

Structural Calculations for

CBKD Series Roof Curbs

CBKD-161A (80-265-50) 2020 Florida Building Code requirements

Prepared for:

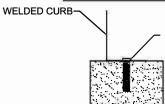
PROVENT

3847 Wabash Drive Mira Loma, CA 91725

Date: May 19, 2021 Project Number: PV2101

STEEL ATTACHMENT CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 5/8" Ø A307 BOLTS ATTACHED TO STEEL ANGLE BELOW DECK AT EACH CONNECTION POINT. SHEATHING WHERE OCCURS METAL DECK NO. OF ANCHORAGE BOLTS REQUIRED

WIND LOAD ROOF ANCHORAGE DETAIL


Meets wind requirements for the following codes:

FBC <u>2020</u> based on ASCE 7-16.

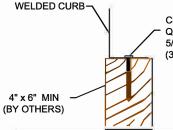
Wind:

190 mph exposure D category III or IV building, max BLDG height: 60 ft Kzt=1.00 max

CONCRETE ATTACHMENT

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 3/4" Ø THRD'D ROD IN HILTI HIT-HY 200 EPOXY, 4" MIN. EMBED INTO CONCRETE.

- NORMAL WEIGHT CONC SLAB
- fc=4000 PSI MIN
- 6" MIN THICK CONC.
- SPECIAL INSPECTION REQUIRED (ESR-3187)


NO. OF ANCHORAGE BOLTS REQUIRED

CURB KIT	LONG SIDE *	SHORT SIDE **	UNIT
80-265-49	5 @ 8.63" o.c.	3 @ 9.5" o.c.	LXS
80-265-50	5 @ 8.63" o.c.	4 @ 9.67" o.c.	LXL
80-265-13	5 @ 15.25" o.c.	3 @ 12.63" o.c.	SUNLINE 3-6 TON
80-265-45	5 @ 14.59" o.c.	3 @ 14.09" o.c.	PRESTIGE SMALL
80-265-46	5 @ 18" o.c.	4 @ 13.67" o.c.	PRESTIGE LARGE
80-265-29	9 @ 8.67" o.c.	5 @ 9.88" o.c.	PREDATOR
80-265-19	8 @ 14.75" o.c.	6 @ 14.4" o.c.	SUNLINE ULTRA
80-265-18	12 @ 10.39" o.c.	8 @ 10.29" o.c.	SUNLINE MAGNA

LONG SIDE * SHORT SIDE * **CURB KIT** UNIT 2 @ 34.5" o.c. 2 @ 19" o.c. 80-265-49 LXS 2 @ 29" o.c. LXL 80-265-50 2 @ 34.5" o.c. 80-265-13 2 @ 61" o.c. 2 @ 25.25" o.c. SUNLINE 3-6 TON 80-265-45 2 @ 58.38" o.c. PRESTIGE SMALL 2 @ 28.19" o.c. PRESTIGE LARGE 80-265-46 2 @ 72" o.c. 2 @ 41" o.c. 80-265-29 3 @ 34.69" o.c. 2 @ 39.5" o.c. PREDATOR 2 @ 72" o.c. SUNLINE ULTRA 80-265-19 3 @ 51.63" o.c. 80-265-18 2 @ 72" o.c. SUNLINE MAGNA 3 @ 57.13" o.c.

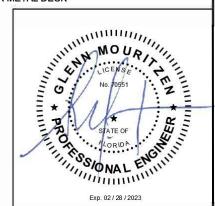
WOOD ATTACHMENT

STEEL AND CONCRETE ANCHORS ARE 6"
FROM EACH CORNER EVENLY SPACED

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 5/8" Ø WOOD LAG SCREWS (3.5" MIN. EMBED. INTO WOOD FRAMING)

(SPECIFIC GRAVITY OF WOOD= 0.43 MIN)

	NO. OF ANCHORAGE			
CURB KIT	LONG SIDE	SHORT SIDE	UNIT	
80-265-49	6 @ 7.7" o.c.	3 @ 11.5" o.c.	LXS	
80-265-50	5 @ 9.63" o.c.	5 @ 8.25" o.c.	LXL	
80-265-13	6 @ 13" o.c.	3 @ 14.63" o.c.	SUNLINE 3-6 TON	
80-265-45	6 @ 12.48" o.c.	3 @ 16.09" o.c.	PRESTIGE SMALL	
80-265-46	6 @ 15.2" o.c.	4 @ 15" o.c.	PRESTIGE LARGE	
80-265-29	10 @ 8.15" o.c.	6 @ 8.7" o.c.	PREDATOR	
80-265-19	8 @ 15.32" o.c.	6 @ 15.2" o.c.	SUNLINE ULTRA	
80-265-18	14 @ 9.1" o.c.	8 @ 10.86" o.c.	SUNLINE MAGNA	
****	FOUR INCHES FROM EACH CORNER EVENLY SPACED.			


CONCRETE OVER METAL DECK

WELDED CURB

CONC OVER METAL DECK

STEEL ANGLE/FRAMING
BY OTHERS

NOTE: FOR CONC OVER METAL
DECK OVER STEEL FRAMING
USE STEEL ATTACHMENT

RRS ROOFTOP

1625 DIPLOMAT DRIVE CARROLTON, TX 75006

PHONE (972) 247-7447 FAX (972) 243-0940

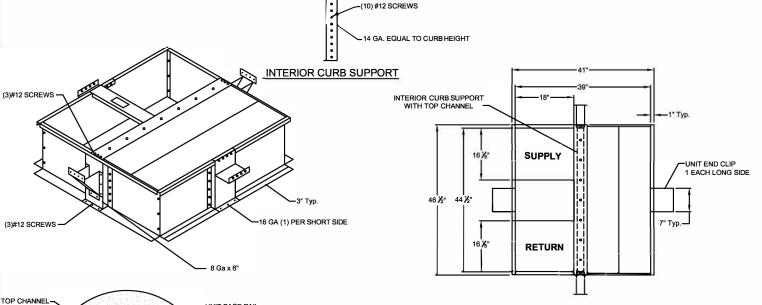
| FORM NO: | CB-25A | DATE: | REV: | DRAWN BY: | 3/29/2021 | 2 | ALL

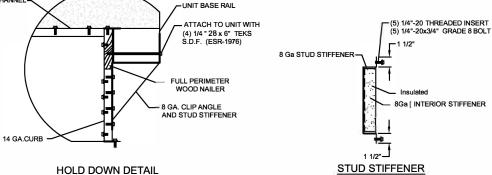
For wood, concrete and steel attachments see Roof Anchorage Detail, Form No. CB-25A.

Will conform to wind load code requirements for knock-down or pre-assembled application. (Contact factory for assembled version.)

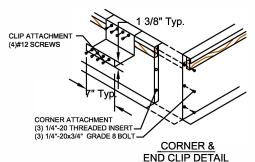
CALCULATED WIND ROOF CURBS FOR YORK UNITS

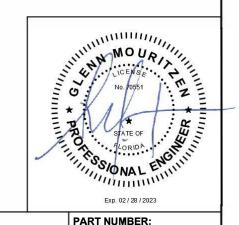
ProVent P/N	Α.	WEIGHT
80-265-5014	14"	139 Lbs
80-265-5018	18"	163 Lbs


P***B ALL MODELS


Meets wind requirements for the following codes: FBC 2020

based on ASCE 7-16.


Wind:


190 mph exposure D category III or IV building, max BLDG height: 60 ft Kzt=1.00 max

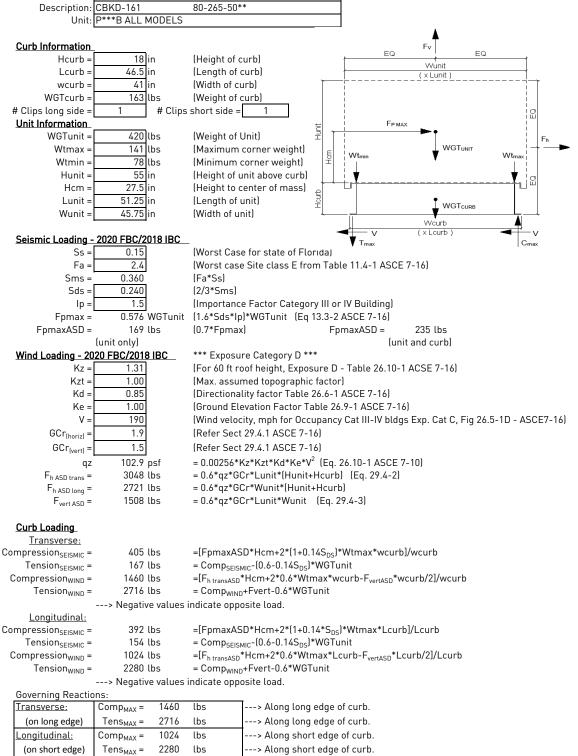
14 GA. TOP CHANNEL

1625 DIPLOMAT DRIVE CARROLTON, TX 75006

PHONE (972) 247-7447 FAX (972) 243-0940

SUBMITTED TO: COMPANY: JOB NAME:	CBKD-161/
EQUIPMENT:	
NOTES:	3/20/2021

D-161A


80-265-50 **REV**:

3/29/2021 1 **DRAWN BY:**

ALL

Client: ProVent

PV2101

Previous: PV1807

^{---&}gt; Negative values indicate opposite load.

Fy = 50 ksi Fu = 65 ksi t = 0.0713 14 Gauge

E = 29500 ksi

Calculate Section Properties of Curb

CUOII	ri opei des c	JI CUID			
Α'=	18.000	in	a =	17.644 in = A'-(2r+t)	
B'=	1.000	in	a'=	17.929 in = A'-t	С
C'=	0.000	in (0 if no lips)	b =	0.822 in = B'-[r+t/2+a(r+t/2)]	
a =	0.000	(0 - no Lip; 1 w/ lip)	b'=	0.964 in = B'-(t/2+at/2)	
R=	0.1069	(Inside bend radius)	c =	0.000 in = $a[C'-(r+t/2)]$	
t =	0.0713	in	c'=	0.000 in = $a(C'-t/2)$	
r'=	0.143	in = R+t/2	u =	$0.224 \text{ in } = \pi r/2$	
x =	0.047	in (Distance between c	entroid and v	veb centerline)	
lx =	44.614	in (Moment of Inertia a	bout X-Axis)		
ly =	0.039	in (Moment of Inertia a	bout Y-Axis)		
Δ =	1 41	in ²			

1.41 in rx = 5.63 in ry = 0.168 in

0.168 in rmin =

Axial Compression

Compression Check = 0.K.

Check Web Crippling

	_				
h =	18 in	Check li	mits:	C = 4.00] (6
t =	0.0713 in	h/t =	$252.45 \le 200$	$C_R = 0.14$	(See table C3.4.1-2, fastened
N =	7.00	N/t =	98.18 ≤ 210	$C_N = 0.35$	to support, one flange, end
$\Omega_{\rm w}$ =	1.75	N/h =	$0.388889 \le 2.0$	$C_h = 0.02$	loading)
P _n =	2.296 k	R/t =	1.50 ≤ 9.0	/	
$P_n/\Omega_w =$	1.312 k		$P_n =$	$= Ct^2F_{\nu}\sin(90) \left(1 - C_R \right)$	$\left(\frac{R}{t}\right)\left(1+C_N\right)\left(\frac{N}{t}\right)\left(1-C_h\right)\left(\frac{h}{t}\right)$
Long side: $Pu_{Trans} =$	1.460 k web stiff e	ener REQ'D	# clips = 1	, , , (\sqrt{t}
Short side: $Pu_{Long} =$	1.024 k	<u>0.K.</u>	# clips = 1		

***h/t > 200; use web stiffeners

Check Web Stiffener 16Ga x 3/4" x 7" (C-channel)

width of stiffener =
 7.000 in
 ts =

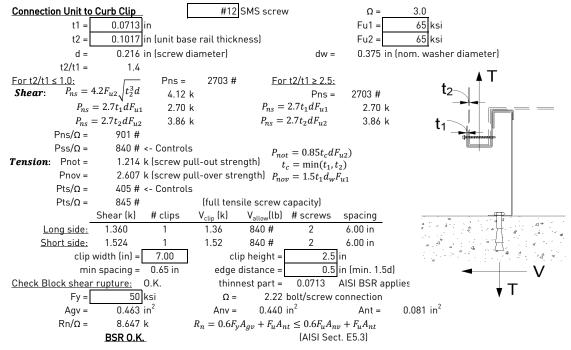
$$0.0566$$
 16 Gauge

 web of stiff. w =
 6.717 in
 Rs =
 0.0849 in

 ****Check w/ts < 1.28VE/Fys
 Ωc =
 1.70

w/ts = 118.675

1.28√(E/Fys) = 31.091 \rightarrow w/ts over limit Use C3.7.2


 $P_n = 0.7 \left(P_{wc} + A_e F_y \right) \ge P_{wc}$

$$\dot{P}$$
wc = 2.296 k Ae = 0.380 in²
Pn = 14.913 k \dot{P} n/Ω = 8.773 k \dot{Q} 0.K.

Corner Connections 1/4" ϕ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts

Check Combined Stress in Bolts & Inserts: 0.773 <u>O.K.</u>

Check 1/8" welded connection <--- USE WELD Ω = $P_n/\Omega = \frac{1}{\Omega} 0.75 t L F_u \ge V_{req}$ 1.783 in Assume L/t > 25: 25*t = Lreq'd = 0.918 in

Connection of Curb to Supporting Structure

Roof Loading	SEISMIC: (0.6-0.14SDS)D + 0.7E		WIND: 0.6D + W			
<u>Transverse:</u>	Uplift _{MAX} = 3961 lbs		Shear _{MAX} =	1524 lbs		
Compression _{SEISMIC} =	562 lbs	=[FpmaxASD*(Hcm+l	Hcurb)+(1+0.14S _{DS})*(WGT _{ur}	_{nit+curb} /2)*wcurb]/wcurb		
Tension _{SEISMIC} =	232 lbs	=Comp _{SEISMIC} -(0.6-0.1	4S _{DS})*(WGTunit+curb)			
$Compression_{WIND} =$	2803 lbs	=[F _{h transASD} *(Hcm+Hc	urb)+0.6*(WGT _{unit+curb} /2)*w	curb-F _{vertASD} *wcurb/2]/wcurb		
Tension _{WIND} =	3961 lbs	=[F _{h transASD} *(Hcm+Hc	urb)-0.6*(WGT _{unit+curb} /2)*w	curb+F _{vertASD} *wcurb/2]/wcurb		
Longitudinal:	Uplift _{MAX} =	3241 lbs	Shear _{MAX} =	1360 lbs		
Compression _{SEISMIC} =	531 lbs	=[FpmaxASD*(Hcm+l	Hcurb)+(1+0.14S _{DS})*(WGT _{ui}	_{nit+curb} /2)*Lcurb]/Lcurb		
Tension _{SEISMIC} =	201 lbs		4S _{DS})*(WGTunit+curb)			
$Compression_{WIND} =$	2083 lbs			curb-F _{vertASD} *Lcurb/2]/Lcurb		
Tension _{WIND} =	3241 lbs		urb)-0.6*(WGT _{unit+curb} /2)*L	curb+F _{vertASD} *Lcurb/2]/Lcurb		
Wood Attachmen	t: Use 5/8" (p wood lag screws	w/ 3.5" Min. Embed			
	Tall _{metal} =		Vall _{metal} = 1043.33 lbs			
<u>Transverse:</u>	Tall _{wood} =	1195.95 lbs	Vall _{wood} = 1024 lbs	5		
	ews Req'd for Uplift =		COMBINED LOADING:	0.986 O.K.		
	# of Screws Req'd for Shear = 1.49 Screw Spacing = 9.6 in o.c.					
Total # of screws Required = 5						
Use 5/8" φ wood lag screws @ 9.6 in o.c. along long side of curb w/ 3.5" Min. Embed						
<u>Longitudinal:</u>						
# of Screws Req'd for Uplift = 3.4 COMBINED LOADING: 0.818 0.K.						
	# of Screws Req'd for Shear = 1.3 Screw Spacing = 8.3 in o.c.					
	Total # of screws Required = 5					
<u>Use 5/8" φ wood lag screws @ 8.3 in o.c. along short side of curb w/ 3.5" Min. Embed</u> Steel Deck Attachment: Use 5/8" φ A307 Bolts attached to steel angle below deck						
Steet Deck Attacili	Tall _{bolt} =		Vall _{bolt} = 3682 lbs			
<u>Transverse:</u>	. attpolt	6903 lbs	3682 lbs			
	olts Reg'd for Uplift =		COMBINED LOADING:	0.197 O.K.		
	olts Reg'd for Shear =		Bolt Spacing =	34.5 in o.c.		
	# of Bolts Required =		Butt Spacing =	34.5		
Use 5/8" φ A307 Bolts attached to steel angle below deck @ 34.5 in o.c. along long side of curb						
<u>Use 3/8 Ψ A30/</u> <u>Longitudinal:</u>	DOILS ALLACHED TO STEEL	aligie below deck @ 34.	5 iii o.c. along long side of ct	ii <u>D</u>		
•	olts Reg'd for Uplift =	0.47	COMBINED LOADING:	0.149 O.K.		
	olts Reg'd for Shear =		Reg'd Min Spacing =	29.0 in o.c.		
	# of Bolts Required =		a opasig =			

<u>Use 5/8" φ A307 Bolts attached to steel angle below deck @ 29 in o.c. along short side of curb</u>

For Concrete anchorage: SEISMIC $(0.6-0.14SDS)D + 0.7\Omega_oE$ $(\Omega_o=2.5)$ Concrete Attachment: 3/4" ϕ Hilti Hit-HY 200 adhesive anchors w/ 4" embed $Vall_{LRFD} =$ 1722 lbs 2032 lbs $\propto = (1 + 0.2SDS)D + 2.5E = 1.87$ $Tall_{LRFD} =$ 920.9 lbs $Vall_{ASD} = Vall_{LRFD}/\alpha =$ 1086.6 lbs (D = 0.465, E = 0.535) $Tall_{ASD} = Tall_{LRFD}/\alpha =$ Uplift_{MAX} = 3961 lbs Shear_{MAX} = 1524 lbs Transverse: ${\sf Compression}_{\sf SEISMIC} =$ 953 lbs $= [2.5*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*(WGT_{unit+curb}/2)*wcurb]/wcurb$ $= Comp_{\mathsf{SEISMIC}} - \{0.6 - 0.14 \mathsf{S}_{\mathsf{DS}}\} * \{\mathsf{WGTunit+curb}\}$ $\mathsf{Tension}_{\mathsf{SEISMIC}} =$ 623 lbs $\mathsf{Shear}_{\mathsf{SEISMIC}} =$ =2.5*FpmaxASD/2 294 lbs Min Bolts Req'd Uplift = 4.30 spacing = 5.63 in o.c. 792.3 lbs Tapplied = 2.00 spacing = Min Bolts Req'd Shear = 22.5 in o.c. Vapplied = 169.3 lbs $\frac{V_{apllied}}{} \le 1.2 = 1.02$ Try using 5 bolts $T_{applied}$ COMBINED LOADING = spaced at 8.63 in o.c. $\overline{T_{allow,ASD}} + \overline{V_{allow,ASD}}$ Use 5 - 3/4" φ Hilti Hit-HY 200 adhesive anchors @ 8.6 in o.c. max along long side of curb w/ 4" embed Longitudinal: $Uplift_{MAX} =$ 3241 lbs Shear_{MAX} = 1524 lbs Compression_{SFISMIC} = 876 lbs $= [2.5*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*(WGT_{unit+curb}/2)*Lcurb]/Lcurb$ $Tension_{SEISMIC} =$ 546 lbs = $Comp_{SEISMIC}$ - $(0.6-0.14S_{DS})*(WGTunit+curb)$ $Shear_{SEISMIC} =$ 294 lbs =2.5*FpmaxASD/2 3.52 spacing = 5.666667 in o.c. Min Bolts Req'd Uplift = Tapplied = 810.3 lbs 2.00 spacing = Vapplied = 169.3 lbs Min Bolts Req'd Shear = 17 in o.c. $\frac{V_{apllied}}{V_{apllied}} \le 1.2$ = 1.04 $T_{applied}$ bolts Try using COMBINED LOADING = $\frac{T_{applied}}{T_{allow,ASD}} + \frac{T_{applied}}{V_{allow,ASD}}$ spaced at 9.67 in o.c.

CURB DESIGN SU	CURB DESIGN SUMMARY: CBKD-16		80-265-50** L		Unit:	P***B ALL MODELS
CURB RAIL	CURB RAIL THICKNESS: 0.0713 in 14 Gauge					
UNIT CLIP	THICKNESS:	0.0713 in	14 Gauge			
# OF CLIPS (I	# OF CLIPS (LONG SIDE) - 1 clips with 2 - #12 SMS screws each clip					
WEE	STIFFENER:	16Ga x 3/4	1" x 7" (C-chai	nnel) stiffener a	ıt each clij	p
# OF CLIPS (SHORT SIDE) - 1 clips with 2 - #12 SMS screws each clip						
WEB STIFFENER: 16Ga x 3/4" x 7" (C-channel) stiffener at each clip						
CORNER CONNECTION: Use 3 - 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts						
CURB		WOOD		STEEL		CONCRETE
ANCHORAGE	5/8" φ la	ig screw w/	min. 3.5"	5/8" ф A307	bolts to	3/4" φ thrd'd rod in Hilti HIT-HY
ANCHORAGE	ed (SGmin=	0.43)	steel angle below		200 epoxy, min. 4" embed	
LONG DIRECTION	5	@ 9.63 in c).C.	2 @ 34.5 i	n o.c.	5 @ 8.63 in o.c.
SHORT DIRECTION	5	@ 8.25 in c).C.	2 @ 29 in	0.C.	4 @ 9.67 in o.c.

Use 4 - 3/4" ϕ Hilti Hit-HY 200 adhesive anchors @ 9.7 in o.c. max. along short side of curb w/ 4" embed