

Structural Calculations for CBKD-165 Series

CBKDSAV1518** SERIES

Prepared for:

PROVENT / RRS

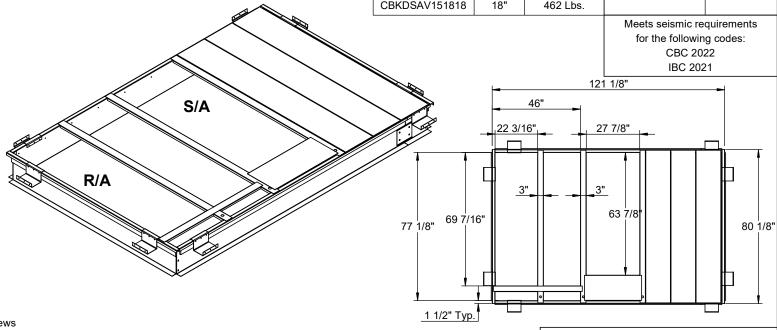
3847 Wabash Drive Mira Loma, CA 91725

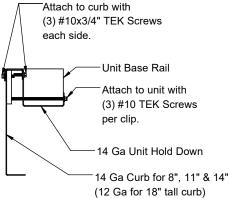
Date: September 26, 2023

Project Number: PV2312

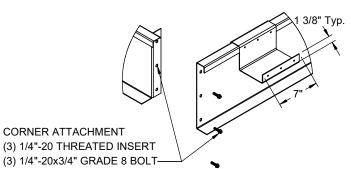
FEATURES

- · Roof curb perimeter made of galvanized steel.
- · Gasketing package provided.
- · Heat treated wood nailer provided.
- · Corner flanges are pre-threated for easy bolt on assembly.
- Pitched, adjustable height, welded, different height, isolation and calculated curbs are available.

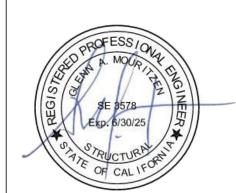

NOTES


Attach ductwork to roof curb. Flanges of duct rest on top of curb. Support ductwork below the curb.

HOLD DOWN CLIPS FOR SUNCHOICE UNITS


AV15-18, AD15-18; AH15, AL15, HV13

ProVent P/N	Α	Est. Weight	SEISMIC CLIP P/N:	Est. Weight
CBKDSAV151808	8"	195 Lbs.		
CBKDSAV151811	11"	225 Lbs.	KDKITSAV1518	20 Lbs.
CBKDSAV151814	14"	265 Lbs.	KDKI13AV1316	20 LDS.
CBKDSAV151818	18"	462 Lbs.		



ProVent

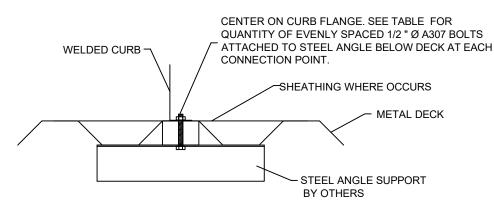
CORNER & HOLD DOWN DETAIL

HOLD DOWN DETAIL

3847 WABASH DR. MIRA LOMA, CA 91752

PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITED TO:	FO
COMPANY:	СВ
JOB NAME:	
EQUIPMENT:	DA 8/2
NOTES:	0/2


RM NO:	PART NUM
KD-165	CBKD-165

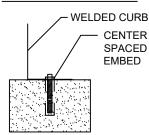
ATE: REV: 25/2023 3

DRAWN BY:
FMM

NUMBER:

STEEL ATTACHMENT

	NO. OF ANCHORAGE BOLTS REQUIRED			
CURB	LONG SIDE SHORT SIDE			
LXS	2 @ 34.5" O.C.	2 @ 19" O.C.		
LXL	2 @ 34.5" O.C.	2 @ 29" O.C.		
SUN3672	2 @ 60.5" O.C.	2 @ 24.75" O.C.		
PRD3715	2 @ 68.88" O.C.	2 @ 39" O.C.		
PRS	2 @ 58.88" O.C.	2 @ 28.69" O.C.		
PRL	2 @ 72" O.C.	2 @ 41.5" O.C.		
SAV1518	3 @ 54.56" O.C	2 @ 68.13" O.C.		
SAV2025	3 @ 61.56" O.C	2 @ 68.13" O.C.		
SAV28	3 @ 69.75" O.C	2 @ 68.13" O.C.		

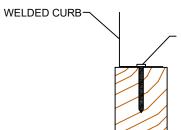

ASSUMES:

CONC SLAB f'c= 4000PSI MINIMUM 4" MIN THICKNESS NORMAL WEIGHT CONCRETE MIN. 7-1/4" EDGE DISTANCE

Meets seismic requirements for the following codes: CBC 2022 IBC 2021

ROOF ANCHORAGE DETAIL				
CBKD Series	CBWC Series			
LXS	LXS			
LXL	LXL			
SUN3672	SUN3672			
PRD3715	PRD3715			
PRS	PRS			
PRL	PRL			
SAV1518	SAV1518			
SAV2025	SAV2025			
SAV28	SAV28			

CONCRETE ATTACHMENT



CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 1/2" Ø THREADED ROD IN HILTI HIT-HY 200 V3 EPOXY WITH 2-1/2" **EMBED**

	NO. OF ANCHORAGE BOLTS REQUIRED			
CURB	LONG SIDE	SHORT SIDE		
LXS	2 @ 34.5" O.C.	2 @ 19.0" O.C.		
LXL	2 @ 34.5" O.C.	2 @ 29" O.C.		
SUN3672	2 @ 60.5" O.C.	2 @ 24.75" O.C.		
PRD3715	4 @ 22.96" O.C.	2 @ 39" O.C.		
PRS	2 @ 58.88" O.C.	2 @ 28.69" O.C.		
PRL	3 @ 36" O.C.	2 @ 41.5" O.C.		
SAV1518	4 @ 36.38" O.C.	2 @ 68.13" O.C.		
SAV2025	4 @ 41.04" O.C.	3 @ 34.06" O.C.		
SAV28	5 @ 34.88" O.C.	3 @ 34.06" O.C.		

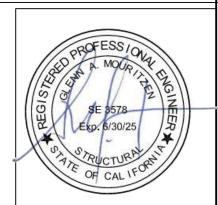
* SIX INCHES FROM EACH CORNER EVENLY SPACED. ** CENTERED.

WOOD ATTACHMENT

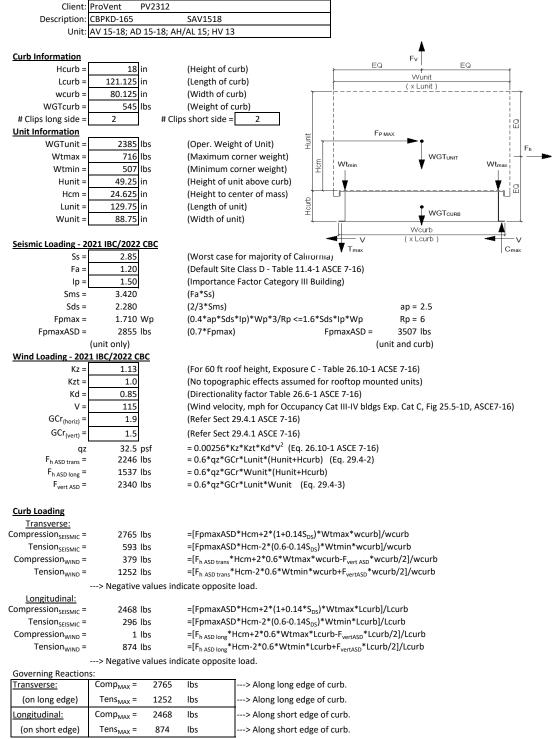
CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED

1/4" Ø x 3.5" SIMPSON SDS SCREWS W/2.25" THREADED EMBED INTO WOOD FRAMING

FOUR INCH	ES FROM	EACH
CORNER EV	JENI Y SE	PACED



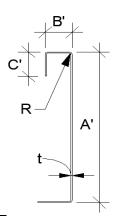
3847 WABASH DRIVE MIRA LOMA, CA 91725


PHONE (951) 685-1101 FAX (619) 872-9799

	NO. OF ANOHORAGE SCILENS			
	REQUIRED			
CURB	LONG SIDE	SHORT SIDE		
LXS	4 @ 12.83" O.C.	3 @ 11.5" O.C.		
LXL	4 @ 12.83" O.C.	3 @ 16.5" O.C.		
SUN3672	4 @ 21.5" O.C.	3 @ 14.38" O.C.		
PRD3715	7 @ 12.15" O.C.	5 @ 10.75" O.C.		
PRS	4 @ 20.96" O.C.	3 @ 16.35" O.C.		
PRL	6 @ 15.2" O.C.	4 @ 15.17" O.C.		
SAV1518	6 @ 22.63" O.C.	5 @ 18.03" O.C.		
SAV2025	7 @ 21.19" O.C.	5 @ 18.03" O.C.		
SAV28	8 @ 20.5" O.C.	5 @ 18.03" O.C.		

NO OF ANCHORAGE SCREWS

SUBMITTED TO:	CB-60			
EQUIPMENT:	DATE:	REV:	DRAWN BY:	
NOTES:	8/28/2023	10	FMM	


^{---&}gt; Negative values indicate opposite load.

Fy =	50 ksi	Fu =	65 ksi
E =	29500 ksi	t =	0.1017 12 Gauge

Calculate Section Properties of Curb

A'=	18.000	in	a =	17.492 in	= A'-(2r+t)
B'=	1.500	in	a'=	17.898 in	= A'-t
C'=	0.000	in (0 if no lips)	b =	1.246 in	$= B'-[r+t/2+\alpha(r+t/2)]$
α=	0.000	(0 - no Lip; 1 w/ lip)	b'=	1.449 in	$= B'-(t/2+\alpha t/2)$
R =	0.1525	(Inside bend radius)	c =	0.000 in	$= \alpha[C'-(r+t/2)]$
t =	0.1017	in	c'=	0.000 in	$= \alpha(C'-t/2)$
r'=	0.203	in = $R+t/2$	u =	0.319 in	= πr/2
x =	0.102	in (Distance between	centroid and web o	enterline)	
lx =	70.803	in ⁴	rx =	5.81 in	
ly =	0.185	in ⁴	ry =	0.297 in	
A =	2.10	in ²	rmin =	0.297 in	

Axial Compression

Pu =	1.427 k	(Max Axial Comp)	Ωc =	1.80
$Pn/\Omega c =$	6.875 k	163 - 15. 5 - (0.65)	$o\lambda_s^2$	
Fe =	6.73 ksi	$P_n ext{ } F_n A ext{ } ext{ } If \lambda_c \le 1.5; ext{ } F_n = \left(0.658\right)$		$\pi^2 E$
λc =	2.73	$\frac{P_n}{\Omega_c} = \frac{F_n A}{\Omega_c} \qquad If \ \lambda_c \le 1.5; F_n = \frac{0.655}{\lambda_c^2}$ $If \ \lambda_c > 1.5; F_n = \frac{0.877}{\lambda_c^2}$	$\lambda_c = \sqrt{\frac{F_y}{F_e}}$ $\lambda_c = \sqrt{\frac{F_y}{F_e}}$	$F_e = \frac{\kappa L}{\left(kl/r\right)^2}$
Fn =	5.90 ksi	$\lambda_c > 1.5, \lambda_n = \lambda_c^2$	1y	(r)
Ly =	77.125 in	Lateral unbraced length		
$k_y L_y / r_y =$	208	(assume k=0.8)		

Compression Check = O.K.

Check Web Crippling

h =	18 in	Check limits:	C = 4.00	
t =	0.1017 in	h/t = 176.99 ≤ 260	$C_R = 0.14$ (See table C3.4.1-2, fastened to	
N =	7.00	$N/t = 68.83 \le 210$	$C_N = 0.35$ support, one flange, end loading)	
$\Omega_{\rm w}$ =	1.75	$N/h = 0.388889 \le 2.0$	$C_{h} = 0.02$	
P _n =	4.390 k	$R/t = 1.50 \le 9.0$		
$P_n/\Omega_w =$	2.509 k	$P_n =$	$=Ct^{2}F_{y}\sin(90)\left(1-C_{R}\left \frac{R}{t}\right)\left(1+C_{N}\left \frac{N}{t}\right)\left(1-C_{h}\left \frac{h}{t}\right.\right)\right.$	
Long side: Pu _{Trans} =	1.383 k	<u>O.K.</u> # clips = 2	(x,y,t)	
Short side: Pulong =	1.234 k	O.K. # clips = 2		

Check Web width of sti

Check Web Stiffener	16Ga x 3/4" x 6" (C-channel)		
width of stiffener =	6.000 in	ts =	0.0566 16 Gauge
web of stiff. w =	5.717 in	Rs =	0.0849 in
***Check w/ts ≤ 1.28√E	E/Fys	Ωc =	1.70

w/ts = 101.007

1.28v(E/Fys) = 31.091 --> w/ts over limit Use C3.7.2

 $P_n = 0.7 \big(P_{wc} + A_e F_y\big) \geq P_{wc}$

4.390 k 0.324 in^2 Pwc = Ae = 14.398 k 8.470 k Pn = $Pn/\Omega =$ Not Req'd

Corner Connections

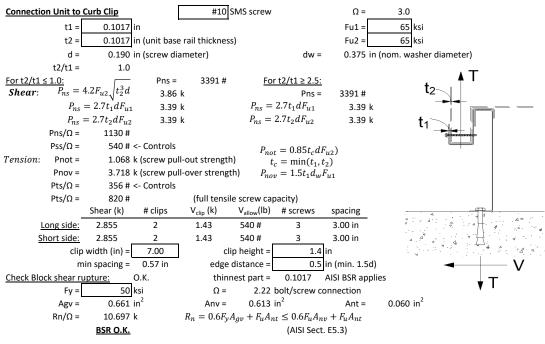
1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts

 $Max(F_{pmaxASD}/4 - OR- Fh_{ASDtrans}/4 corner connections)$ Tcrnmax = 877 lbs Vcrnmax = 1383 lbs Max(Tens/2 -OR- Comp/2 corner connections per side) 2480 lbs Vall = 1208 lbs Bolt: Tall = Threaded Insert: Tall = 2860 lbs Vall = 1536 lbs

> # of Bolts required for Tension = 0.4 # of Bolts required for Shear =

1.1 # of Bolts Used = 3.0

Check Combined Stress in Bolts & Inserts:


0.655 in

Check 1/8" welded connection

Lreg'd =

/8" welded connection <--- USE WELD Assume L/t > 25: 25*t = 2.543 in
$$P_n$$

ELD
$$\Omega$$
 = 2.35
$$P_n /_{\Omega} = \frac{1}{\Omega} 0.75 t L F_u \ge V_{req} \qquad L_{req'd} = \frac{V_{req} \Omega}{0.75 t E_u}$$

Connection of Curb to Supporting Structure

Roof Loading	SEISMIC: (0.6-0.14S	_{DS})D + 0.7E	WIND: 0.6D + W	
<u>Transverse:</u>	Uplift _{MAX}	= 1486 lbs	Shear _{MAX} =	1754 lbs
Compression _{SEISMIC} =	3798 lbs	=[FpmaxASD*(Hcm+Hc	curb)+(1+0.14S _{DS})*WGT _{unit+cur}	*wcurb/2]/wcurb
Tension _{SEISMIC} =	1454 lbs	=[FpmaxASD*(Hcm+Hc	curb)-(0.6-0.14S _{DS})*WGT _{unit+co}	_{urb} *wcurb/2]/wcurb
$Compression_{WIND} =$	904 lbs	=[F _{h ASD trans} *(Hcm+Hcu	rb)+0.6*WGT _{unit+curb} *wcurb/2	2-F _{vert ASD} *wcurb/2]/w
Tension _{WIND} =	1486 lbs	=[F _{h ASD trans} *(Hcm+Hcu	rb)-0.6*WGT _{unit+curb} *wcurb/2	2+F _{vertASD} *wcurb/2]/w
Longitudinal:	Uplift _{MAX}		Shear _{MAX} =	
Compression _{SEISMIC} =	3167 lbs	=[FpmaxASD*(Hcm+Hc	curb)+(1+0.14S _{DS})*WGT _{unit+cur}	_{rb} *Lcurb/2]/Lcurb
Tension _{SEISMIC} =	823 lbs	=[FpmaxASD*(Hcm+Hc	curb)-(0.6-0.14S _{DS})*WGT _{unit+cr}	_{urb} *Lcurb/2]/Lcurb
$Compression_{WIND} =$	250 lbs	=[F _{h ASD long} *(Hcm+Hcur	b)+0.6*WGT _{unit+curb} *Lcurb/2-	-F _{vert ASD} *Lcurb/2]/Lcu
Tension _{WIND} =	832 lbs	=[F _{h ASD long} *(Hcm+Hcur	b)-0.6*WGT _{unit+curb} *Lcurb/2+	F _{vertASD} *Lcurb/2]/Lcu
Wood Attachment:	1/4"ф х 3.	5" Simpson SDS screws	w/ 2.25" threaded emb (SG	Gmin = 0.43)
	Tall	997 lbs	Vall= 1097 lbs	:

Wood Attachment:	1/4"ф x 3.5" S	Simpson SD	S screws	w/ 2.25" thre	eaded emb ((SGmin = 0.43)
	Tall _{metal} =	997 I	bs	Vall _{metal} =	1097	bs
Transverse:	Tall _{wood} =	616 l	bs	Vall _{wood} =	672	bs
# of Screws	Req'd for Uplift =	2.41		COMBINED L	OADING:	0.837 O.K.
# of Screws	Req'd for Shear =	2.61		Screw	/ Spacing =	22.6 in o.c.
Total # of s	screws Required =	6			· -	
4 /4 !! ! 0 = !! 0: 0						

1/4" ϕ x 3.5" Simpson SDS screws @ 22.6 in o.c. along long side of curb w/ 2.25" threaded embed Longitudinal:

of Screws Req'd for Uplift = 1.4

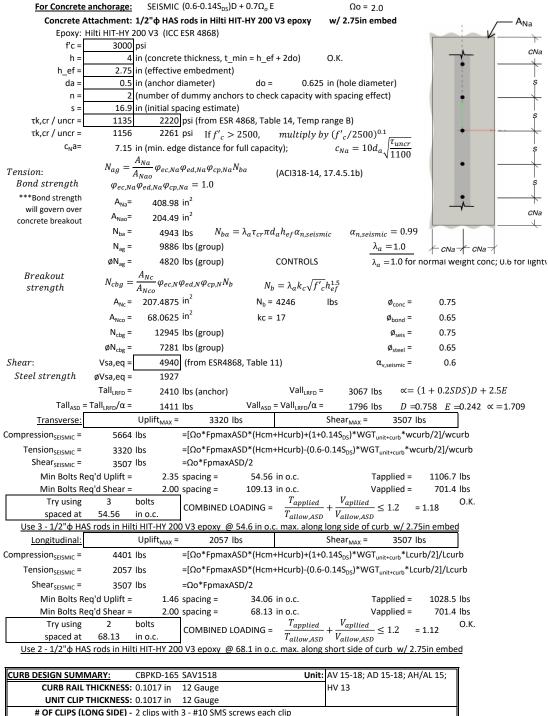
of Screws Req'd for Shear = 2.6

Total # of screws Required = 4

COMBINED LOADING: 0.990 O.K.
Screw Spacing = 24.0 in o.c.

1/4"φ x 3.5" Simpson SDS screws @ 24 in o.c. along short side of curb w/ 2.25" threaded embed

Steel Deck Attachment:		1/2" ф A307 Bolts to steel angle below deck						
		Tall _{bolt} =	3927	lbs	Vall _{bolt} =	2209	lbs	
<u>Transverse:</u>		Tall _{metal} =	2086	lbs	Vall _{metal} =	2192	lbs	
	# of Bolts R	eq'd for Uplift =	0.71		COMBINED I	LOADING:		0.202 O.K.
		eq'd for Shear = Bolts Required =	0.80		Во	lt Spacing =		54.6 in o.c.


1/2" φ A307 Bolts to steel angle below deck @ 54.6 in o.c. along long side of curb Longitudinal:

of Bolts Req'd for Uplift = 0.40 COMBINED LOADING: 0.285 O.K.

of Bolts Req'd for Shear = 0.80 Req'd Min Spacing = 68.1 in o.c.

Total # of Bolts Required = 2

 $1/2\text{"}\ \varphi$ A307 Bolts to steel angle below deck @ 68.1 in o.c. along short side of curb

CURB DESIGN SUM	MARY: CBPKD-165 SAV1518	Unit:	AV 15-18; AD 15-18; AH/AL 15;					
CURB RAIL	.THICKNESS: 0.1017 in 12 Gauge		HV 13					
UNIT CLIP	THICKNESS: 0.1017 in 12 Gauge							
# OF CLIPS (I	LONG SIDE) - 2 clips with 3 - #10 SMS	screws each clip						
WEE	3 STIFFENER: 16Ga x 3/4" x 6" (C-chan	nel) stiffener at each clip						
# OF CLIPS (SI	HORT SIDE) - 2 clips with 3 - #10 SMS	screws each clip						
WEE	WEB STIFFENER: 16Ga x 3/4" x 6" (C-channel) stiffener at each clip							
CORNER CO	ONNECTION: Use 3 - 1/4" φ SAE Grade	e 8 bolts w/ 1/4-20-UNC	Threaded inserts					
CURB	WOOD	<u>STEEL</u>	CONCRETE					
ANCHORAGE	1/4"φ x 3.5" Simpson SDS screws w/	1/2" φ A307 Bolts to	1/2"φ HAS rods in Hilti HIT-HY					
ANCHURAGE	2.25" threaded embed	steel angle below deck	200 V3 epoxy w/ 2.75in embed					
LONG DIRECTION	6 @ 22.63 in o.c.	3 @ 54.56 in o.c.	3 @ 54.56 in o.c.					
SHORT DIRECTION	4 @ 24.04 in o.c.	2 @ 68.13 in o.c.	2 @ 68.13 in o.c.					