

Structural Calculations for

CBKD Series Roof Curbs

CBKD-95A (80-265-29) 2020 Florida Building Code requirements

Prepared for:

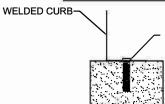
PROVENT

3847 Wabash Drive Mira Loma, CA 91725

Date: May 19, 2021 Project Number: PV2101

STEEL ATTACHMENT CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 5/8" Ø A307 BOLTS ATTACHED TO STEEL ANGLE BELOW DECK AT EACH CONNECTION POINT. SHEATHING WHERE OCCURS METAL DECK NO. OF ANCHORAGE BOLTS REQUIRED

WIND LOAD ROOF ANCHORAGE DETAIL


Meets wind requirements for the following codes:

FBC <u>2020</u> based on ASCE 7-16.

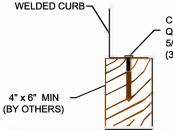
Wind:

190 mph exposure D category III or IV building, max BLDG height: 60 ft Kzt=1.00 max

CONCRETE ATTACHMENT

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 3/4" Ø THRD'D ROD IN HILTI HIT-HY 200 EPOXY, 4" MIN. EMBED INTO CONCRETE.

- NORMAL WEIGHT CONC SLAB
- fc=4000 PSI MIN
- 6" MIN THICK CONC.
- SPECIAL INSPECTION REQUIRED (ESR-3187)


NO. OF ANCHORAGE BOLTS REQUIRED

CURB KIT	LONG SIDE *	SHORT SIDE **	UNIT
80-265-49	5 @ 8.63" o.c.	3 @ 9.5" o.c.	LXS
80-265-50	5 @ 8.63" o.c.	4 @ 9.67" o.c.	LXL
80-265-13	5 @ 15.25" o.c.	3 @ 12.63" o.c.	SUNLINE 3-6 TON
80-265-45	5 @ 14.59" o.c.	3 @ 14.09" o.c.	PRESTIGE SMALL
80-265-46	5 @ 18" o.c.	4 @ 13.67" o.c.	PRESTIGE LARGE
80-265-29	9 @ 8.67" o.c.	5 @ 9.88" o.c.	PREDATOR
80-265-19	8 @ 14.75" o.c.	6 @ 14.4" o.c.	SUNLINE ULTRA
80-265-18	12 @ 10.39" o.c.	8 @ 10.29" o.c.	SUNLINE MAGNA

LONG SIDE * SHORT SIDE * **CURB KIT** UNIT 2 @ 34.5" o.c. 2 @ 19" o.c. 80-265-49 LXS 2 @ 29" o.c. LXL 80-265-50 2 @ 34.5" o.c. 80-265-13 2 @ 61" o.c. 2 @ 25.25" o.c. SUNLINE 3-6 TON 80-265-45 2 @ 58.38" o.c. PRESTIGE SMALL 2 @ 28.19" o.c. PRESTIGE LARGE 80-265-46 2 @ 72" o.c. 2 @ 41" o.c. 80-265-29 3 @ 34.69" o.c. 2 @ 39.5" o.c. PREDATOR 2 @ 72" o.c. SUNLINE ULTRA 80-265-19 3 @ 51.63" o.c. 80-265-18 2 @ 72" o.c. SUNLINE MAGNA 3 @ 57.13" o.c.

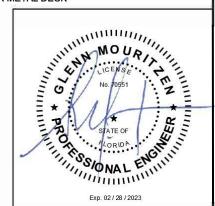
WOOD ATTACHMENT

STEEL AND CONCRETE ANCHORS ARE 6"
FROM EACH CORNER EVENLY SPACED

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 5/8" Ø WOOD LAG SCREWS (3.5" MIN. EMBED. INTO WOOD FRAMING)

(SPECIFIC GRAVITY OF WOOD= 0.43 MIN)

	NO. OF ANCHORAGE			
CURB KIT	LONG SIDE	SHORT SIDE	UNIT	
80-265-49	6 @ 7.7" o.c.	3 @ 11.5" o.c.	LXS	
80-265-50	5 @ 9.63" o.c.	5 @ 8.25" o.c.	LXL	
80-265-13	6 @ 13" o.c.	3 @ 14.63" o.c.	SUNLINE 3-6 TON	
80-265-45	6 @ 12.48" o.c.	3 @ 16.09" o.c.	PRESTIGE SMALL	
80-265-46	6 @ 15.2" o.c.	4 @ 15" o.c.	PRESTIGE LARGE	
80-265-29	10 @ 8.15" o.c.	6 @ 8.7" o.c.	PREDATOR	
80-265-19	8 @ 15.32" o.c.	6 @ 15.2" o.c.	SUNLINE ULTRA	
80-265-18	14 @ 9.1" o.c.	8 @ 10.86" o.c.	SUNLINE MAGNA	
****	FOUR INCHES FROM EACH CORNER EVENLY SPACED.			

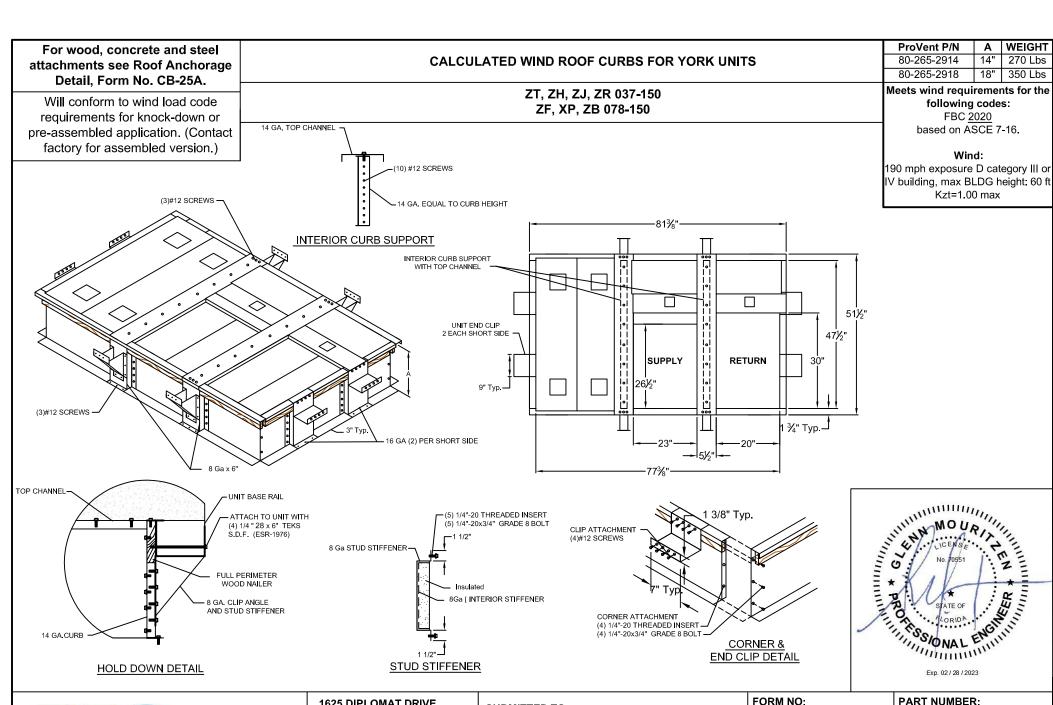

CONCRETE OVER METAL DECK

WELDED CURB

CONC OVER METAL DECK

STEEL ANGLE/FRAMING
BY OTHERS

NOTE: FOR CONC OVER METAL
DECK OVER STEEL FRAMING
USE STEEL ATTACHMENT



RRS ROOFTOP

1625 DIPLOMAT DRIVE CARROLTON, TX 75006

PHONE (972) 247-7447 FAX (972) 243-0940

| FORM NO: | CB-25A | DATE: | REV: | DRAWN BY: | 3/29/2021 | 2 | ALL

1625 DIPLOMAT DRIVE **CARROLTON, TX 75006**

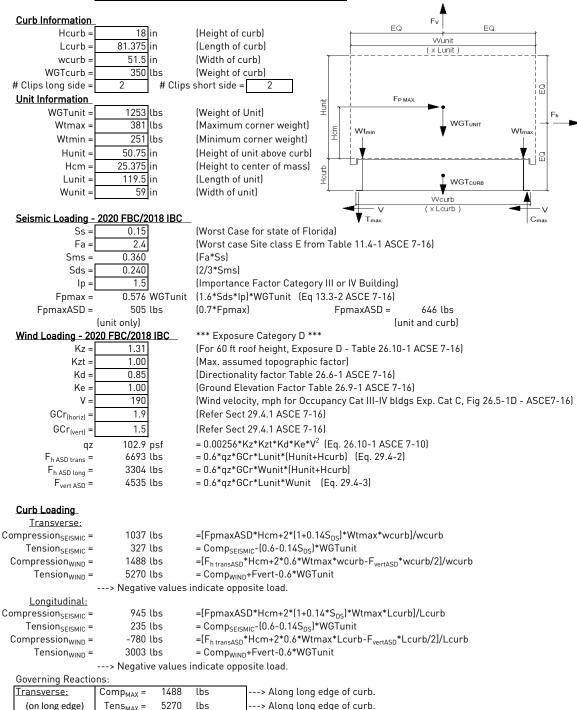
PHONE (972) 247-7447 FAX (972) 243-0940

SUBMITTED TO:
COMPANY:
JOB NAME:
EQUIPMENT:
NOTES:

CBKD-95A

PART NUMBER: 80-265-29

DATE: 3/29/2021 REV:


2

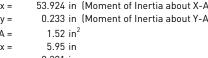
DRAWN BY

ALL

Client:	ProVent	PV2101	Previous: PV1807
Description:	CBKD-95		80-265-29**
Unit:	ZT,ZH,ZJ,Z	R 037-061;	ZF,ZH,ZJ,ZR,XP 078-150

ooverming measure				
<u>Transverse:</u>	Comp _{MAX} =	1488	lbs	> Along long edge of curb.
(on long edge)	Tens _{MAX} =	5270	lbs	> Along long edge of curb.
Longitudinal:	Comp _{MAX} =	945	lbs	> Along short edge of curb.
(on short edge)	Tens _{MAY} =	3003	lbs	> Along short edge of curb.

^{---&}gt; Negative values indicate opposite load.


A'

0.0713 14 Gauge 50 ksi Fu = 65 ksi E = 29500 ksi

Calculate Section Properties of Curb

LIUII	r i opei des c	n cui b		
Α'=	18.000	in	a =	17.644 in = A'-(2r+t)
B'=	1.813	in	a'=	17.929 in = A'-t
C'=	0.000	in (0 if no lips)	b =	1.634 in = B'-[r+t/2+a(r+t/2)]
a =	0.000	(0 - no Lip; 1 w/ lip)	b'=	1.777 in = B'-(t/2+at/2)
R=	0.1069	(Inside bend radius)	C =	0.000 in = $a[C'-(r+t/2)]$
t =	0.0713	in	c'=	0.000 in = $a(C'-t/2)$
r'=	0.143	in = R+t/2	u =	$0.224 \text{ in } = \pi r/2$
x =	0.148	in (Distance between	centroid and w	eb centerline)
lx =	53.924	in (Moment of Inertia	about X-Axis)	
ly =	0.233	in (Moment of Inertia	about Y-Axis)	
	1 50	. 2		

0.391 in ry =

0.391 in rmin =

Axial Compression 3.346 k (Max Axial Comp) Pu =

Pn/Ωc = 19.078 k
Fe = 26.28 ksi

$$\lambda$$
c = 1.38
Fn = 22.55 ksi

22.55 ksi Fn = Ly = 52 in $k_y L_y / r_y =$ 105

Lateral unbraced length

If $\lambda_c \le 1.5$; $F_n = \left(0.658^{\lambda_c^2}\right) F_y$ If $\lambda_c > 1.5$; $F_n = \frac{0.877}{\lambda_c^2} F_y$ $\lambda_c = \sqrt{\frac{F_y}{F_e}}$

Compression Check = 0.K.

Check Web Crippling

h =	18 in	Check limits:	C = 4.00
t =	0.0713 in	$h/t = 252.45 \le 200$	C _R = 0.14 (See table C3.4.1-2, fastened
N =	7.00	$N/t = 98.18 \le 210$	$C_N = 0.35$ to support, one flange, end
$\Omega_{\rm w}$ =	1.75	$N/h = 0.388889 \le 2.0$	$C_h = 0.02$ loading)
$P_n =$	2.296 k	$R/t = 1.50 \le 9.0$	$\left\langle \begin{array}{c} \Gamma_{D} \right\rangle \left\langle \begin{array}{c} \Gamma_{D} \right\rangle \left\langle \begin{array}{c} \Gamma_{D} \right\rangle \\ \Gamma_{D} \end{array} \right\rangle$
$P_n/\Omega_w =$	1.312 k	$P_n =$	$= Ct^2F_y\sin(90)\left(1-C_R\sqrt{\frac{R}{t}}\right)\left(1+C_N\sqrt{\frac{N}{t}}\right)\left(1-C_h\sqrt{\frac{h}{t}}\right)$
Long side: $Pu_{Trans} =$	0.744 k	<u>O.K.</u> # clips = 2	$\langle v_t \rangle \langle v_t \rangle \langle v_t \rangle \langle v_t \rangle$
Short side: $Pu_{Long} =$	0.473 k	<u>O.K.</u> # clips = 2	

8.773 k

0.K.

***h/t > 200; use web stiffeners

(assume k=0.8)

Pn =

Check Web Stiffener	16Ga x 3/4	" x 7" (C-chann	el)	
width of stiffener =	7.000 in		ts =	0.0566 16 Gauge
web of stiff. w =	6.717 in		Rs =	0.0849 in
***Check w/ts ≤ 1.	28√E/Fys		Ωc =	1.70
•	118.675 31.091> w/ts	overlimit IIs	e C3 7 2	
$P_n = 0.7(P_{wc} + 1.0)$	$A_e F_y$) $\geq P_{wc}$	over tilline os	C 00.7.2	
Pwc =	2.296 k	Ae =	0.380 in ²	

Corner Connections 1/4" ϕ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts

1673 lbs Max(F_{pmaxASD}/4 -OR- Fh_{ASDtrans}/4 corner connections) Tcrnmax = (Max Ten/2 corner connections per side) 2635 lbs Vcrnmax = 2480 lbs 1096 lbs Bolt: Tall = Vall =

 $Pn/\Omega =$

Threaded Insert: Tall =

14.913 k

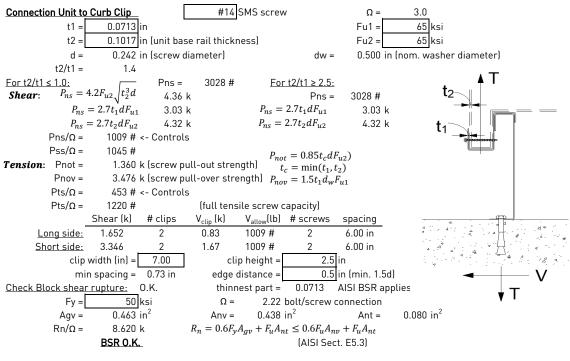
1714 lbs

of Bolts required for Tension = 0.7 # of Bolts required for Shear = 2.4 # of Bolts Used =

3.0

***If combined fails: USE --> 4.0

StressComb =


Check Combined Stress in Bolts & Inserts:

1.026 <u>N.G.</u>

Check 1/8" welded connection Assume L/t > 25: 25*t =1.783 in Lreq'd = 1.782 in

<--- USE WELD $P_n/\Omega = \frac{1}{\Omega} 0.75 t L F_u \ge V_{req}$ $L_{req'd} = \frac{V_{req} \Omega}{0.75 t F_u}$

0.770 **O.K.**

Connection of Curb to Supporting Structure

	CEICLUO (0 / 0 4 /		WIND 0 (D);;	
Roof Loading	SEISMIC: (0.6-0.149		WIND: 0.6D + W	
<u>Transverse:</u>	Uplift _{MAX} =		Shear _{MAX} =	3346 lbs
$Compression_{SEISMIC} =$	1373 lbs		Hcurb)+(1+0.14S _{DS})*(WGT _u	_{nit+curb} /2)*wcurb]/wcurb
$Tension_{SEISMIC} =$	465 lbs	1 02.01.110	4S _{DS})*(WGTunit+curb)	
Compression _{WIND} =	3851 lbs			vcurb-F _{vertASD} *wcurb/2]/wcurb
Tension _{WIND} =	7423 lbs	=[F _{h transASD} *(Hcm+Hc		/curb+F _{vertASD} *wcurb/2]/wcurb
<u>Longitudinal:</u>	Uplift _{MAX} =		Shear _{MAX} =	1652 lbs
Compression _{SEISMIC} =	1173 lbs		Hcurb)+(1+0.14S _{DS})*(WGT _u	_{nit+curb} /2)*Lcurb]/Lcurb
$Tension_{SEISMIC} =$	265 lbs	1 02:01:110	4S _{DS})*(WGTunit+curb)	
Compression _{WIND} =	-25 lbs	=[F _{h transASD} *(Hcm+Hc	urb)+0.6*(WGT _{unit+curb} /2)*L	.curb-F _{vertASD} *Lcurb/2]/Lcurb
Tension _{WIND} =	3548 lbs		urb)-0.6*(WGT _{unit+curb} /2)*L	curb+F _{vertASD} *Lcurb/2]/Lcurb
Wood Attachment	t: Use 5/8" (p wood lag screws	<u>w/ 3.5" Mi</u> n.	Embed
	Tall _{metal} =	946.67 lbs	$Vall_{metal} = 1043.33$ lb	S
<u>Transverse:</u>	$Tall_{wood} =$	1195.95 lbs	$Vall_{wood} = 1024$ lb	S
# of Scre	ews Req'd for Uplift =	7.84	COMBINED LOADING:	0.988 O.K.
# of Scre	ews Req'd for Shear =	3.27	Screw Spacing =	8.2 in o.c.
Total #	of screws Required =	10		
Use 5/8" φ wood	lag screws @ 8.2 in o.c	. along long side of curb	w/ 3.5" Min. Embed	
<u>Longitudinal:</u>				
	ews Req'd for Uplift =		COMBINED LOADING:	0.725 O.K.
	ews Req'd for Shear =		Screw Spacing =	8.7 in o.c.
	of screws Required =			
		. along short side of cur		
Steel Deck Attachn			to steel angle below deck	
	Tall _{bolt} =		$Vall_{bolt} = 3682 lb$	
<u>Transverse:</u>		6903 lbs	3682 lb	
	olts Req'd for Uplift =		COMBINED LOADING:	0.318 O.K.
	olts Req'd for Shear =		Bolt Spacing =	34.7 in o.c.
Total	# of Bolts Required =	3		
<u>Use 5/8" ф А307</u>	Bolts attached to steel	angle below deck @ 34.	7 in o.c. along long side of cu	<u>ırb</u>
Longitudinal:				
# of B	olts Req'd for Uplift =	0.51	COMBINED LOADING:	0.187 O.K.
	olts Req'd for Shear =		Req'd Min Spacing =	39.5 in o.c.
Total	# of Bolts Required =	2		

Use 5/8" φ A307 Bolts attached to steel angle below deck @ 39.5 in o.c. along short side of curb

For Concrete anchorage: SEISMIC $[0.6-0.14SDS]D + 0.7\Omega_o E$ $(\Omega_o = 2.5)$ w/ 4" embed Concrete Attachment: 3/4" ϕ Hilti Hit-HY 200 adhesive anchors 1722 lbs $Vall_{LRFD} =$ 2032 lbs $\alpha = (1 + 0.2SDS)D + 2.5E = 1.87$ $Tall_{LRFD} =$ 920.9 lbs $Vall_{ASD} = Vall_{LRFD}/\alpha =$ 1086.6 lbs $Tall_{ASD} = Tall_{LRFD}/\alpha =$ (D = 0.465, E = 0.535)Shear_{MAX} = Uplift_{MAX} = 7423 lbs 3346 lbs Transverse: = $[2.5*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*(WGT_{unit+curb}/2)*wcurb]/wcurb$ $Compression_{SEISMIC} =$ 2189 lbs Tension_{SEISMIC} = 1281 lbs =Comp_{SEISMIC}-(0.6-0.14S_{DS})*(WGTunit+curb) $Shear_{SEISMIC} =$ 808 lbs =2.5*FpmaxASD/2 Min Bolts Req'd Uplift = 8.06 spacing = 7.17 in o.c. Tapplied = 824.8 lbs 239.0 lbs Min Bolts Req'd Shear = 3.08 spacing = 19.125 in o.c. Vapplied = $V_{apllied} \le 1.2$ $\frac{T_{applied}}{T_{allow,ASD}} + \frac{V_{apllied}}{V_{allow,ASD}}$ Try using bolts COMBINED LOADING = spaced at 8.67 in o.c. Use 9 - 3/4" φ Hilti Hit-HY 200 adhesive anchors @ 8.7 in o.c. max. along long side of curb w/ 4" embed Longitudinal: Uplift_{MAX} = 3548 lbs Shear_{MAX} = 3346 lbs $= [2.5*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*(WGT_{unit+curb}/2)*Lcurb]/Lcurb$ $Compression_{SEISMIC} =$ 1690 lbs 782 lbs =Comp_{SEISMIC}-(0.6-0.14S_{DS})*(WGTunit+curb) Tension_{SEISMIC} = =2.5*FpmaxASD/2 Shear_{SEISMIC} = 808 lbs Min Bolts Req'd Uplift = 3.85 spacing = 9.166667 in o.c. Tapplied = 709.6 lbs Min Bolts Req'd Shear = 3.08 spacing = 9.166667 in o.c. Vapplied = 239.0 lbs $V_{apllied} \le 1.2$ $\frac{T_{applied}}{T_{allow,ASD}} + \frac{V_{apllied}}{V_{allow,ASD}}$ 5 bolts Try using COMBINED LOADING = = 0.99spaced at 9.88 in o.c. Use 5 - 3/4" φ Hilti Hit-HY 200 adhesive anchors @ 9.9 in o.c. max. along short side of curb w/ 4" embed

CURB DESIGN SU	MMARY:	CBKD-95	80-265-29**	Un	it: ZT,ZH,ZJ,ZR 037-061;
CURB RAIL	THICKNESS:	0.0713 in	14 Gauge		ZF,ZH,ZJ,ZR,XP 078-150
UNIT CLIP	UNIT CLIP THICKNESS: 0.0713 in 14 Gauge				
# OF CLIPS (L	ONG SIDE) -	2 clips with	n 2 - #14 SMS	screws each clip	
WEE	STIFFENER:	16Ga x 3/4	" x 7" (C-char	nnel) stiffener at each	clip
# OF CLIPS (SI	# OF CLIPS (SHORT SIDE) - 2 clips with 2 - #14 SMS screws each clip				
WEE	WEB STIFFENER: 16Ga x 3/4" x 7" (C-channel) stiffener at each clip				
CORNER CONNECTION: Use 4 - 1/4"					
CURB		WOOD		STEEL	<u>CONCRETE</u>
ANCHORAGE	5/8" φ la	g screw w/	min. 3.5"	5/8" φ A307 bolts to	3/4" φ thrd'd rod in Hilti HIT-HY
ANCHORAGE	emb	ed (SGmin=	0.43)	steel angle below	200 epoxy, min. 4" embed
LONG DIRECTION	10	@ 8.15 in	o.c.	3 @ 34.69 in o.c.	9 @ 8.67 in o.c.
SHORT DIRECTION	6	@ 8.7 in o.	C.	2 @ 39.5 in o.c.	5 @ 9.88 in o.c.