

Structural Calculations for

CBKD Series Roof Curbs

CBKD-94A (80-265-13) 2020 Florida Building Code requirements

Prepared for:

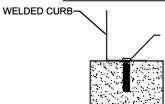
PROVENT

3847 Wabash Drive Mira Loma, CA 91725

Date: May 19, 2021 Project Number: PV2101

STEEL ATTACHMENT CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 5/8" Ø A307 BOLTS ATTACHED TO STEEL ANGLE BELOW DECK AT EACH CONNECTION POINT. SHEATHING WHERE OCCURS METAL DECK NO. OF ANCHORAGE BOLTS REQUIRED

WIND LOAD ROOF ANCHORAGE DETAIL


Meets wind requirements for the following codes:

FBC <u>2020</u> based on ASCE 7-16.

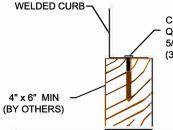
Wind:

190 mph exposure D category III or IV building, max BLDG height: 60 ft Kzt=1.00 max

CONCRETE ATTACHMENT

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 3/4" Ø THRD'D ROD IN HILTI HIT-HY 200 EPOXY, 4" MIN. EMBED INTO CONCRETE.

- NORMAL WEIGHT CONC SLAB
- fc=4000 PSI MIN
- 6" MIN THICK CONC.
- SPECIAL INSPECTION REQUIRED (ESR-3187)


NO. OF ANCHORAGE BOLTS REQUIRED

CURB KIT	LONG SIDE *	SHORT SIDE **	UNIT
80-265-49	5 @ 8.63" o.c.	3 @ 9.5" o.c.	LXS
80-265-50	5 @ 8.63" o.c.	4 @ 9.67" o.c.	LXL
80-265-13	5 @ 15.25" o.c.	3 @ 12.63" o.c.	SUNLINE 3-6 TON
80-265-45	5 @ 14.59" o.c.	3 @ 14.09" o.c.	PRESTIGE SMALL
80-265-46	5 @ 18" o.c.	4 @ 13.67" o.c.	PRESTIGE LARGE
80-265-29	9 @ 8.67" o.c.	5 @ 9.88" o.c.	PREDATOR
80-265-19	8 @ 14.75" o.c.	6 @ 14.4" o.c.	SUNLINE ULTRA
80-265-18	12 @ 10.39" o.c.	8 @ 10.29" o.c.	SUNLINE MAGNA

LONG SIDE * SHORT SIDE * **CURB KIT** UNIT 2 @ 34.5" o.c. 2 @ 19" o.c. 80-265-49 LXS 2 @ 29" o.c. LXL 80-265-50 2 @ 34.5" o.c. 80-265-13 2 @ 61" o.c. 2 @ 25.25" o.c. SUNLINE 3-6 TON 80-265-45 2 @ 58.38" o.c. PRESTIGE SMALL 2 @ 28.19" o.c. PRESTIGE LARGE 80-265-46 2 @ 72" o.c. 2 @ 41" o.c. 80-265-29 3 @ 34.69" o.c. 2 @ 39.5" o.c. PREDATOR 2 @ 72" o.c. SUNLINE ULTRA 80-265-19 3 @ 51.63" o.c. 80-265-18 2 @ 72" o.c. SUNLINE MAGNA 3 @ 57.13" o.c.

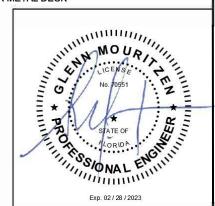
WOOD ATTACHMENT

STEEL AND CONCRETE ANCHORS ARE 6"
FROM EACH CORNER EVENLY SPACED

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 5/8" Ø WOOD LAG SCREWS (3.5" MIN. EMBED. INTO WOOD FRAMING)

(SPECIFIC GRAVITY OF WOOD= 0.43 MIN)

	NO. OF ANCHORAGE			
CURB KIT	LONG SIDE	SHORT SIDE	UNIT	
80-265-49	6 @ 7.7" o.c.	3 @ 11.5" o.c.	LXS	
80-265-50	5 @ 9.63" o.c.	5 @ 8.25" o.c.	LXL	
80-265-13	6 @ 13" o.c.	3 @ 14.63" o.c.	SUNLINE 3-6 TON	
80-265-45	6 @ 12.48" o.c.	3 @ 16.09" o.c.	PRESTIGE SMALL	
80-265-46	6 @ 15.2" o.c.	4 @ 15" o.c.	PRESTIGE LARGE	
80-265-29	10 @ 8.15" o.c.	6 @ 8.7" o.c.	PREDATOR	
80-265-19	8 @ 15.32" o.c.	6 @ 15.2" o.c.	SUNLINE ULTRA	
80-265-18	14 @ 9.1" o.c.	8 @ 10.86" o.c.	SUNLINE MAGNA	
****	FOUR INCHES FROM EACH CORNER EVENLY SPACED.			


CONCRETE OVER METAL DECK

WELDED CURB

CONC OVER METAL DECK

STEEL ANGLE/FRAMING
BY OTHERS

NOTE: FOR CONC OVER METAL
DECK OVER STEEL FRAMING
USE STEEL ATTACHMENT

RRS ROOFTOP

1625 DIPLOMAT DRIVE CARROLTON, TX 75006

PHONE (972) 247-7447 FAX (972) 243-0940

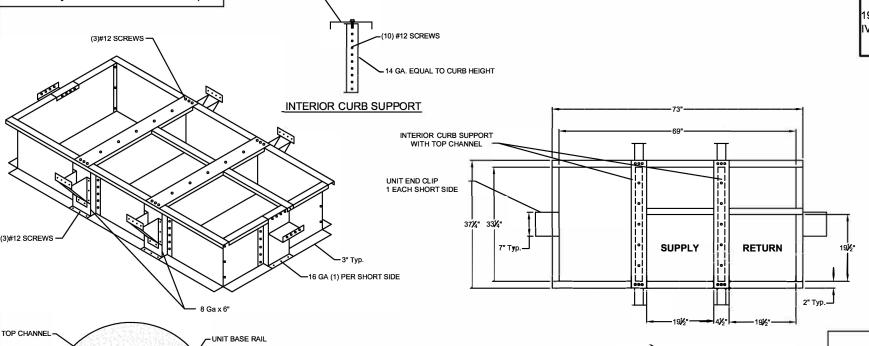
| FORM NO: | CB-25A | DATE: | REV: | DRAWN BY: | 3/29/2021 | 2 | ALL

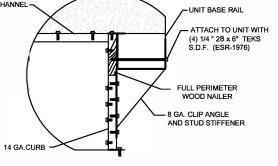
For wood, concrete and steel attachments see Roof Anchorage Detail, Form No. CB-25A.

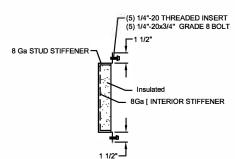
Will conform to wind load code requirements for knock-down or pre-assembled application. (Contact factory for assembled version.)

14 GA. TOP CHANNEL

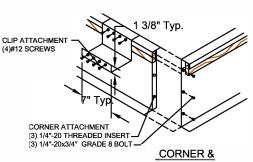
CALCULATED WIND ROOF CURBS FOR YORK UNITS


ZR, XN, XP 036-060 ZE, ZF 036-072


ProVent P/N Α WEIGHT 80-265-1314 14" 117 Lbs 80-265-1318 18" 141 Lbs


Meets wind requirements for the following codes: FBC 2020 based on ASCE 7-16.

Wind:


190 mph exposure D category III or IV building, max BLDG height: 60 ft Kzt=1.00 max

STUD STIFFENER

END CLIP DETAIL

MO UR

No. 70551

STATE OF

STATE OF Exp. 02 / 28 / 2023

HOLD DOWN DETAIL

1625 DIPLOMAT DRIVE CARROLTON, TX 75006

PHONE (972) 247-7447 FAX (972) 243-0940

SUBMITTED TO:	רע
COMPANY:	CI
JOB NAME:	
EQUIPMENT:	D
NOTES:	3/
	0,,

FORM NO: BKD-94A

80-265-13

PART NUMBER:

ATE: /29/2021 **REV**: 3

DRAWN BY: ALL

Client: ProVent

PV2101

Ctient:	Provent PVZIUI	Previous: PV1807	
Description:	CBKD-94	80-265-13**	
Unit:	ZR, XN. XP 036-060; Z	'E, ZF 036-072	
			<u> </u>
Curb Information			EQ Fv EQ
Hcurb =	18 in	(Height of curb)	Wunit
Lcurb =	73 in	(Length of curb)	(x Lunit)
wcurb =	37.25 in	(Width of curb)	
WGTcurb =	141 lbs	(Weight of curb)	
# Clips long side =	2 # Clips	short side = 1	
Unit Information		<u></u>	FPMAX
WGTunit =	640 lbs	(Weight of Unit)	▶ ∮
Wtmax =	166 lbs	(Maximum corner weight)	⊥ WGT _{UNIT}
Wtmin =	76 lbs	(Minimum corner weight)	Wt _{min} Wt _{max}
Hunit =	32.625 in	(Height of unit above curb)	i +
Hcm =	16.3125 in	[Height to contor of mass]	<u>├</u> , ├ }∪İЫ
Lunit =	82.25 in	(Length of unit)	†
Wunit =	44.875 in	(Width of unit)	WGTcurs
		(main or ame,	Wourb
Seismic Loading -	2020 FBC/2018 IBC	-	V (x Lcurb) V T _{max} C _{max}
Ss =	0.15	(Worst Case for state of Florida)	▼ Tmax Cmax
Fa =	2.4	(Worst case Site class E from Tabl	le 11.4-1 ASCE 7-16)
Sms =	0.360	(Fa*Ss)	
Sds =	0.240	(2/3*Sms)	
lp =	1.5	(Importance Factor Category III or	IV Building)
Fpmax =		(1.6*Sds*Ip)*WGTunit (Eq 13.3-2)	•
FpmaxASD =	258 lbs		maxASD = 315 lbs
•	(unit only)	(0.7 1 pillax) 1 p	(unit and curb)
	20 FBC/2018 IBC	*** Exposure Category D ***	(unit and curb)
Kz =	1.31	(For 60 ft roof height, Exposure D	- Table 26 10-1 ACSE 7-16)
Kzt =	1.00	(Max. assumed topographic factor	
Kd =	0.85	(Directionality factor Table 26.6-1.	
Ku = Ke =	1.00	(Ground Elevation Factor Table 26.	
V =	190		
ŀ			Cat III-IV bldgs Exp. Cat C, Fig 26.5-1D - ASCE7-16)
GCr _(horiz) =	1.9	(Refer Sect 29.4.1 ASCE 7-16)	
$GCr_{(vert)} =$	1.5	(Refer Sect 29.4.1 ASCE 7-16)	
qz	102.9 psf	$= 0.00256*Kz*Kzt*Kd*Ke*V^2$ (Eq. 2	
F _{h ASD trans} =	3392 lbs	= 0.6*qz*GCr*Lunit*(Hunit+Hcurb)	
F _{h ASD long} =	1851 lbs	= 0.6*qz*GCr*Wunit*(Hunit+Hcurb	b)
$F_{\text{vert ASD}} =$	2374 lbs	= 0.6*qz*GCr*Lunit*Wunit (Eq. 2	9.4-3)
Curb Loading			
<u>Transverse:</u>			
Compression _{SEISMIC} =	456 lbs	$=[FpmaxASD*Hcm+2*(1+0.14S_{DS})*$	
Tension _{SEISMIC} =	94 lbs	= Comp _{SEISMIC} -(0.6-0.14S _{DS})*WGTu	
$Compression_{WIND} =$	498 lbs	= $[F_{h transASD}*Hcm+2*0.6*Wtmax*wc$	curb-F _{vertASD} *wcurb/2]/wcurb
Tension _{WIND} =	2488 lbs	= Comp _{WIND} +Fvert-0.6*WGTunit	
	> Negative values	indicate opposite load.	
<u>Longitudinal:</u>			
$Compression_{SEISMIC} =$	401 lbs	= $[FpmaxASD*Hcm+2*(1+0.14*S_{DS})]$]*Wtmax*Lcurb]/Lcurb
$Tension_{SEISMIC} =$	38 lbs	= $Comp_{SEISMIC}$ - $(0.6-0.14S_{DS})*WGTu$	nit
Compression -	-57/, lbc	-[E *Hcm + 2*0 6*\M/tmax*] c	

 $= [F_{h \; transASD}^{*} + tcm + 2*0.6*Wtmax*Lcurb - F_{vertASD}*Lcurb/2]/Lcurb$

= Comp_{WIND}+Fvert-0.6*WGTunit

Previous: PV1807

Governing Reaction	ins:				
<u>Transverse:</u>	Comp _{MAX} =	498	lbs	> Along long edge of curb.	
(on long edge)	Tens _{MAX} =	2488	lbs	> Along long edge of curb.	
Longitudinal:	Comp _{MAX} =	401	lbs	> Along short edge of curb).
(on short edge)	Tens _{MAX} =	1416	lbs	> Along short edge of curb).

---> Negative values indicate opposite load.

-574 lbs

1416 lbs

 ${\sf Compression_{WIND}} =$

 $\mathsf{Tension}_{\mathsf{WIND}} =$

⁽on short edge) Tens_{MAX} = 1416 lbs ---> Negative values indicate opposite load.

A'

Fy = 50 ksi Fu = 65 ksi $t = 0.0713 \boxed{14 \text{ Gauge}}$ E = 29500 ksi

Calculate Section Properties of Curb

LIOII	i i opei des c	or Our D		
Α'=	18.000	in	a =	17.644 in = A'-(2r+t)
B'=	2.000	in	a'=	17.929 in = A'-t
C'=	0.000	in (0 if no lips)	b =	1.822 in = B'-[$r+t/2+a(r+t/2)$]
a =	0.000	(0 - no Lip; 1 w/ lip)	b'=	1.964 in = B'-(t/2+at/2)
R=	0.1069	(Inside bend radius)	c =	0.000 in = $a[C'-(r+t/2)]$
t =	0.0713	in	c'=	0.000 in = $a(C'-t/2)$
r'=	0.143	in = R+t/2	u =	$0.224 \text{ in } = \pi r/2$
x =	0.178	in (Distance between	centroid and we	eb centerline)
lx =	56.073	in (Moment of Inertia	about X-Axis)	
ly =	0.311	in (Moment of Inertia	about Y-Axis)	
A =	1.55	in ²		
rx =	6.02	in		

rmin =

IIIPI ESSIVII				
Pu =	1.696 k	(Max Axial Comp)	Ωc =	1.80
Pn/Ωc =	31.332 k	$I(f) < 1\Gamma, F = \left(0.070\lambda^2\right)F$		
Fe =	65.88 ksi	$P_n - F_n A$ If $\lambda_c \le 1.5$; $F_n = (0.658^{\lambda_c^2}) F_y$	$\lambda_c = \sqrt{\frac{F_y}{F_e}}$	$_{E}$ $_{-}$ $\pi^{2}E$
λc =	0.87	$\frac{\alpha}{\Omega_c} = \frac{\alpha}{\Omega_c}$ If $\lambda_c > 1.5$; $F_n = \frac{0.877}{\lambda^2} F_y$	$\lambda_c = \sqrt{\frac{r_y}{F_e}}$	$F_e = \frac{\pi E}{\left(\frac{kl}{r}\right)^2}$
Fn =	36.39 ksi	λ_c^2 by	•	(11)
Ly =	37 in	Lateral unbraced length		
$k_y L_y / r_y =$	66	(assume k=0.8)		

Compression Check = 0.K.

0.448 in 0.448 in

Check Web Crippling

h =	18 in	Check limits:	C = 4.00
t =	0.0713 in	$h/t = 252.45 \le 200$	$C_R = 0.14$ (See table C3.4.1-2, fastened
N =	7.00	$N/t = 98.18 \le 210$	$C_N = 0.35$ to support, one flange, end loading)
$\Omega_{\rm w}$ =	1.75	$N/h = 0.388889 \le 2.0$	$C_h = 0.02$
$P_n =$	2.296 k	$R/t = 1.50 \le 9.0$	
$P_n/\Omega_w =$	1.312 k	$P_n = C$	$(t^2F_y\sin(90)\left(1-C_R\right)\frac{R}{t}\left(1+C_N\right)\frac{N}{t}\left(1-C_h\right)\frac{h}{t}$
Long side: $Pu_{Trans} =$	0.249 k	<u>O.K.</u> # clips = 2	(x, y, t)
Short side: Pu _{Long} =	0.401 k	O.K. # clips = 1	

***h/t > 200; use web stiffeners

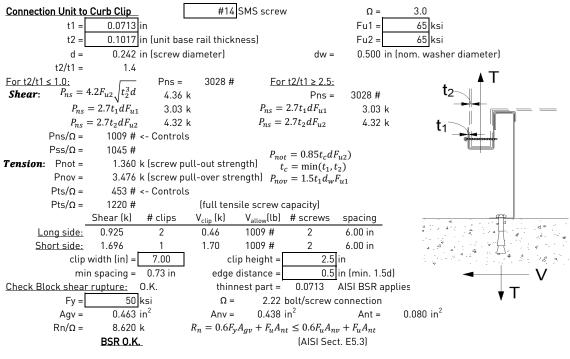
Check Web Stiffener 16Ga x 3/4" x 7" (C-channel)

OHECK WED SUITERE	_ 1004	1 X 0/4 X / (O Cilui	iiicti	
width of stiffener =	7.000 in		ts =	0.0566 16 Gauge
web of stiff. w =	6.717 in		Rs =	0.0849 in
***Check w/ts ≤ 1.2	28√E/Fys		Ωc =	1.70
w/ts =	118.675			
1.28√(E/Fys) =	31.091>	w/ts over limit U	se C3.7.2	
$P_n = 0.7(P_{wc} + 1$	$A_e F_v \ge P_{wc}$			
	2.296 k	Ae =	0.380 in^2	
Pn =	14.913 k	$Pn/\Omega =$	8.773 k	
			0.K	

Corner Connections 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts

848 lbs Max(F_{pmaxASD}/4 -OR- Fh_{ASDtrans}/4 corner connections) Tcrnmax = 1244 lbs (Max Ten/2 corner connections per side) Vcrnmax = Tall = 2480 lbs 1096 lbs Bolt: Vall = Threaded Insert: Tall = 1714 lbs # of Bolts required for Tension = 0.3

of Bolts Used = 2.0


Check Combined Stress in Bolts & Inserts: 0.738 O.K.

of Bolts required for Shear =

Check 1/8" welded connection \leftarrow --- USE WELD $\Omega = 2.3$

Assume L/t > 25: 25*t = 1.783 in $P_n/\Omega = \frac{1}{\Omega} 0.75t L F_u \ge V_{req}$ $L_{req'd} = \frac{V_{req}\Omega}{0.75t F_u}$

1.1

Connection of Curb to Supporting Structure

ouniection of our				
Roof Loading	SEISMIC: (0.6-0.14S	DS)D + 0.7E	WIND: 0.6D + W	
<u>Transverse:</u>	Uplift _{MAX} =		Shear _{MAX} =	1696 lbs
$Compression_{SEISMIC} =$	694 lbs	=[FpmaxASD*(Hcm+l	Hcurb)+(1+0.14S _{DS})*(WGT _u	_{nit+curb} /2)*wcurb]/wcurb
$Tension_{SEISMIC} =$	251 lbs	=Comp _{SEISMIC} -(0.6-0.1	4S _{DS})*(WGTunit+curb)	
Compression _{WIND} =	2172 lbs	$=[F_{h transASD}*(Hcm+Hc$	urb)+0.6*(WGT _{unit+curb} /2)*w	curb-F _{vertASD} *wcurb/2]/wcurb
Tension _{WIND} =	4077 lbs	$=[F_{h transASD}*(Hcm+Hc$	urb)-0.6*(WGT _{unit+curb} /2)*w	curb+F _{vertASD} *wcurb/2]/wcurb
<u>Longitudinal:</u>	Uplift _{MAX} =	1823 lbs	Shear _{MAX} =	925 lbs
$Compression_{SEISMIC} =$	552 lbs	=[FpmaxASD*(Hcm+F	Hcurb)+(1+0.14S _{DS})*(WGT _u	_{nit+curb} /2)*Lcurb]/Lcurb
$Tension_{SEISMIC} =$	109 lbs		4S _{DS})*(WGTunit+curb)	
$Compression_{WIND} =$	-83 lbs			curb-F _{vertASD} *Lcurb/2]/Lcurb
Tension _{WIND} =	1823 lbs	$=[F_{h transASD}*(Hcm+Hc$	urb)-0.6*(WGT _{unit+curb} /2)*L	curb+F _{vertASD} *Lcurb/2]/Lcurb
Wood Attachmen		p wood lag screws	<u>w/ 3.5" Mi</u> n.	Embed
	Tall _{metal} =	946.67 lbs	Vall _{metal} = 1043.33 lb	s
<u>Transverse:</u>	Tall _{wood} =	1195.95 lbs	Vall _{wood} = 1024 lb	s
# of Scr	ews Req'd for Uplift =	4.31	COMBINED LOADING:	0.902 O.K.
# of Scr	ews Req'd for Shear =	1.66	Screw Spacing =	13.0 in o.c.
Total #	of screws Required =	6		
<u>Use 5/8" ф wood</u>	l lag screws @ 13 in o.c.	along long side of curb	w/ 3.5" Min. Embed	
Longitudinal:				
	ews Req'd for Uplift =	1.9	COMBINED LOADING:	0.742 O.K.
	ews Req'd for Shear =	0.9	Screw Spacing =	14.6 in o.c.
	of screws Required =			
		c. along short side of cu		
Steel Deck Attachr			to steel angle below deck	_
-	Tall _{bolt} =		Vall _{bolt} = 3682 lb	
<u>Transverse:</u>	. I. D. II. II. II.	6903 lbs	3682 lb	
	Bolts Req'd for Uplift =		COMBINED LOADING:	0.218 O.K.
	olts Req'd for Shear =	0.46	Bolt Spacing =	61.0 in o.c.
	# of Bolts Required =			
<u>-</u>	Bolts attached to steel	angle below deck @ 61 i	in o.c. along long side of curb	<u>)</u>
<u>Longitudinal:</u>		0.07		004404
	Bolts Req'd for Uplift =	0.26	COMBINED LOADING:	0.066 O.K.
	olts Req'd for Shear =		Req'd Min Spacing =	25.3 in o.c.
	# of Bolts Required =		in a calong short side of a	urb
<u> USe 5/8" Ф АЗU/</u>	Boils attached to steel	angle below deck @ 25.	3 in o.c. along short side of c	<u>urb</u>

For Concrete anchorage: SEISMIC $[0.6-0.14SDS]D + 0.7\Omega_oE$ $(\Omega_o = 2.5)$ Concrete Attachment: 3/4" ϕ Hilti Hit-HY 200 adhesive anchors w/ 4" embed 1722 lbs $Vall_{LRFD} =$ 2032 lbs $\alpha = (1 + 0.2SDS)D + 2.5E = 1.87$ $Tall_{LRFD} =$ 920.9 lbs $Vall_{ASD} = Vall_{LRFD}/\alpha =$ 1086.6 lbs $Tall_{ASD} = Tall_{LRFD}/\alpha =$ (D = 0.465, E = 0.535)Shear_{MAX} = 1696 lbs Uplift_{MAX} = 4077 lbs Transverse: 1129 lbs $= [2.5*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*(WGT_{unit+curb}/2)*wcurb]/wcurb$ Compression_{SEISMIC} = Tension_{SEISMIC} = 686 lbs =Comp_{SEISMIC}-(0.6-0.14S_{DS})*(WGTunit+curb) $Shear_{SEISMIC} =$ 394 lbs =2.5*FpmaxASD/2 Min Bolts Req'd Uplift = 4.43 spacing = 12.25 in o.c. Tapplied = 815.5 lbs 212.0 lbs Min Bolts Req'd Shear = 2.00 spacing = 49 in o.c. Vapplied = $V_{apllied} \le 1.2$ $\frac{T_{applied}}{T_{allow,ASD}} + \frac{V_{apllied}}{V_{allow,ASD}}$ Try using 5 bolts COMBINED LOADING = spaced at 15.25 in o.c. Use 5 - 3/4" φ Hilti Hit-HY 200 adhesive anchors @ 15.3 in o.c. max. along long side of curb w/ 4" embed Shear_{MAX} = 1696 lbs Longitudinal: Uplift_{MAX} = 1823 lbs $= [2.5*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*(WGT_{unit+curb}/2)*Lcurb]/Lcurb$ $Compression_{SEISMIC} =$ 774 lbs 331 lbs =Comp_{SEISMIC}-(0.6-0.14S_{DS})*(WGTunit+curb) Tension_{SEISMIC} = =2.5*FpmaxASD/2 Shear_{SEISMIC} = 394 lbs Min Bolts Reg'd Uplift = 1.98 spacing = 13.25 in o.c. Tapplied = 607.5 lbs Min Bolts Req'd Shear = 2.00 spacing = 13.25 in o.c. Vapplied = 212.0 lbs $V_{apllied} \le 1.2$ $\frac{T_{applied}}{T_{allow,ASD}} + \frac{V_{apllied}}{V_{allow,ASD}}$ Try using 3 bolts COMBINED LOADING = = 0.85spaced at 12.63 in o.c.

h						
CURB DESIGN SU	MMARY:	CBKD-94	80-265-13**	:	Unit:	ZR, XN. XP 036-060; ZE, ZF 036-
CURB RAIL	THICKNESS:	0.0713 in	14 Gauge			072
UNIT CLIP	THICKNESS:	0.0713 in	14 Gauge			
# OF CLIPS (I	LONG SIDE) -	2 clips with	n 2 - #14 SMS	screws each clip		
WEE	STIFFENER:	16Ga x 3/4	" x 7" (C-char	nnel) stiffener at ea	ch clip	0
# OF CLIPS (SI	HORT SIDE) -	1 clips with	n 2 - #14 SMS	screws each clip		
WEE	WEB STIFFENER: 16Ga x 3/4" x 7" (C-channel) stiffener at each clip					
CORNER CONNECTION: Use 3 - 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts						
CURB		WOOD		STEEL		<u>CONCRETE</u>
ANCHORAGE	5/8" φ la	g screw w/	min. 3.5"	5/8" φ A307 bol	ts to	3/4" φ thrd'd rod in Hilti HIT-HY
ANCHORAGE	emb	ed (SGmin=	0.43)	steel angle bel	wc	200 epoxy, min. 4" embed
LONG DIRECTION	6	@ 13 in o.	c.	2 @ 61 in o.d		5 @ 15.25 in o.c.
SHORT DIRECTION	3 (@ 14.63 in d	o.c.	2 @ 25.25 in o	.C.	3 @ 12.63 in o.c.

Use 3 - 3/4" ϕ Hilti Hit-HY 200 adhesive anchors @ 12.6 in o.c. max. along short side of curb w/ 4" embed