

Structural Calculations for

CBKD Series Roof Curbs

CBKD-92A (80-265-19) 2020 Florida Building Code requirements

Prepared for:

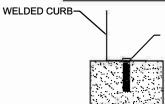
PROVENT

3847 Wabash Drive Mira Loma, CA 91725

Date: May 19, 2021 Project Number: PV2101

STEEL ATTACHMENT CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 5/8" Ø A307 BOLTS ATTACHED TO STEEL ANGLE BELOW DECK AT EACH CONNECTION POINT. SHEATHING WHERE OCCURS METAL DECK NO. OF ANCHORAGE BOLTS REQUIRED

WIND LOAD ROOF ANCHORAGE DETAIL


Meets wind requirements for the following codes:

FBC <u>2020</u> based on ASCE 7-16.

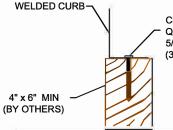
Wind:

190 mph exposure D category III or IV building, max BLDG height: 60 ft Kzt=1.00 max

CONCRETE ATTACHMENT

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 3/4" Ø THRD'D ROD IN HILTI HIT-HY 200 EPOXY, 4" MIN. EMBED INTO CONCRETE.

- NORMAL WEIGHT CONC SLAB
- fc=4000 PSI MIN
- 6" MIN THICK CONC.
- SPECIAL INSPECTION REQUIRED (ESR-3187)


NO. OF ANCHORAGE BOLTS REQUIRED

CURB KIT	LONG SIDE *	SHORT SIDE **	UNIT
80-265-49	5 @ 8.63" o.c.	3 @ 9.5" o.c.	LXS
80-265-50	5 @ 8.63" o.c.	4 @ 9.67" o.c.	LXL
80-265-13	5 @ 15.25" o.c.	3 @ 12.63" o.c.	SUNLINE 3-6 TON
80-265-45	5 @ 14.59" o.c.	3 @ 14.09" o.c.	PRESTIGE SMALL
80-265-46	5 @ 18" o.c.	4 @ 13.67" o.c.	PRESTIGE LARGE
80-265-29	9 @ 8.67" o.c.	5 @ 9.88" o.c.	PREDATOR
80-265-19	8 @ 14.75" o.c.	6 @ 14.4" o.c.	SUNLINE ULTRA
80-265-18	12 @ 10.39" o.c.	8 @ 10.29" o.c.	SUNLINE MAGNA

LONG SIDE * SHORT SIDE * **CURB KIT** UNIT 2 @ 34.5" o.c. 2 @ 19" o.c. 80-265-49 LXS 2 @ 29" o.c. LXL 80-265-50 2 @ 34.5" o.c. 80-265-13 2 @ 61" o.c. 2 @ 25.25" o.c. SUNLINE 3-6 TON 80-265-45 2 @ 58.38" o.c. PRESTIGE SMALL 2 @ 28.19" o.c. PRESTIGE LARGE 80-265-46 2 @ 72" o.c. 2 @ 41" o.c. 80-265-29 3 @ 34.69" o.c. 2 @ 39.5" o.c. PREDATOR 2 @ 72" o.c. SUNLINE ULTRA 80-265-19 3 @ 51.63" o.c. 80-265-18 2 @ 72" o.c. SUNLINE MAGNA 3 @ 57.13" o.c.

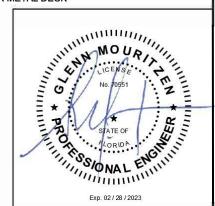
WOOD ATTACHMENT

STEEL AND CONCRETE ANCHORS ARE 6"
FROM EACH CORNER EVENLY SPACED

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 5/8" Ø WOOD LAG SCREWS (3.5" MIN. EMBED. INTO WOOD FRAMING)

(SPECIFIC GRAVITY OF WOOD= 0.43 MIN)

	NO. OF ANCHORAGE		
CURB KIT	LONG SIDE	SHORT SIDE	UNIT
80-265-49	6 @ 7.7" o.c.	3 @ 11.5" o.c.	LXS
80-265-50	5 @ 9.63" o.c.	5 @ 8.25" o.c.	LXL
80-265-13	6 @ 13" o.c.	3 @ 14.63" o.c.	SUNLINE 3-6 TON
80-265-45	6 @ 12.48" o.c.	3 @ 16.09" o.c.	PRESTIGE SMALL
80-265-46	6 @ 15.2" o.c.	4 @ 15" o.c.	PRESTIGE LARGE
80-265-29	10 @ 8.15" o.c.	6 @ 8.7" o.c.	PREDATOR
80-265-19	8 @ 15.32" o.c.	6 @ 15.2" o.c.	SUNLINE ULTRA
80-265-18	14 @ 9.1" o.c.	8 @ 10.86" o.c.	SUNLINE MAGNA
****	FOUR INCHES FROM EACH CORNER EVENLY SPACED.		

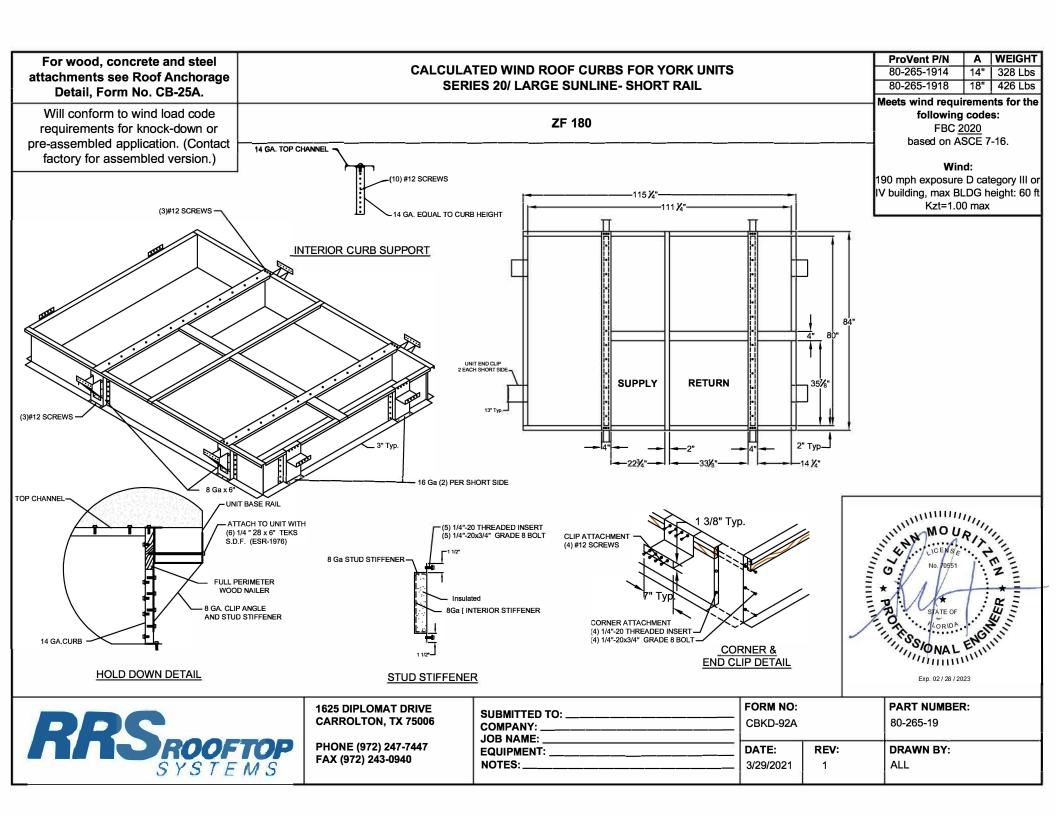

CONCRETE OVER METAL DECK

WELDED CURB

CONC OVER METAL DECK

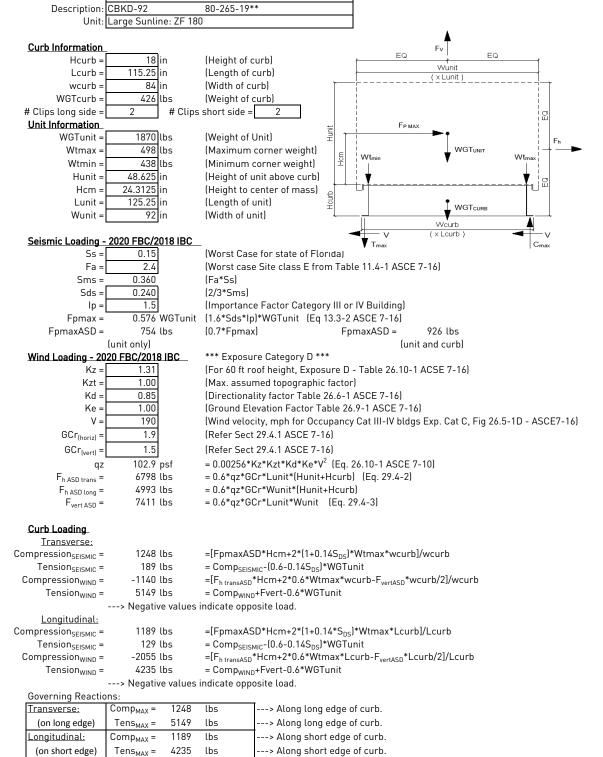
STEEL ANGLE/FRAMING
BY OTHERS

NOTE: FOR CONC OVER METAL
DECK OVER STEEL FRAMING
USE STEEL ATTACHMENT



RRS ROOFTOP

1625 DIPLOMAT DRIVE CARROLTON, TX 75006


PHONE (972) 247-7447 FAX (972) 243-0940

| FORM NO: | CB-25A | DATE: | REV: | DRAWN BY: | 3/29/2021 | 2 | ALL

Client: ProVent

PV2101

Previous: PV1807

---> Negative values indicate opposite load.

Fy = 50 ksi Fu = 65 ksi t = $0.0713 \frac{14 \text{ Gauge}}{1}$

E = 29500 ksi

6.02 in

0.448 in 0.448 in

Calculate Section Properties of Curb

ction	Properties of	of Curb			
Α'=	18.000	in	a =	17.644 in = A'-(2r+t)	+
B'=	2.000	in	a'=	17.929 in = A'-t	C'
C'=	0.000	in (0 if no lips)	b =	1.822 in = B'-[r+t/2+a(r+t/2)]	_
a =	0.000	(0 - no Lip; 1 w/ lip)	b'=	1.964 in = B'-(t/2+at/2)	1
R=	0.1069	(Inside bend radius)	c =	0.000 in = $a[C'-(r+t/2)]$	_
t =	0.0713	in	c'=	0.000 in = $a(C'-t/2)$	R-
r'=	0.143	in = R+t/2	u =	$0.224 \text{ in } = \pi r/2$	
x =	0.178	in (Distance between c	entroid and v	veb centerline)	
lx =	56.073	in (Moment of Inertia a	bout X-Axis)		
ly =	0.311	in (Moment of Inertia a	bout Y-Axis)		
A =	1.55	in ²			

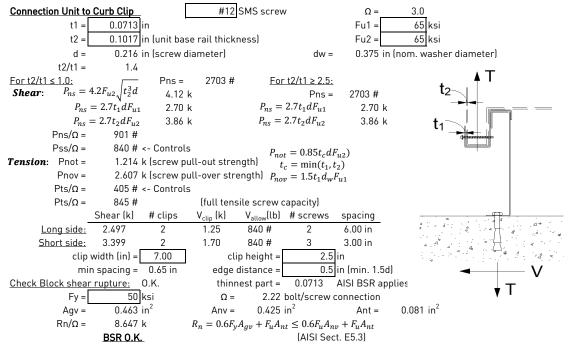
rmin =
Axial Compression

rx = ry =

Check Web Crippling

Compression Check = 0.K.

h =	18 in	Check limits:	C = 4.00
t =	0.0713 in	$h/t = 252.45 \le 200$	$C_R = 0.14$ (See table C3.4.1-2, fastened
N =	7.00	$N/t = 98.18 \le 210$	$C_N = 0.35$ to support, one flange, end loading)
$\Omega_{\rm w}$ =	1.75	$N/h = 0.388889 \le 2.0$	$C_h = 0.02$
P _n =	2.296 k	$R/t = 1.50 \le 9.0$	$\left(\begin{array}{c} \Gamma_{P} \end{array}\right) \left(\begin{array}{c} \Gamma_{N} \end{array}\right) \left(\begin{array}{c} \Gamma_{h} \end{array}\right)$
$P_n/\Omega_w =$	1.312 k	$P_n =$	$=Ct^2F_y\sin(90)\left(1-C_R\sqrt{\frac{R}{t}}\right)\left(1+C_N\sqrt{\frac{N}{t}}\right)\left(1-C_h\sqrt{\frac{h}{t}}\right)$
Long side: $Pu_{Trans} =$	0.624 k	<u>O.K.</u> # clips = 2	$\langle \gamma_i \rangle \langle \gamma_i \rangle \langle \gamma_i \rangle$
Short side: $Pu_{Long} =$	0.594 k	<u>O.K.</u> # clips = 2	


***h/t > 200; use web stiffeners

Check Web Stiffener 16Ga x 3/4" x 7" (C-channel) width of stiffener = 7.000 in ts = 0.0566 16 Gauge web of stiff. w = 6.717 in Rs = 0.0849 in ***Check w/ts \leq 1.28VE/Fys Ω c = 1.70 w/ts = 118.675 1.28V[E/Fys] = 31.091 --> w/ts over limit Use C3.7.2

1.28v(E/Fys) = 31.091 --> w/ts over limit Use C3.7.2
$$P_n = 0.7(P_{wc} + A_e F_y) \ge P_{wc}$$

$$P_{WC} = 2.296 \text{ k}$$
 Ae = 0.380 in²
 $P_{NC} = 2.296 \text{ k}$ April $P_{NC} = 8.773 \text{ k}$ Solution

Corner Connections 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts

WIND O (D . W)

Connection of Curb to Supporting Structure

Roof Loading	SEISMIC: (0.6-0.149	SDS)D + 0.7E	WIND: 0.6D + W			
<u>Transverse:</u>	Uplift _{MAX} =	: 6441 lbs	Shear _{MAX} =	3399 lbs		
Compression _{SEISMIC} =	1653 lbs	1653 lbs = $[FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*(WGT_{unit+curb}/2)*wcurb]/wcurb$				
Tension _{SEISMIC} =	352 lbs	=Comp _{SEISMIC} -(0.6-0.14S _{DS})*(WGTunit+curb)				
$Compression_{WIND} =$	408 lbs	= $[F_{h transASD}*(Hcm+Hcurb)+0.6*(WGT_{unit+curb}/2)*wcurb-F_{vertASD}*wcurb/2]/wcurb$				
Tension _{WIND} =	6441 lbs	=[F _{h transASD} *(Hcm+Hct	urb)-0.6*(WGT _{unit+curb} /2)*w	curb+F _{vertASD} *wcurb/2]/wcurb		
<u>Longitudinal:</u>	Uplift _{MAX} =	: 4850 lbs	Shear _{MAX} =	2497 lbs		
Compression _{SEISMIC} =	1526 lbs		lcurb)+(1+0.14S _{DS})*(WGT _{ur}	_{hit+curb} /2)*Lcurb]/Lcurb		
Tension _{SEISMIC} =	226 lbs	=Comp _{SEISMIC} -(0.6-0.1	4S _{DS})*(WGTunit+curb)			
$Compression_{WIND} =$	-1183 lbs			curb-F _{vertASD} *Lcurb/2]/Lcurb		
Tension _{WIND} =	4850 lbs	=[F _{h transASD} *(Hcm+Hci		curb+F _{vertASD} *Lcurb/2]/Lcurb		
Wood Attachmen	t: Use 5/8"	φ wood lag screws	<u>w/ 3.5" Mi</u> n. I			
	Tall _{screw} =	6133 lbs	Vall _{metal} = 2744 lbs	5		
<u>Transverse:</u>	Tall _{wood} =	1196 lbs	Vall _{wood} = 1024 lbs	5		
# of Scr	ews Req'd for Uplift =	5.39	COMBINED LOADING:	0.910 O.K.		
	ews Req'd for Shear =		Screw Spacing =	15.3 in o.c.		
Total #	of screws Required =	8				
<u>Use 5/8" ф wood</u>	I lag screws @ 15.3 in o	.c. along long side of curl	b w/ 3.5" Min. Embed			
<u>Longitudinal:</u>						
	ews Req'd for Uplift =		COMBINED LOADING:	0.850 O.K.		
# of Screws Req'd for Shear = 2.4 Screw Spacing = 15.2 in o.c.						
	of screws Required =					
		.c. along short side of cu				
Steel Deck Attachi			to steel angle below deck $Vall_{bolt} = \boxed{3682} lbs$			
T	Tall _{bolt} =		3682 lbs			
<u>Transverse:</u>	ortha Daniid fan Halife	6903 lbs				
	solts Req'd for Uplift =		COMBINED LOADING:	0.283 O.K.		
	olts Req'd for Shear =		Bolt Spacing =	51.6 in o.c.		
Total # of Bolts Required = 3						
Use 5/8" φ A307 Bolts attached to steel angle below deck @ 51.6 in o.c. along long side of curb						
Longitudinal:		0.50		0.040.044		
	olts Req'd for Uplift =		COMBINED LOADING:	0.340 O.K.		
	olts Req'd for Shear =		Req'd Min Spacing =	72.0 in o.c.		
	# of Bolts Required =		n o c along short side of sur	h		
<u>Use 5/8" φ A307 Bolts attached to steel angle below deck @ 72 in o.c. along short side of curb</u>						

For Concrete anchorage: SEISMIC $(0.6-0.14SDS)D + 0.7\Omega_oE$ $(\Omega_o=2.5)$ Concrete Attachment: 3/4" ϕ Hilti Hit-HY 200 adhesive anchors w/ 4" embed $Vall_{LRFD} =$ 1722 lbs 2032 lbs $\propto = (1 + 0.2SDS)D + 2.5E = 1.87$ $Tall_{LRFD} =$ 920.9 lbs $Vall_{ASD} = Vall_{LRFD}/\alpha =$ 1086.6 lbs (D = 0.465, E = 0.535) $Tall_{ASD} = Tall_{LRFD}/\alpha =$ Uplift_{MAX} = 6441 lbs Shear_{MAX} = 3399 lbs Transverse: $= [2.5*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*(WGT_{unit+curb}/2)*wcurb]/wcurb$ ${\sf Compression}_{\sf SEISMIC} =$ 2352 lbs $= Comp_{\mathsf{SEISMIC}} - \{0.6 - 0.14 \mathsf{S}_{\mathsf{DS}}\} * \{\mathsf{WGTunit+curb}\}$ $\mathsf{Tension}_{\mathsf{SEISMIC}} =$ 1052 lbs 1157 lbs $\mathsf{Shear}_{\mathsf{SEISMIC}} =$ =2.5*FpmaxASD/2 15.21 in o.c. Min Bolts Req'd Uplift = 6.99 spacing = 805.1 lbs Tapplied = Min Bolts Req'd Shear = 3.13 spacing = 30.41667 in o.c. Vapplied = 242.8 lbs $V_{apllied} \le 1.2 = 1.10$ Try using 8 bolts $T_{applied}$ COMBINED LOADING = spaced at 14.75 in o.c. $\overline{T_{allow,ASD}} + \overline{V_{allow,ASD}}$ Use 8 - 3/4" φ Hilti Hit-HY 200 adhesive anchors @ 14.8 in o.c. max. along long side of curb w/ 4" embed $Uplift_{MAX} =$ 4850 lbs Shear_{MAX} = Longitudinal: Compression_{SFISMIC} = 2036 lbs $= [2.5*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*(WGT_{unit+curb}/2)*Lcurb]/Lcurb$ $Tension_{SEISMIC} =$ 736 lbs = $Comp_{SEISMIC}$ - $(0.6-0.14S_{DS})*(WGTunit+curb)$ $Shear_{SEISMIC} =$ 1157 lbs =2.5*FpmaxASD/2 12 in o.c. 808.3 lbs Min Bolts Req'd Uplift = 5.27 spacing = Tapplied = 20 in o.c. Vapplied = 242.8 lbs Min Bolts Req'd Shear = 3.13 spacing = $\frac{V_{apllied}}{2} \le 1.2 = 1.10$ $T_{applied}$ Try using bolts COMBINED LOADING = $\frac{upplieu}{T_{allow,ASD}} + \frac{upllieu}{V_{allow,ASD}}$ spaced at 14.40 in o.c. Use 6 - 3/4" ϕ Hilti Hit-HY 200 adhesive anchors @ 14.4 in o.c. max. along short side of curb w/ 4" embed

CURB DESIGN SU	MMARY:	CBKD-92	80-265-19**		Unit:	Large Sunline: ZF 180
CURB RAIL	THICKNESS:	0.0713 in	14 Gauge			
UNIT CLIP	THICKNESS:	0.0713 in	14 Gauge			
# OF CLIPS (L	# OF CLIPS (LONG SIDE) - 2 clips with 2 - #12 SMS screws each clip					
WEE	WEB STIFFENER: 16Ga x 3/4" x 7" (C-channel) stiffener at each clip					
# OF CLIPS (SI	# OF CLIPS (SHORT SIDE) - 2 clips with 3 - #12 SMS screws each clip					
WEB STIFFENER: 16Ga x 3/4" x 7" (C-channel) stiffener at each clip						
CORNER CONNECTION: Use 4 - 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts						
CURB		WOOD		STEEL		CONCRETE
ANCHORAGE	5/8" φ la	g screw w/	min. 3.5"	5/8" φ A307 bol	ts to	3/4" φ thrd'd rod in Hilti HIT-HY
	emb	ed (SGmin=	:0.43)	steel angle bel	ow	200 epoxy, min. 4" embed
LONG DIRECTION	8 (@ 15.32 in	O.C.	3 @ 51.63 in o	.C.	8 @ 14.75 in o.c.
SHORT DIRECTION	6	@ 15.2 in c).C.	2 @ 72 in o.d		6 @ 14.4 in o.c.