

Structural Calculations for CBKD-80 Series

CBKDPRD3715** SERIES

Prepared for:

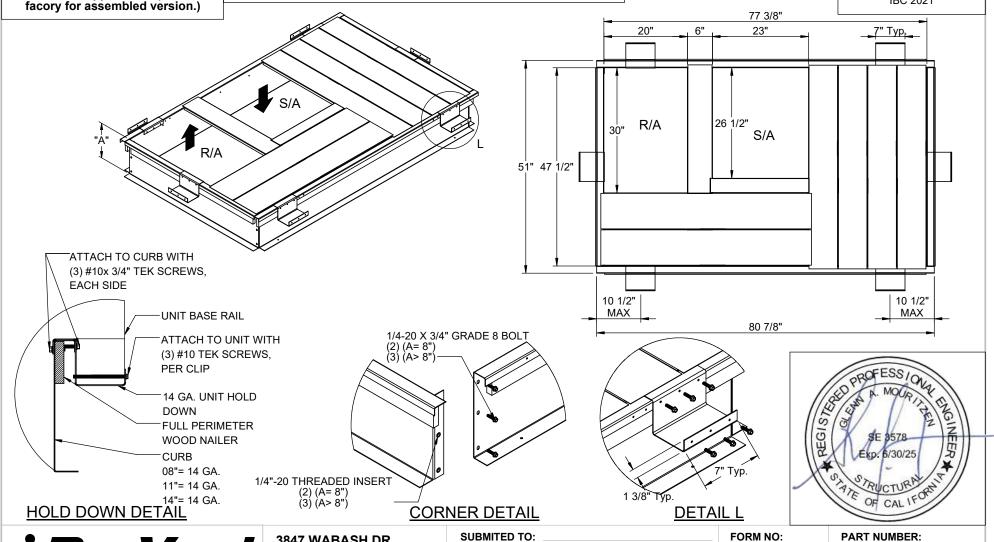
PROVENT / RRS

3847 Wabash Drive Mira Loma, CA 91725

Date: September 26, 2023

Project Number: PV2312

For wood,concrete, and steel attachments, see Roof Anchorage Detail, Form no. CB-60.


Will conform to seismic code requirements for knock-down or preassembled application. (Contact facory for assembled version.)

STRUCTURALLY CALCULATED HOLD DOWN CLIPS FOR KNOCK-DOWN ROOF CURBS FOR PREDATOR (SUN PRO) UNITS

ZT, ZH, ZJ, ZR 037-150 ZF, XP, ZB 078-150

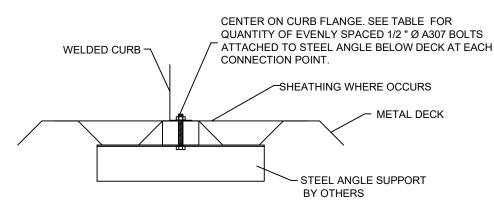
PROVENT P/N	Α	EST. WEIGHT	SEISMIC KIT P/N	WEIGHT
CBKDPRD371508	8"	115 Lbs.	KDKITPRD3715	23 Lbs.
CBKDPRD371511	11"	129 Lbs.	RDRIII RD3/13	20 LD3.
CBKDPRD371514	14"	144 Lbs	Meets seismic red	quirements

Meets seismic requirements for the following codes: CBC 2022 IBC 2021

3847 WABASH DR. MIRA LOMA, CA 91752

PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITED TO:	
COMPANY:	
JOB NAME:	
EQUIPMENT:	
NOTES:	


FORM NO: PART NUMBER:
CBKD-80 KDKITPRD3715 SERIES

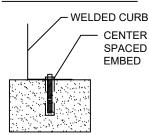
DATE: **RE** 8/25/2023 **7**

DRAWN BY:

REV: DRAY

STEEL ATTACHMENT

	NO. OF ANCHORAGE BOLTS REQUIRED		
CURB	LONG SIDE	SHORT SIDE	
LXS	2 @ 34.5" O.C.	2 @ 19" O.C.	
LXL	2 @ 34.5" O.C.	2 @ 29" O.C.	
SUN3672	2 @ 60.5" O.C.	2 @ 24.75" O.C.	
PRD3715	2 @ 68.88" O.C.	2 @ 39" O.C.	
PRS	2 @ 58.88" O.C.	2 @ 28.69" O.C.	
PRL	2 @ 72" O.C.	2 @ 41.5" O.C.	
SAV1518	3 @ 54.56" O.C	2 @ 68.13" O.C.	
SAV2025	3 @ 61.56" O.C	2 @ 68.13" O.C.	
SAV28	3 @ 69.75" O.C	2 @ 68.13" O.C.	

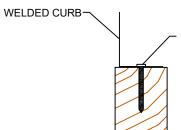

ASSUMES:

CONC SLAB f'c= 4000PSI MINIMUM 4" MIN THICKNESS NORMAL WEIGHT CONCRETE MIN. 7-1/4" EDGE DISTANCE

Meets seismic requirements for the following codes: CBC 2022 IBC 2021

ROOF ANCHORAGE DETAIL			
CBKD Series	CBWC Series		
LXS	LXS		
LXL	LXL		
SUN3672	SUN3672		
PRD3715	PRD3715		
PRS	PRS		
PRL	PRL		
SAV1518	SAV1518		
SAV2025	SAV2025		
SAV28	SAV28		

CONCRETE ATTACHMENT



CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 1/2" Ø THREADED ROD IN HILTI HIT-HY 200 V3 EPOXY WITH 2-1/2" **EMBED**

	NO. OF ANCHORAGE BOLTS REQUIRED		
CURB	LONG SIDE	SHORT SIDE	
LXS	2 @ 34.5" O.C.	2 @ 19.0" O.C.	
LXL	2 @ 34.5" O.C.	2 @ 29" O.C.	
SUN3672	2 @ 60.5" O.C.	2 @ 24.75" O.C.	
PRD3715	4 @ 22.96" O.C.	2 @ 39" O.C.	
PRS	2 @ 58.88" O.C.	2 @ 28.69" O.C.	
PRL	3 @ 36" O.C.	2 @ 41.5" O.C.	
SAV1518	4 @ 36.38" O.C.	2 @ 68.13" O.C.	
SAV2025	4 @ 41.04" O.C.	3 @ 34.06" O.C.	
SAV28	5 @ 34.88" O.C.	3 @ 34.06" O.C.	

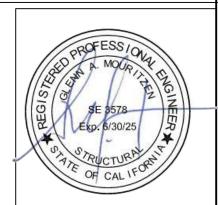
* SIX INCHES FROM EACH CORNER EVENLY SPACED. ** CENTERED.

WOOD ATTACHMENT

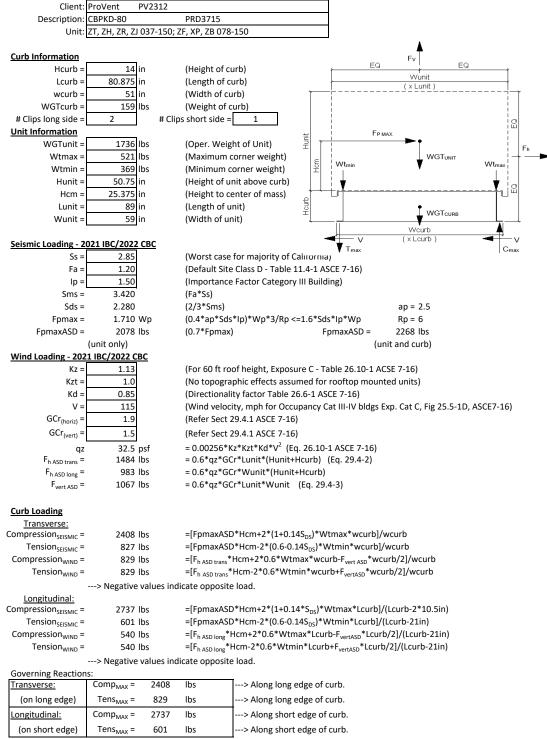
CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED

1/4" Ø x 3.5" SIMPSON SDS SCREWS W/2.25" THREADED EMBED INTO WOOD FRAMING

FOUR INCH	ES FROM	EACH
CORNER EV	JENI Y SE	PACED



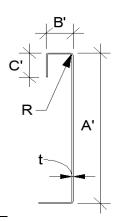
3847 WABASH DRIVE MIRA LOMA, CA 91725


PHONE (951) 685-1101 FAX (619) 872-9799

	NO. OF ANOHORAGE SCILLING			
	REQUIRED			
CURB	LONG SIDE	SHORT SIDE		
LXS	4 @ 12.83" O.C.	3 @ 11.5" O.C.		
LXL	4 @ 12.83" O.C.	3 @ 16.5" O.C.		
SUN3672	4 @ 21.5" O.C.	3 @ 14.38" O.C.		
PRD3715	7 @ 12.15" O.C.	5 @ 10.75" O.C.		
PRS	4 @ 20.96" O.C.	3 @ 16.35" O.C.		
PRL	6 @ 15.2" O.C.	4 @ 15.17" O.C.		
SAV1518	6 @ 22.63" O.C.	5 @ 18.03" O.C.		
SAV2025	7 @ 21.19" O.C.	5 @ 18.03" O.C.		
SAV28	8 @ 20.5" O.C.	5 @ 18.03" O.C.		

NO OF ANCHORAGE SCREWS

SUBMITTED TO:	CB-60		
EQUIPMENT:	DATE:	REV:	DRAWN BY:
NOTES:	8/28/2023	10	FMM


^{---&}gt; Negative values indicate opposite load.

Fy =	50 ksi	Fu =	65 ksi
E =	29500 ksi	t =	0.0713 14 Gauge

Calculate Section Properties of Curb

A'=	14.000	in	a =	13.644 in	= A'-(2r+t)
B'=	1.750	in	a'=	13.929 in	= A'-t
C'=	0.000	in (0 if no lips)	b =	1.572 in	$= B'-[r+t/2+\alpha(r+t/2)]$
α=	0.000	(0 - no Lip; 1 w/ lip)	b'=	1.714 in	$= B'-(t/2+\alpha t/2)$
R =	0.1069	(Inside bend radius)	c =	0.000 in	$= \alpha[C'-(r+t/2)]$
t =	0.0713	in	c'=	0.000 in	$= \alpha(C'-t/2)$
r'=	0.143	in = $R+t/2$	u =	0.224 in	= πr/2
x =	0.171	in (Distance between	centroid and web o	enterline)	
lx =	27.499	in ⁴	rx =	4.73 in	
ly =	0.204	in ⁴	ry =	0.407 in	
A =	1.23	in ²	rmin =	0.407 in	

Axial Compression

Pu =	1.039 k	(Max Axial Comp)	Ωc =	1.80
Pn/Ωc =	18.250 k	$If \lambda < 1F$, $F = (0.6F0\lambda^2)$	E	
Fe =	33.42 ksi	$P_n = F_n A$ If $\lambda_c \le 1.5$; $F_n = \left(0.658^{\lambda_c^2}\right)$		$_{F}$ $ \frac{\pi^{2}E}{}$
λc =	1.22	$\frac{P_n}{\Omega_c} = \frac{F_n A}{\Omega_c} \qquad If \ \lambda_c \le 1.5; F_n = \begin{pmatrix} 0.658^{n_c} \\ 0.658^{n_c} \end{pmatrix}$ $If \ \lambda_c > 1.5; F_n = \frac{0.877}{\lambda_c^2} F_y$	$\kappa_c - \sqrt{\overline{F_e}}$	$F_e = \frac{\pi^2 E}{\left(kl/r\right)^2}$
Fn =	26.73 ksi	λ_c^2 λ_c^2	,	(11)
Ly =	48 in	Lateral unbraced length		
$k_y L_y / r_y =$	93	(assume k=0.8)		

Compression Check = O.K.

Check Web Crippling

h =	14 in	Check limit	s:	C = 4.00	7
t =	0.0713 in	h/t =	196.35 ≤ 260	$C_R = 0.14$	(See table C3.4.1-2, fastened to
N =	7.00	N/t =	98.18 ≤ 210	$C_N = 0.35$	support, one flange, end loading)
$\Omega_{\rm w}$ =	1.75	N/h =	0.5 ≤ 2.0	$C_h = 0.02$	J
P _n =	2.422 k	R/t =	1.50 ≤ 9.0	/	
$P_n/\Omega_w =$	1.384 k		$P_n =$	$Ct^2F_y\sin(90)\left(1-C_R\right)$	$\left \frac{R}{r}\right \left(1+C_{N}\right)\left \frac{N}{r}\right \left(1-C_{h}\right)\left \frac{n}{r}\right $
Long side: Pu _{Trans} =	1.204 k	<u>O.K.</u>	# clips = 2	, , , , , , , , , , , , , , , ,	\sqrt{t}
Short side: Pulong =	1.368 k	O.K.	# clips = 2	,	, , , , , , , , , , , , , , , , , , , ,

*assumes partial load goes to clips on adjacent side.

Check Web Stiffener

16Ga x 3/4" x 6" (C-channel) width of stiffener = 6.000 in 0.0566 16 Gauge ts = web of stiff. w = 5.717 in Rs = 0.0849 in ***Check w/ts ≤ 1.28√E/Fys Ωc = 1.70

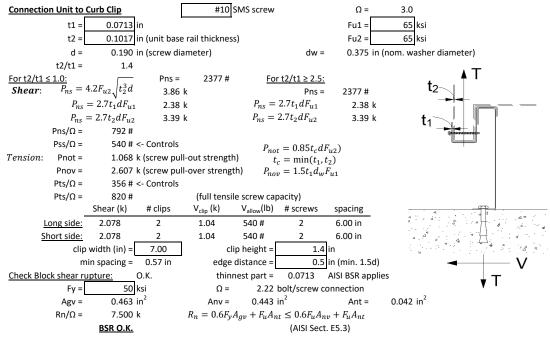
w/ts = 101.007

1.28v(E/Fys) = 31.091 --> w/ts over limit Use C3.7.2

 $P_n = 0.7 \left(P_{wc} + A_e F_y \right) \ge P_{wc}$

2.422 k 0.324 in^2 Pwc = Ae = 13.021 k 7.659 k Pn = $Pn/\Omega =$ Not Reg'd

Corner Connections


1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts

 $Max(F_{pmaxASD}/4 - OR- Fh_{ASDtrans}/4 corner connections)$ Tcrnmax = 567 lbs Vcrnmax = 1368 lbs Max(Tens/2 -OR- Comp/2 corner connections per side) 2480 lbs Vall = 1208 lbs Bolt: Tall = Threaded Insert: Tall = 2860 lbs Vall = 1536 lbs

> # of Bolts required for Tension = 0.2 # of Bolts required for Shear = 1.1 3.0 # of Bolts Used =

Check Combined Stress in Bolts & Inserts:

Check 1/8" welded connection

Connection of Curb to Supporting Structure

Connection of Curb to	Supporting Structure	<u> </u>		
Roof Loading	SEISMIC: (0.6-0.14S _D	s)D + 0.7E	WIND: 0.6D + W	
Transverse:	Uplift _{MAX} =	1485 lbs	Shear _{MAX} =	1134 lbs
Compression _{SEISMIC} =	3001 lbs	=[FpmaxASD*(Hcm+Hci	urb)+(1+0.14S _{DS})*WGT _{unit+cur}	*wcurb/2]/wcurb
Tension _{SEISMIC} =	1485 lbs	=[FpmaxASD*(Hcm+Hci	urb)-(0.6-0.14S _{DS})*WGT _{unit+ct}	_{urb} *wcurb/2]/wcurb
Compression _{WIND} =	1180 lbs	=[F _{h ASD trans} *(Hcm+Hcur	b)+0.6*WGT _{unit+curb} *wcurb/2	2-F _{vert ASD} *wcurb/2]/w
Tension _{WIND} =	1111 lbs	=[F _{h ASD trans} *(Hcm+Hcur	b)-0.6*WGT _{unit+curb} *wcurb/2	2+F _{vertASD} *wcurb/2]/wd
Longitudinal:	Uplift _{MAX} =	838 lbs	Shear _{MAX} =	1134 lbs
Compression _{SEISMIC} =	2354 lbs	=[FpmaxASD*(Hcm+Hci	urb)+(1+0.14S _{DS})*WGT _{unit+cur}	_{rb} *Lcurb/2]/Lcurb
Tension _{SEISMIC} =	838 lbs	=[FpmaxASD*(Hcm+Hci	urb)-(0.6-0.14S _{DS})*WGT _{unit+ct}	_{urb} *Lcurb/2]/Lcurb
Compression _{WIND} =	514 lbs	=[F _{h ASD long} *(Hcm+Hcurk)+0.6*WGT _{unit+curb} *Lcurb/2-	-F _{vert ASD} *Lcurb/2]/Lcur
Tension _{WIND} =	444 lbs	=[F _{h ASD long} *(Hcm+Hcurl	o)-0.6*WGT _{unit+curb} *Lcurb/2+	F _{vertASD} *Lcurb/2]/Lcur
Wood Attachment:	1/4"ф x 3.!	5" Simpson SDS screws	w/ 2.25" threaded emb (SG	Gmin = 0.43)
	Tall _{metal} =	997 lbs	Vall _{metal} = 1097 lbs	5
Transverse:	Tall .=	616 lbs	Vall .= 672 lbs	:

WOOU Attachinent.	1/4 ψ x 3.3	Simpsom St	3 Sciews	W/ 2.25 LIII	eaueu emb	(SGI	11111 - 0.43)	
	Tall _{metal} =	997	lbs	Vall _{metal} =	1097	lbs		
<u>Transverse:</u>	Tall _{wood} =	616	lbs	Vall _{wood} =	672	lbs		
# of Screws Re	eq'd for Uplift =	2.41		COMBINED L	OADING:		0.820 O.K.	
# of Screws Re	q'd for Shear =	1.69		Screv	v Spacing =		18.2 in o.c.	
Total # of scre	ews Required =	5						
1/4" by 2 E" Simpson SDS scrows @ 19.2 in a c. along long side of surb w/ 2.2E" threaded embed								

1/4"\phi x 3.5" Simpson SDS screws @ 18.2 in o.c. along long side of curb w/ 2.25" threaded embed

<u>Longitudinal:</u>

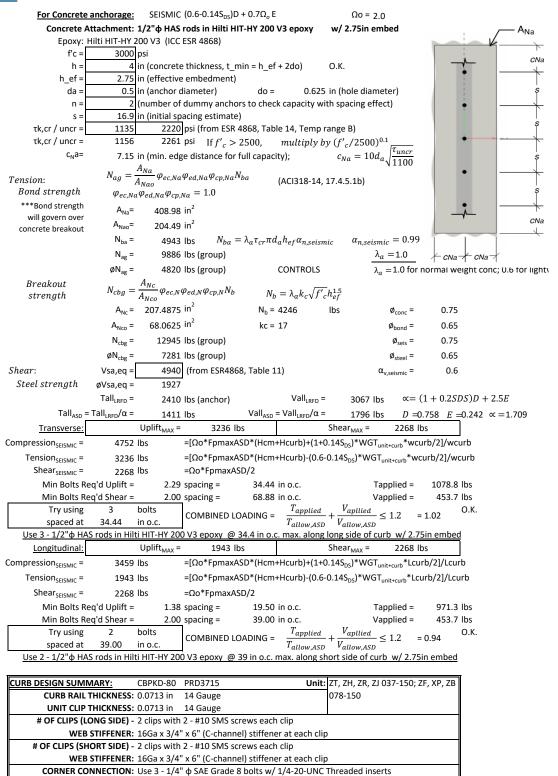
of Screws Req'd for Uplift = 1.4 COMBINED LOADING: 0.762 O.K.

of Screws Req'd for Shear = 1.7 Screw Spacing = 14.3 in o.c.

Total # of screws Required = 4

1/4"φ x 3.5" Simpson SDS screws @ 14.3 in o.c. along short side of curb w/ 2.25" threaded embed

174 \$ x 5.5 Simpson 5B5 Screws (# 14.5 in o.e. diong short side of earb w/ 2.25 timedaed embed								
Steel Deck Attac	hment: 1/2" φ A30	7 Bolts to ste	el angle	e below deck				
	Tall _{bolt} =	3927	lbs	Vall _{bolt} =	2209	lbs		
<u>Transverse:</u>	Tall _{metal} =	2086	lbs	Vall _{metal} =	2192	lbs		
# of Bolts Req'd for Uplift =		0.71		COMBINED L	OADING:		0.284 O.K.	
# of Bolts Req'd for Shear =		0.52	_	Bol	t Spacing =		68.9 in o.c.	
	Total # of Bolts Required =	2						
. /								


1/2" φ A307 Bolts to steel angle below deck @ 68.9 in o.c. along long side of curb Longitudinal:

of Bolts Req'd for Uplift = 0.40 COMBINED LOADING: 0.174 O.K.

of Bolts Req'd for Shear = 0.52 Req'd Min Spacing = 39.0 in o.c.

Total # of Bolts Required = 2

 $1/2"\ \varphi$ A307 Bolts to steel angle below deck @ 39 in o.c. along short side of curb

STEEL

1/2" φ A307 Bolts to

steel angle below deck

2 @ 68.88 in o.c.

2 @ 39 in o.c.

CONCRETE

1/2"φ HAS rods in Hilti HIT-HY

200 V3 epoxy w/ 2.75in embed

3 @ 34.44 in o.c.

2 @ 39 in o.c.

WOOD

1/4"φ x 3.5" Simpson SDS screws w/

2.25" threaded embed

5 @ 18.22 in o.c.

4 @ 14.33 in o.c.

CURB

ANCHORAGE

LONG DIRECTION

SHORT DIRECTION