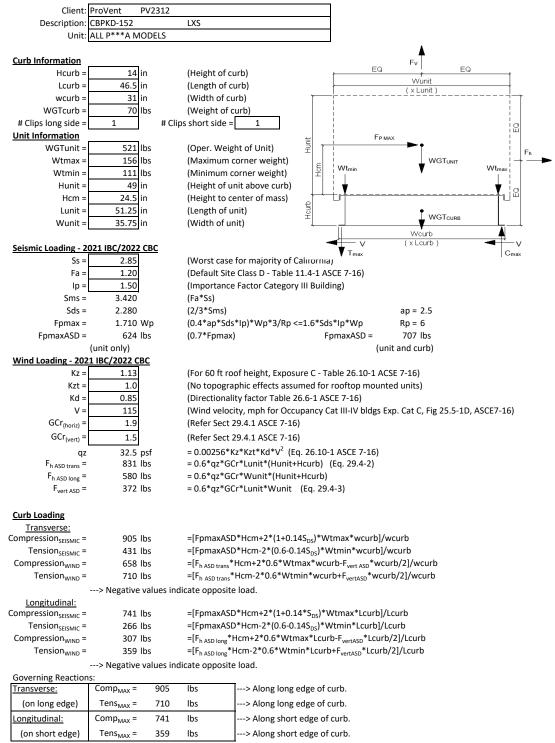
CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED

1/4" Ø x 3.5" SIMPSON SDS SCREWS W/2.25" THREADED EMBED INTO WOOD FRAMING

FOUR INCHES	FROM EACH
CORNER EVE	NI Y SPACED



3847 WABASH DRIVE MIRA LOMA, CA 91725

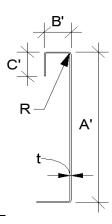

PHONE (951) 685-1101 FAX (619) 872-9799

	NO. OF ANOHORAGE SCILLING		
	REQUIRED		
CURB	LONG SIDE	SHORT SIDE	
LXS	4 @ 12.83" O.C.	3 @ 11.5" O.C.	
LXL	4 @ 12.83" O.C.	3 @ 16.5" O.C.	
SUN3672	4 @ 21.5" O.C.	3 @ 14.38" O.C.	
PRD3715	7 @ 12.15" O.C.	5 @ 10.75" O.C.	
PRS	4 @ 20.96" O.C.	3 @ 16.35" O.C.	
PRL	6 @ 15.2" O.C.	4 @ 15.17" O.C.	
SAV1518	6 @ 22.63" O.C.	5 @ 18.03" O.C.	
SAV2025	7 @ 21.19" O.C.	5 @ 18.03" O.C.	
SAV28	8 @ 20.5" O.C.	5 @ 18.03" O.C.	

NO OF ANCHORAGE SCREWS

SUBMITTED TO:	CB-60		
EQUIPMENT:	DATE:	REV:	DRAWN BY:
NOTES:	8/28/2023	10	FMM

^{---&}gt; Negative values indicate opposite load.



Fy =	50 ksi	Fu =	65 ksi
E =	29500 ksi	t =	0.0566 16 Gauge

Calculate Section Properties of Curb

A'=	14.000	in	a =	13.717 in = $A'-(2r+t)$	
B'=	1.000	in	a'=	13.943 in = A'-t	
C'=	0.000	in (0 if no lips)	b =	$0.859 \text{ in } = B'-[r+t/2+\alpha(r+t)]$	t/2
α=	0.000	(0 - no Lip; 1 w/ lip)	b'=	$0.972 \text{ in } = B'-(t/2+\alpha t/2)$	
R =	0.0849	(Inside bend radius)	c =	0.000 in = $\alpha[C'-(r+t/2)]$	
t =	0.0566	in	c'=	0.000 in = $\alpha(C'-t/2)$	
r'=	0.113	in = $R+t/2$	u =	$0.178 \text{ in } = \pi r/2$	
x =	0.060	in (Distance between c	entroid and web o	centerline)	
lx =	17.874	in ⁴	rx =	4.47 in	
ly =	0.031	in ⁴	ry =	0.187 in	
A =	0.89	in ²	rmin =	0.187 in	

(assume k=0.8)

Axial Compression

Pu =	0.416 k	(Max Axial Con	np)	Ωc =	1.80
$Pn/\Omega c =$	3.516 k		$E = (0.650\lambda^2)E$	_	
Fe =	8.08 ksi		If $\lambda_c \le 1.5$; $F_n = \left(0.658^{\lambda_c^2}\right) F_y$	$\lambda_c = \sqrt{\frac{F_y}{F_e}}$	$F = \frac{\pi^2 E}{\pi^2 E}$
λc =	2.49	$\frac{\Omega_c}{\Omega_c} = \frac{\Omega_c}{\Omega_c}$	If $\lambda_c > 1.5$; $F_n = \frac{0.877}{\lambda_c^2} F_y$	$\kappa_c - \sqrt{\overline{F_e}}$	$F_e = \frac{n E}{\left(kl/r\right)^2}$
Fn =	7.08 ksi		λ_c^2	•	(11)
Ly =	45 in	Lateral unbrace	ed length		

Compression Check = O.K.

190

Check Web Crippling

 $k_y L_y / r_y =$

h =	14 in	Check limit	ts:	C = 4.00	٦
t =	0.0566 in	h/t =	247.35 ≤ 260	$C_R = 0.14$	(See table C3.4.1-2, fastened to
N =	7.00	N/t =	123.67 ≤ 210	$C_N = 0.35$	support, one flange, end loading)
$\Omega_{\rm w}$ =	1.75	N/h =	0.5 ≤ 2.0	$C_h = 0.02$	J
P _n =	1.591 k	R/t =	1.50 ≤ 9.0	/	
$P_n/\Omega_w =$	0.909 k		$P_n =$	$Ct^2F_y\sin(90)$ $\left(1-C_y^2\right)$	$\binom{R}{t} \left(1 + C_N \left \frac{N}{t} \right) \left(1 - C_h \left \frac{h}{t} \right) \right) \right)$
Long side: Pu _{Trans} =	0.905 k	<u>О.К.</u>	# clips = 1		$(1)^{t} (1)^{t} (1)^$
Short side: Pu _{Long} =	0.741 k	<u>O.K.</u>	# clips = 1	•	, , , , , ,

Check Web Stiffener	16Ga x 3/4" x 6	" (C-channel)	
width of stiffener =	6.000 in	ts =	0.0566 16 Gauge
web of stiff. w =	5.717 in	Rs =	0.0849 in
***Check w/ts ≤ 1.28√	E/Fys	Ωc =	1.70

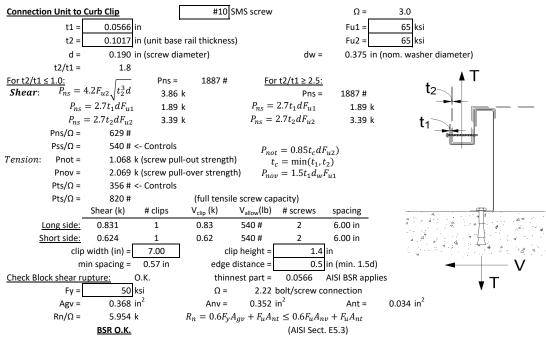
w/ts = 101.007

1.28V(E/Fys) = 31.091 --> w/ts over limit Use C3.7.2

 $P_n = 0.7 \left(P_{wc} + A_e F_y \right) \ge P_{wc}$

1.591 k 0.324 in² Pwc = Ae = Pn = 12.439 k $Pn/\Omega =$ 7.317 k Not Reg'd

Corner Connections


1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts

 $Max(F_{pmaxASD}/4 - OR- Fh_{ASDtrans}/4 corner connections)$ Tcrnmax = 208 lbs Vcrnmax = 453 lbs Max(Tens/2 -OR- Comp/2 corner connections per side) 2480 lbs Vall = 1208 lbs Bolt: Tall = Threaded Insert: Tall = 2860 lbs Vall = 1536 lbs

> # of Bolts required for Tension = 0.1 # of Bolts required for Shear = 0.4 # of Bolts Used = 3.0

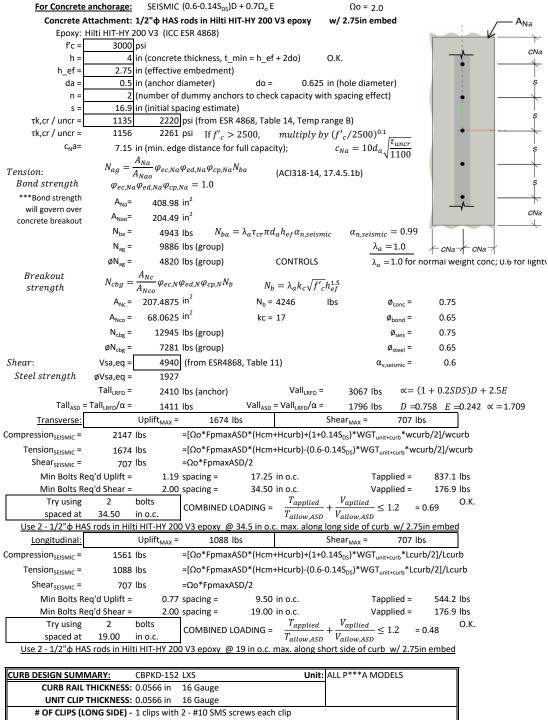
Check Combined Stress in Bolts & Inserts:

Check 1/8" welded connection

Connection of Curb to Supporting Structure

Connection of Curb to	Supporting Structure	2		
Roof Loading	SEISMIC: (0.6-0.14S _t	os)D + 0.7E	WIND: 0.6D + W	
<u>Transverse:</u>	Uplift _{MAX} =	= 1041 lbs	Shear _{MAX} =	416 lbs
Compression _{SEISMIC} =	1268 lbs	=[FpmaxASD*(Hcm+Hc	urb)+(1+0.14S _{DS})*WGT _{unit+curl}	*wcurb/2]/wcurb
Tension _{SEISMIC} =	796 lbs	=[FpmaxASD*(Hcm+Hc	urb)-(0.6-0.14S _{DS})*WGT _{unit+cu}	_{rb} *wcurb/2]/wcurb
Compression _{WIND} =	1023 lbs	=[F _{h ASD trans} *(Hcm+Hcur	b)+0.6*WGT _{unit+curb} *wcurb/2	!-F _{vert ASD} *wcurb/2]/wc
Tension _{WIND} =	1041 lbs	=[F _{h ASD trans} *(Hcm+Hcur	b)-0.6*WGT _{unit+curb} *wcurb/2	+F _{vertASD} *wcurb/2]/wc
Longitudinal:	Uplift _{MAX} =	503 lbs	Shear _{MAX} =	354 lbs
Compression _{SEISMIC} =	976 lbs	=[FpmaxASD*(Hcm+Hc	urb)+(1+0.14S _{DS})*WGT _{unit+curl}	*Lcurb/2]/Lcurb
Tension _{SEISMIC} =	503 lbs	=[FpmaxASD*(Hcm+Hc	urb)-(0.6-0.14S _{DS})*WGT _{unit+cu}	_{rb} *Lcurb/2]/Lcurb
Compression _{WIND} =	471 lbs	=[F _{h ASD long} *(Hcm+Hcurl	o)+0.6*WGT _{unit+curb} *Lcurb/2-	F _{vert ASD} *Lcurb/2]/Lcurl
Tension _{WIND} =	489 lbs	=[F _{h ASD long} *(Hcm+Hcurl	b)-0.6*WGT _{unit+curb} *Lcurb/2+	F _{vertASD} *Lcurb/2]/Lcurb
Wood Attachment:	1/4"ф х 3.	5" Simpson SDS screws	w/ 2.25" threaded emb (SG	imin = 0.43)
	Tall _{metal} =	997 lbs	Vall _{metal} = 1097 lbs	
<u>Transverse:</u>	Tall _{wood} =	616 lbs	Vall _{wood} = 672 lbs	

COMBINED LOADING: # of Screws Req'd for Uplift = 1.69 0.770 O.K. # of Screws Req'd for Shear = 0.62 Screw Spacing = 19.3 in o.c. 3 Total # of screws Required =


1/4"φ x 3.5" Simpson SDS screws @ 19.3 in o.c along long side of curb w/ 2.25" threaded embed Longitudinal:

> # of Screws Req'd for Uplift = 0.671 O.K. 8.0 COMBINED LOADING: # of Screws Req'd for Shear = 0.5 Screw Spacing = 23.0 in o.c. Total # of screws Required = 2

1/4"φ x 3.5" Simpson SDS screws @ 23 in o.c. along short side of curb w/ 2.25" threaded embed										
Steel Deck Attachment: 1/2" φ A307 Bolts to steel angle below deck										
	Tall _{bolt} =	3927	lbs	Vall _{bolt} =	2209	lbs				
<u>Transverse:</u>	Tall _{metal} =	2086	lbs	Vall _{metal} =	2192	lbs				
	# of Bolts Req'd for Uplift =	0.50		COMBINED I	OADING:	0.119 O.K.				
	# of Bolts Req'd for Shear = 0.19 Bolt Space		It Spacing =	34.5 in o.c.						
	Total # of Bolts Required =	2								
1/2" ϕ A307 Bolts to steel angle below deck @ 34.5 in o.c. along long side of curb										
Longitudinal	:									

of Bolts Reg'd for Uplift = 0.24 COMBINED LOADING: 0.044 O.K. # of Bolts Req'd for Shear = 0.16 Req'd Min Spacing = 19.0 in o.c. Total # of Bolts Required = 2

1/2" φ A307 Bolts to steel angle below deck @ 19 in o.c. along short side of curb

CORD DESIGN SOMMART.		CDI ND 132 DIS			Ome.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ATTODELS		
CURB RAIL	THICKNESS:	0.0566 in	16 Gauge						
UNIT CLIP	THICKNESS:	0.0566 in	16 Gauge						
# OF CLIPS (LONG SIDE) - 1 clips with 2 - #10 SMS screws each clip									
WEB STIFFENER: 16Ga x 3/4" x 6" (C-channel) stiffener at each clip									
# OF CLIPS (SHORT SIDE) - 1 clips with 2 - #10 SMS screws each clip									
WEB STIFFENER: 16Ga x 3/4" x 6" (C-channel) stiffener at each clip									
CORNER CONNECTION: Use 3 - 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts									
CURB		WOOD		STEEL			<u>CONCRETE</u>		
ANCHORAGE	1/4"¢ x 3.5'	' Simpson SI	OS screws w/	1/2" ф A307 Bol	lts to	1/2"¢	HAS rods in Hilti HIT-HY		
ANCHORAGE	2.25"	threaded e	mbed	steel angle below	v deck	200 V3	epoxy w/ 2.75in embed		
LONG DIRECTION	3	@ 19.25 in c).C.	2 @ 34.5 in o	.c.	•	2 @ 34.5 in o.c.		
SHORT DIRECTION	2	2 @ 23 in o.d	C.	2 @ 19 in o.	c.		2 @ 19 in o.c.		