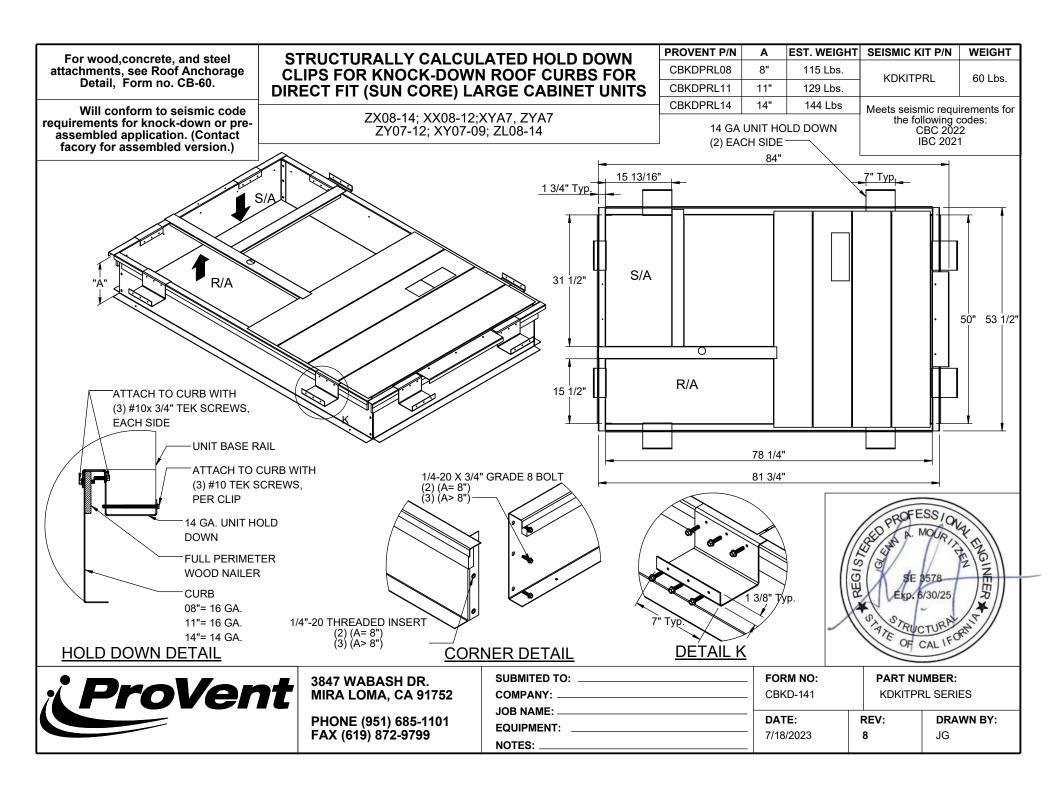
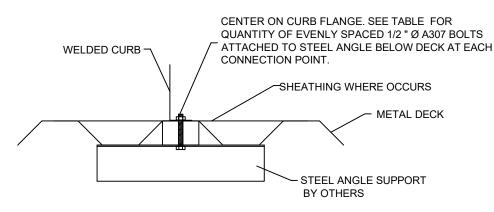


Structural Calculations for CBKD-141 Series

CBKDPRL SERIES**


Prepared for:

PROVENT / RRS

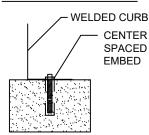

3847 Wabash Drive Mira Loma, CA 91725

Date: September 26, 2023

Project Number: PV2312

STEEL ATTACHMENT

	NO. OF ANCHORAGE BOLTS REQUIRED			
CURB	LONG SIDE	SHORT SIDE		
LXS	2 @ 34.5" O.C.	2 @ 19" O.C.		
LXL	2 @ 34.5" O.C.	2 @ 29" O.C.		
SUN3672	2 @ 60.5" O.C.	2 @ 24.75" O.C.		
PRD3715	2 @ 68.88" O.C.	2 @ 39" O.C.		
PRS	2 @ 58.88" O.C.	2 @ 28.69" O.C.		
PRL	2 @ 72" O.C.	2 @ 41.5" O.C.		
SAV1518	3 @ 54.56" O.C	2 @ 68.13" O.C.		
SAV2025	3 @ 61.56" O.C	2 @ 68.13" O.C.		
SAV28	3 @ 69.75" O.C	2 @ 68.13" O.C.		

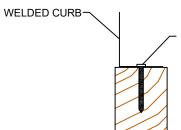

ASSUMES:

CONC SLAB f'c= 4000PSI MINIMUM 4" MIN THICKNESS NORMAL WEIGHT CONCRETE MIN. 7-1/4" EDGE DISTANCE

Meets seismic requirements for the following codes: CBC 2022 IBC 2021

ROOF ANCHORAGE DETAIL					
CBKD Series	CBWC Series				
LXS	LXS				
LXL	LXL				
SUN3672	SUN3672				
PRD3715	PRD3715				
PRS	PRS				
PRL	PRL				
SAV1518	SAV1518				
SAV2025	SAV2025				
SAV28	SAV28				

CONCRETE ATTACHMENT



CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 1/2" Ø THREADED ROD IN HILTI HIT-HY 200 V3 EPOXY WITH 2-1/2" **EMBED**

	NO. OF ANCHORAGE BOLTS REQUIRED			
CURB	LONG SIDE	SHORT SIDE		
LXS	2 @ 34.5" O.C.	2 @ 19.0" O.C.		
LXL	2 @ 34.5" O.C.	2 @ 29" O.C.		
SUN3672	2 @ 60.5" O.C.	2 @ 24.75" O.C.		
PRD3715	4 @ 22.96" O.C.	2 @ 39" O.C.		
PRS	2 @ 58.88" O.C.	2 @ 28.69" O.C.		
PRL	3 @ 36" O.C.	2 @ 41.5" O.C.		
SAV1518	4 @ 36.38" O.C.	2 @ 68.13" O.C.		
SAV2025	4 @ 41.04" O.C.	3 @ 34.06" O.C.		
SAV28	5 @ 34.88" O.C.	3 @ 34.06" O.C.		

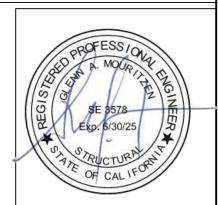
* SIX INCHES FROM EACH CORNER EVENLY SPACED. ** CENTERED.

WOOD ATTACHMENT

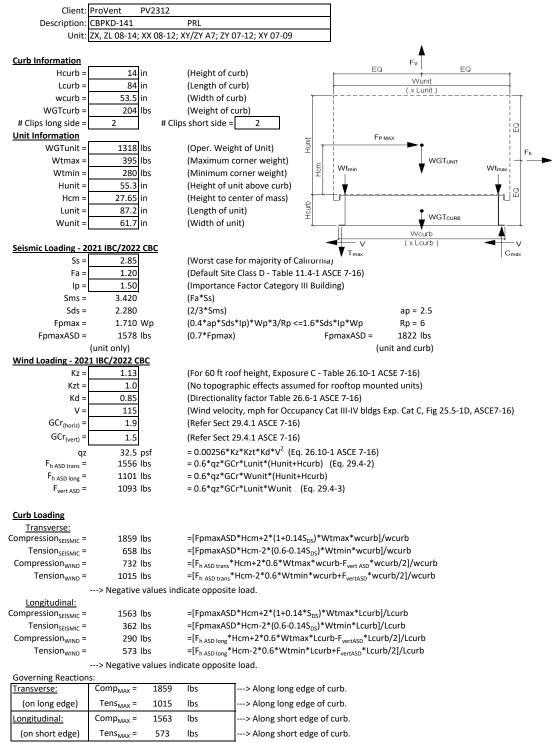
CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED

1/4" Ø x 3.5" SIMPSON SDS SCREWS W/2.25" THREADED EMBED INTO WOOD FRAMING

FOUR INCH	ES FROM	EACH
CORNER EV	JENI Y SE	PACED



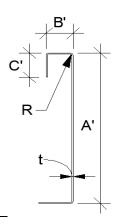
3847 WABASH DRIVE MIRA LOMA, CA 91725


PHONE (951) 685-1101 FAX (619) 872-9799

	NO. OF ANOHORAGE SCILLING			
	REQUIRED			
CURB	LONG SIDE	SHORT SIDE		
LXS	4 @ 12.83" O.C.	3 @ 11.5" O.C.		
LXL	4 @ 12.83" O.C.	3 @ 16.5" O.C.		
SUN3672	4 @ 21.5" O.C.	3 @ 14.38" O.C.		
PRD3715	7 @ 12.15" O.C.	5 @ 10.75" O.C.		
PRS	4 @ 20.96" O.C.	3 @ 16.35" O.C.		
PRL	6 @ 15.2" O.C.	4 @ 15.17" O.C.		
SAV1518	6 @ 22.63" O.C.	5 @ 18.03" O.C.		
SAV2025	7 @ 21.19" O.C.	5 @ 18.03" O.C.		
SAV28	8 @ 20.5" O.C.	5 @ 18.03" O.C.		

NO OF ANCHORAGE SCREWS

SUBMITTED TO:	CB-60			
EQUIPMENT:	DATE:	REV:	DRAWN BY:	
NOTES:	8/28/2023	10	FMM	


^{---&}gt; Negative values indicate opposite load.

Fy =	50 ksi	Fu =	65 ksi
E =	29500 ksi	t =	0.0713 14 Gauge

Calculate Section Properties of Curb

A'=	14.000	in	a =	13.644 in	= A'-(2r+t)
B'=	1.750	in	a'=	13.929 in	= A'-t
C'=	0.000	in (0 if no lips)	b =	1.572 in	$= B'-[r+t/2+\alpha(r+t/2)]$
α=	0.000	(0 - no Lip; 1 w/ lip)	b'=	1.714 in	$= B'-(t/2+\alpha t/2)$
R =	0.1069	(Inside bend radius)	c =	0.000 in	$= \alpha[C'-(r+t/2)]$
t =	0.0713	in	c'=	0.000 in	$= \alpha(C'-t/2)$
r'=	0.143	in = $R+t/2$	u =	0.224 in	= πr/2
x =	0.171	in (Distance between	centroid and web c	enterline)	
lx =	27.499	in ⁴	rx =	4.73 in	
ly =	0.204	in ⁴	ry =	0.407 in	
A =	1.23	in ²	rmin =	0.407 in	

Axial Compression

Pu =	0.789 k	(Max Axial Comp)	Ωc =	1.80
Pn/Ωc =	17.057 k	$(E_1) < 1E_2 = (0.0000^2)E_1$		
Fe =	30.16 ksi	$\frac{P_n}{S} = \frac{F_n A}{S}$ If $\lambda_c \le 1.5$; $F_n = (0.658^{\lambda_c^2}) F_0$	F_{y}	$\pi^2 E$
λc =	1.29	$\frac{R}{\Omega_c} = \frac{R}{\Omega_c}$ If $\lambda_c > 1.5$; $F_n = \frac{0.877}{2.2} F_y$	$\lambda_c = \sqrt{\frac{F_y}{F_e}}$	$F_e = \frac{n E}{\left(\frac{kl}{r}\right)^2}$
Fn =	24.98 ksi	$\lambda_c > 1.5, \lambda_n = \lambda_c^2 + \lambda_c^2$	V	(-r)
Ly =	50 in	Lateral unbraced length		

Compression Check = O.K.

98

Check Web Crippling

 $k_y L_y / r_y =$

h =	14 in	Check limit	ts:	C = 4.00	٦
t =	0.0713 in	h/t =	196.35 ≤ 260	$C_R = 0.14$	(See table C3.4.1-2, fastened to
N =	7.00	N/t =	98.18 ≤ 210	$C_N = 0.35$	support, one flange, end loading)
$\Omega_{\rm w}$ =	1.75	N/h =	0.5 ≤ 2.0	$C_h = 0.02$	J
P _n =	2.422 k	R/t =	$1.50 \le 9.0$	/	
$P_n/\Omega_w =$	1.384 k		$P_n =$	$= Ct^2F_y\sin(90)\left(1-C_y\right)$	$\binom{R}{R} \left(\frac{R}{r} \right) \left(1 + C_N \left \frac{N}{r} \right \right) \left(1 - C_h \left \frac{n}{r} \right \right)$
Long side: Pu _{Trans} =	0.929 k	<u>O.K.</u>	# clips = 2		$(1)^{t}$
Short side: Pu _{Long} =	0.781 k	<u>O.K.</u>	# clips = 2	·	, , , , , ,

Check Web Stiffener

16Ga x 3/4" x 6" (C-channel)

(assume k=0.8)

width of stiffener = 6.000 in 0.0566 16 Gauge ts = web of stiff. w = 5.717 in Rs = 0.0849 in ***Check w/ts ≤ 1.28√E/Fys Ωc = 1.70

w/ts = 101.007

1.28V(E/Fys) = 31.091 --> w/ts over limit Use C3.7.2

 $P_n = 0.7 \left(P_{wc} + A_e F_y \right) \ge P_{wc}$

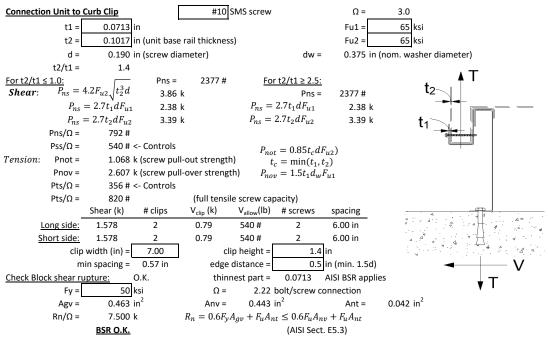
2.422 k 0.324 in² Pwc = Ae = Pn = 13.021 k $Pn/\Omega =$ 7.659 k Not Reg'd

1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts **Corner Connections**

 $Max(F_{pmaxASD}/4 - OR- Fh_{ASDtrans}/4 corner connections)$ 455 lbs Tcrnmax = Vcrnmax = 929 lbs Max(Tens/2 -OR- Comp/2 corner connections per side) Vall = 1208 lbs Bolt: Tall = 2480 lbs 2860 lbs Threaded Insert: Tall = Vall = 1536 lbs

of Bolts required for Tension = 0.2 # of Bolts required for Shear = 8.0

of Bolts Used = 3.0 Check Combined Stress in Bolts & Inserts:


Check 1/8" welded connection

Assume L/t > 25: 25*t =

Lreg'd =

<--- USE WELD
$$\Omega = 2.35$$
 1.783 in
$$P_n/\Omega = \frac{1}{\Omega} 0.75 t L F_u \geq V_{req} \qquad \qquad L_{req'd} = \frac{V_{req} \Omega}{0.75 t E_u}$$

$$L_{req'd} = \frac{V_{req}\Omega}{0.75tF_u}$$

Connection of Curb to Supporting Structure

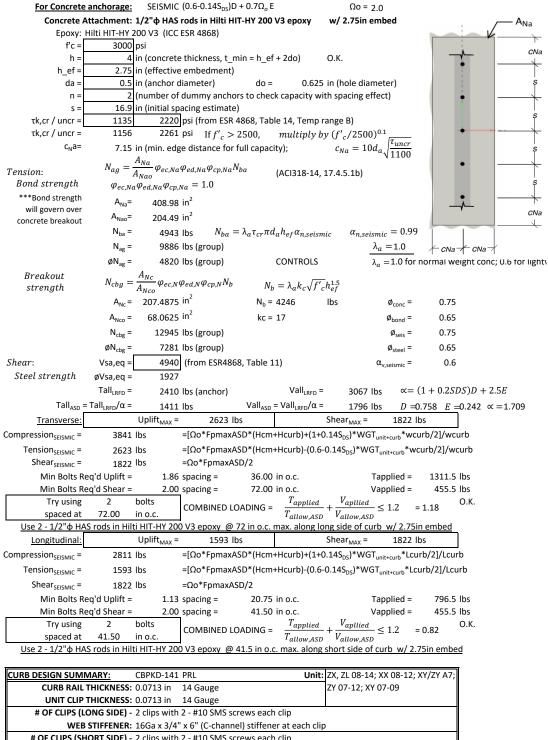
Connection of Curb to	o Supporting Structure			
Roof Loading	SEISMIC: (0.6-0.14S _{D:}	s)D + 0.7E	WIND: 0.6D + W	
<u>Transverse:</u>	Uplift _{MAX} =	1301 lbs	Shear _{MAX} =	911 lbs
Compression _{SEISMIC} =	2422 lbs	=[FpmaxASD*(Hcm+Hct	urb)+(1+0.14S _{DS})*WGT _{unit+curl}	*wcurb/2]/wcurb
Tension _{SEISMIC} =	1205 lbs	=[FpmaxASD*(Hcm+Hct	urb)-(0.6-0.14S _{DS})*WGT _{unit+cu}	_{rb} *wcurb/2]/wcurb
$Compression_{WIND} =$	1121 lbs	=[F _{h ASD trans} *(Hcm+Hcur	b)+0.6*WGT _{unit+curb} *wcurb/2	!-F _{vert ASD} *wcurb/2]/wcu
Tension _{WIND} =	1301 lbs	=[F _{h ASD trans} *(Hcm+Hcur	b)-0.6*WGT _{unit+curb} *wcurb/2	+F _{vertASD} *wcurb/2]/wcu
Longitudinal:	Uplift _{MAX} =	690 lbs	Shear _{MAX} =	911 lbs
Compression _{SEISMIC} =	1907 lbs	=[FpmaxASD*(Hcm+Hct	urb)+(1+0.14S _{DS})*WGT _{unit+curl}	*Lcurb/2]/Lcurb
Tension _{SEISMIC} =	690 lbs	=[FpmaxASD*(Hcm+Hct	urb)-(0.6-0.14 S_{DS})*WGT $_{unit+cu}$	_{rb} *Lcurb/2]/Lcurb
$Compression_{WIND} =$	456 lbs	=[F _{h ASD long} *(Hcm+Hcurb)+0.6*WGT _{unit+curb} *Lcurb/2-	F _{vert ASD} *Lcurb/2]/Lcurb
Tension _{WIND} =	636 lbs	=[F _{h ASD long} *(Hcm+Hcurk	o)-0.6*WGT _{unit+curb} *Lcurb/2+	F _{vertASD} *Lcurb/2]/Lcurb
Wood Attachment:	1/4"ф x 3.5	" Simpson SDS screws	w/ 2.25" threaded emb (SG	imin = 0.43)

Wood Attachment:	1/4"ф x 3.5" Sin	npson SDS screw	s w/ 2.25" threa	w/ 2.25" threaded emb (SGmin = 0.43)		
	Tall _{metal} =	997 lbs	Vall _{metal} =	1097 lbs		
<u>Transverse:</u>	Tall _{wood} =	616 lbs	Vall _{wood} =	672 lbs		
# of Screw	s Req'd for Uplift =	2.11	COMBINED LO	ADING:	0.867 O.K.	
# of Screws	s Req'd for Shear =	1.36	Screw S	pacing =	25.3 in o.c.	
Total # of	screws Required =	4				
	screws Required =	4	fb/ 2 25!! +			

1/4"\psi x 3.5" Simpson SDS screws @ 25.3 in o.c. along long side of curb w/ 2.25" threaded embed Longitudinal:

of Screws Req'd for Uplift = 1.1
of Screws Req'd for Shear = 1.4
Total # of screws Required = 3

COMBINED LOADING: 0.825 O.K.
Screw Spacing = 22.8 in o.c.


1/4"φ x 3.5" Simpson SDS screws @ 22.8 in o.c. along short side of curb w/ 2.25" threaded embed

1/4 ψ x 3.3 Simpson 3D3 screws ψ 22.8 in 6.c. along short side of curb w/ 2.25 timeaded embed							
Steel Deck Attachment:	1/2" ф A307 Bol	lts to steel ang	le below deck				
	Tall _{bolt} =	3927 lbs	Vall _{bolt} =	2209 lbs			
<u>Transverse:</u>	Tall _{metal} =	2086 lbs	Vall _{metal} =	2192 lbs			
# of Bolts	Req'd for Uplift =	0.62	COMBINED L	OADING:	0.216 O.K.		
# of Bolts Req'd for Shear =		0.42	Bol	Bolt Spacing = 72.0 in o.c.			
Total # of	f Bolts Required =	2					
$1/2$ " φ A307 Bolts to steel angle below deck @ 72 in o.c. along long side of curb							

1/2" ϕ A307 Bolts to steel angle below deck @ 72 in o.c. along long side of curb Longitudinal:

of Bolts Req'd for Uplift = 0.33 COMBINED LOADING: 0.123 O.K.
of Bolts Req'd for Shear = 0.42 Req'd Min Spacing = 41.5 in o.c.
Total # of Bolts Required = 2

 $1/2\text{"}~\varphi$ A307 Bolts to steel angle below deck @ 41.5 in o.c. along short side of curb

CURB RAIL THICKNESS: 0.0713 in 14 Gauge			ZY 07-12; XY 07-09		
UNIT CLIP	THICKNESS: 0.0713 in 14 Gauge				
# OF CLIPS (LONG SIDE) - 2 clips with 2 - #10 SMS screws each clip					
WEB STIFFENER: 16Ga x 3/4" x 6" (C-channel) stiffener at each clip					
# OF CLIPS (SHORT SIDE) - 2 clips with 2 - #10 SMS screws each clip					
WEB STIFFENER: 16Ga x 3/4" x 6" (C-channel) stiffener at each clip					
CORNER CONNECTION: Use 3 - 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts					
CURB	WOOD	<u>STEEL</u>	<u>CONCRETE</u>		
ANCHORAGE	1/4"φ x 3.5" Simpson SDS screws w/	1/2" φ A307 Bolts to	1/2"ф HAS rods in Hilti HIT-HY		
ANCHURAGE	2.25" threaded embed	steel angle below deck	200 V3 epoxy w/ 2.75in embed		
LONG DIRECTION	4 @ 25.33 in o.c.	2 @ 72 in o.c.	2 @ 72 in o.c.		
SHORT DIRECTION	3 @ 22.75 in o.c.	2 @ 41.5 in o.c.	2 @ 41.5 in o.c.		