

Structural Calculations for CBWC-301 Series CBWCPRL

Prepared for:

PROVENT / RRS

3847 Wabash Drive Mira Loma, CA 91725

Date: October 7, 2021

Project Number: PV2101

For wood, concrete and steel attachments see Roof Anchorage Detail, Form Nos. CB-60.

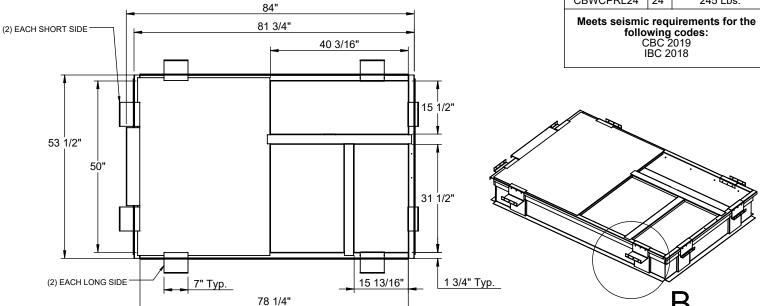
STRUCTURALLY CALCULATED WELDED ROOF CURBS FOR YORK UNITS

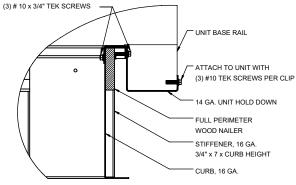
ZX, 08-14; XX 08-12; XYA7, ZYA7

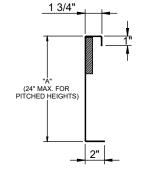
ZY 07-12; XY 07- 09; ZL 08-14

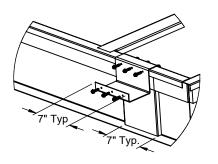
PROVENT P/N A EST. WEIGHT CBWCPRL08 8" 168 Lbs. CBWCPRL11 11" 182 Lbs. CBWCPRL14 14 197 Lbs. CBWCPRL24 24" 245 Lbs.

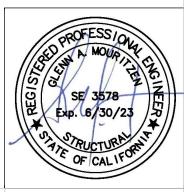
FEATURES


Roof curb sides and ends are 16 Ga. galvanized steel.


- Gasketing package provided.
- · Heat treated wood nailer provided.
- Insulated deck pans provided.
- Pitched curbs and taller curbs are available.


Notes


- Attached ductwork to roof curb. Flanges of duct rest on top of curb. Support ductwork below the curb.
- Through the curbs utilities are available. Contact your York distributor or ProVent directly.


ATTACH TO CURB WITH

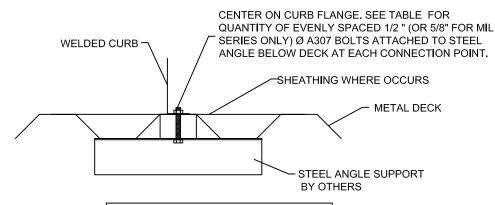
HOLD DOWN DETAIL

CURB DETAIL

DETAIL B

3847 WABASH DRIVE MIRA LOMA, CA 91725

PHONE (951) 685-1101 FAX (619) 872-9799


SUBMITED TO:	FORM NO:	
COMPANY:	CBWC-301	
JOB NAME:		_
EQUIPMENT:	DATE: 10/7/2021	
NOTES:	10/7/2021	

PART NUMBER:
CBWCPRL SERIES

REV: 1 9

DRAWN BY: ALL

STEEL ATTACHMENT

NO O	FANCHO	RAGE	BOLTS	REQUIRED
.40.0				I VE GOIL VED

CURB	LONG SIDE	SHORT SIDE
LXS	2 @ 34.5" O.C.	2 @ 19" O.C.
LXL	2 @ 34.5" O.C.	2 @ 29" O.C.
SUN3672	2 @ 60.5" O.C.	2 @ 39" O.C.
PRD3715	2 @ 68.88" O.C.	2 @ 39" O.C.
PRS	2 @ 58.88" O.C.	2 @ 28.69" O.C.
PRL	2 @ 72" O.C.	2 @ 41.5" O.C.
SLU180	3 @ 51.38" O.C.	2 @ 71.5" O.C.
SLM1830	3 @ 56.88" O.C	3 @ 35.75" O.C.

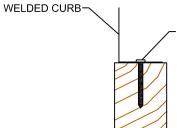
ASSUMES:

CONC SLAB fc= 4000PSI MINIMUM 6" MIN THICKNESS NORMAL WEIGHT CONCRETE OR SAND LIGHT WEIGHT

CONCRETE ATTACHMENT

WELDED CURB-

Meets seismic requirements for the following codes: CBC 2019 IBC 2018


ROOF ANCHORAGE DETAIL		
CBKD Series	CBWC Series	
LXS	LXS	
LXL	LXL	
SUN3672	SUN3672	
PRD3715	PRD3715	
PRS	PRS	
PRL	PRL	
SLU180	SLU180	
SLM1830	SLM1830	

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 3/4" Ø THREADED ROD IN HILTI HIT-HY 200 EPOXY WITH 4" EMBED

	NO. OF ANCHORAGE BOLTS REQUIRED		
CURB	LONG SIDE	SHORT SIDE	
LXS	4 @ 11.5" O.C.	3 @ 9.5" O.C.	
LXL	4 @ 11.5" O.C.	3 @ 14.5" O.C.	
SUN3672	4 @ 20.17" O.C.	3 @ 12.38" O.C.	
PRD3715	9 @ 8.61" O.C.	7 @ 6.5" O.C.	
PRS	5 @ 14.72" O.C.	4 @ 9.56" O.C.	
PRL	6 @ 14.4" O.C.	5 @ 10.38" O.C.	
SLU180	8 @ 14.68" O.C.	7 @ 11.92" O.C.	
SLM1830	12 @ 10.34" O.C.	10 @ 7.94" O.C.	

* SIX INCHES FROM EACH CORNER EVENLY SPACED.
** CENTERED.

WOOD ATTACHMENT

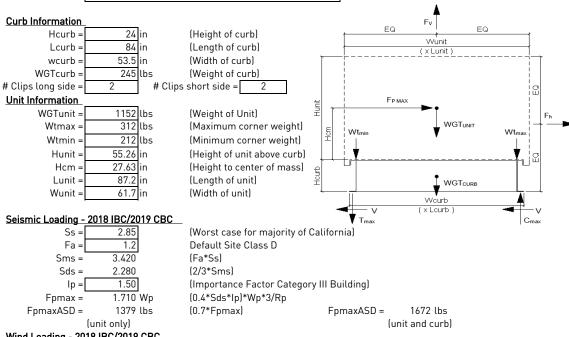
CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 1/2" Ø SIMPSON SDS OR EQUIVALENT SCREWS (3 1/2 " MIN. EMBED. INTO WOOD FRAMING)

5/8" Ø LAG SCREW W/MIN. 3.5" EMBED (SGMIN=0.43) (FOR MIL SERIES ONLY)

	REQUIRED		
CURB	LONG SIDE	SHORT SIDE	
LXS	4 @ 12.83" O.C.	3 @ 11.5" O.C.	
LXL	4 @ 12.83" O.C.	3 @ 16.5" O.C.	
SUN3672	4 @ 21.5" O.C.	3 @ 14.38" O.C.	
PRD3715	9 @ 9.11" O.C.	8 @ 6.14" O.C.	
PRS	4 @ 20.96" O.C.	3 @ 16.34" O.C.	
PRL	5 @ 19" O.C.	4 @ 15.17" O.C.	
SLU180	9 @ 13.34" O.C.	7 @ 12.58" O.C.	
SLM1830	13 @ 9.81" O.C.	12 @ 6.86" O.C.	

FOUR INCHES FROM EACH CORNER EVENLY SPACED

NO. OF ANCHORAGE SCREWS


3847 WABASH DRIVE MIRA LOMA, CA 91725

PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITTED TO:	CB-60		
JOB NAME:			
EQUIPMENT:	DATE:	REV:	DRAWN BY:
NOTES:	10/07/2021	7	FMM

Client:	ProVent	PV2101	Previous: PV1806
Description:	CBWC-301		CBWCPRL
Unit:	ZX. ZL 08-1	4: XX 08-	12: XYA7. ZYA7: ZY 07-12: XY 07-09

Wind Loading - 2018 IBC/2019 CBC

*** Exposure Cate	gory C ***	
Kz =	1.13	(For 60 ft roof height, Exposure C - Table 26.10-1 ACSE 7-16)
Kzt =	1.0	(No topographic effects assumed for rooftop mounted units)
Kd =	0.85	(Directionality factor Table 26.6-1 ASCE 7-16)
V =	115	(Max wind velocity, mph for Cat III & IV bldgs Exp. Cat C)
$GCr_{(horiz)} =$	1.9	(Refer Sect 29.4.1 ASCE 7-16)
$GCr_{(vert)} =$	1.5	(Refer Sect 29.4.1 ASCE 7-16)
qz	32.5 psf	= $0.00256*Kz*Kzt*Kd*V^2$ (Eq. 26.10-1 ASCE 7-16)
F _{h ASD trans} =	1779 lbs	= 0.6*qz*GCr*Lunit*(Hunit+Hcurb) (Eq. 29.4-2)
F _{h ASD long} =	1259 lbs	= 0.6*qz*GCr*Wunit*(Hunit+Hcurb)
F =	1093 lbs	= 0.6*az*GCr*Lupit*Wupit (Fa. 29.4-3)

Curb Loading

Т	ra	ns	vei	rse:	

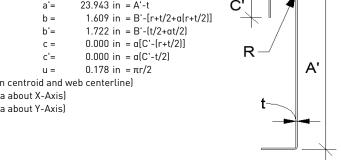
Compression _{SEISMIC} =	1535 lbs	=[FpmaxASD*Hcm+2*[1+0.14S _{DS}]*Wtmax*wcurb]/wcurb		
Tension _{SEISMIC} =	1212 lbs	= Comp _{SEISMIC} -(0.6-0.14S _{DS})*WGTunit		
Compression _{WIND} =	747 lbs	= $[F_{h transASD}*Hcm+2*0.6*Wtmax*wcurb-F_{vertASD}*wcurb/2]/wcurb$		
Tension _{WIND} =	1149 lbs	= Comp _{WIND} +Fvert-0.6*WGTunit		
> Negative values indicate Compression load rather than Tension				

<u>Longitudinal:</u>		
Compression _{SEISMIC} =	1277 lbs	=[FpmaxASD*Hcm+2*(1+0.14*S _{DS})*Wtmax*Lcurb]/Lcurb
Tension _{SEISMIC} =	953 lbs	= Comp _{SEISMIC} -(0.6-0.14S _{DS})*WGTunit
Compression _{WIND} =	242 lbs	= $[F_{h transASD}*Hcm+2*0.6*Wtmax*Lcurb-F_{vertASD}*Lcurb/2]/Lcurb$
Tension _{WIND} =	644 lbs	= Comp _{WIND} +Fvert-0.6*WGTunit

---> Negative values indicate Compression load rather than Tension.

Governing Reactions:

cover ming reductions.					
	<u>Transverse:</u>	Comp _{MAX} =	1535	lbs	> Along long edge of curb.
	(on long edge)	Tens _{MAX} =	1212	lbs	> Along long edge of curb.
	Longitudinal:	Comp _{MAX} =	1277	lbs	> Along short edge of curb.
	(on short edge)	Tens _{MAY} =	953	lbs	> Along short edge of curb.


^{---&}gt; Negative values indicate Compression load rather than Tension.

Fy = 50 ksi Fu = 65 ksi $t = 0.0566 \boxed{16 \text{ Gauge}}$ E = 29500 ksi

Calculate Section Properties of Curb

CHOIL	i i opei des c	on Cui b		
Α'=	24.000	in	a =	23.717 in = A'-(2r+t)
B'=	1.750	in	a'=	23.943 in = A'-t
C'=	0.000	in (0 if no lips)	b =	1.609 in = B'-[r+t/2+a(r+t/2)
a =	0.000	(0 - no Lip; 1 w/ lip)	b'=	1.722 in = $B'-(t/2+at/2)$
R=	0.0849	(Inside bend radius)	c =	0.000 in = $a[C'-(r+t/2)]$
t =	0.0566	in	c'=	0.000 in = a(C'-t/2)
r'=	0.113	in = $R+t/2$	u =	$0.178 \text{ in } = \pi r/2$
x =	0.109	in (Distance between o	centroid and we	eb centerline)
lx =	91.935	in (Moment of Inertia	about X-Axis)	
ly =	0.174	in (Moment of Inertia	about Y-Axis)	
A =	1.54	in ²		

Axial Compression

rmin =

 $k_y L_y / r_y =$

Pu =	0.890 k	(Max Axial Comp)	Ωc =	1.80
$Pn/\Omega c =$	15.456 k	$(0.650\lambda^2)$ F	_	
Fe =	20.54 ksi	$\frac{P_n}{P_n} = \frac{F_n A}{F_n} \qquad If \ \lambda_c \le 1.5; \ F_n = \left(0.658^{\lambda_c^2}\right) F_y$	F_y	$\pi^2 E$
λc =	1.56	$\frac{R}{\Omega_c} = \frac{R}{\Omega_c}$ If $\lambda_c > 1.5$; $F_n = \frac{0.877}{\lambda_c^2} F_y$	$\lambda_c = \sqrt{\frac{F_e}{F_e}}$	$F_e = \frac{k L}{(kl/)^2}$
Fn =	18.01 ksi	λ_c^2 1.3, $\lambda_n = \lambda_c^2$	٧	(/r)
Ly =	50 in	Lateral unbraced length		

Compression Check = 0.K.

119

Check Web Crippling

h =	24 in	Check limits:	C = 4.00
t =	0.0566 in	$h/t = 424.03 \le 200$	$C_R = 0.14$ (See table C3.4.1-2, fastened
N =	7.00	$N/t = 123.67 \le 210$	$C_N = 0.35$ to support, one flange, end
$\Omega_{\rm w}$ =	1.75	$N/h = 0.291667 \le 2.0$	$C_h = 0.02$ loading)
P _n =	1.366 k	$R/t = 1.50 \le 9.0$	$\left\langle \begin{array}{c} \Gamma \\ \Gamma \end{array} \right\rangle \left\langle \begin{array}{c} \Gamma \\ \Gamma \end{array} \right\rangle \left\langle \begin{array}{c} \Gamma \\ \Gamma \end{array} \right\rangle$
$P_n/\Omega_w =$	0.780 k	$P_n = C$	$t^2 F_y \sin(90) \left(1 - C_R \sqrt{\frac{R}{t}}\right) \left(1 + C_N \sqrt{\frac{N}{t}}\right) \left(1 - C_h \sqrt{\frac{h}{t}}\right)$
Long side: $Pu_{Trans} =$	0.768 k	0.K. # clips = 2	$\int \int $
Short side: Pu _{Long} =	0.638 k	O.K. # clips = 2	

***h/t > 200; use web stiffeners

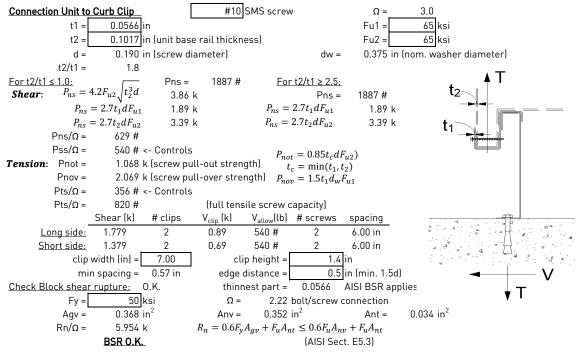
(assume k=0.8)

Check Web Stiffener 16Ga x 3/4" x 7" (C-channel)

7.71 in 0.336 in 0.336 in

OHOUR HOD OTHIOHOL		0 a x 0/ 1 x 7 (0 0 110		
width of stiffener =	7.000 in		ts =	0.0566 16 Gauge
web of stiff. w =	6.717 in		Rs =	0.0849 in
***Check w/ts < 1.2	28√E/Fys		Ωc =	1.70
w/ts =	118.675			
1.28 √ (E/Fys) =	31.091	> w/ts over limit	Use C3.7.2	
$P_n = 0.7(P_{wc} + 1$	$A_e F_y \ge P_{wc}$			
Pwc =	1.366 k	Ae =	0.380 in ²	
Pn =	14.262 k	Pn/Ω =	8.390 k	
			nκ	

Corner Connections 1/4" of SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts


Icrnmax = 445 lbs Max $[F_{pmaxASD}/4 - UR - Fh_{ASDtrans}/4 \text{ corner co}]$	illections
Vcrnmax = 606 lbs (Max Ten/2 corner connections per side)	
Bolt: Tall = 2480 lbs Vall = 109	6 lbs
Threaded Insert: Tall = 2860 lbs Vall = 171	4 lbs
# of Bolts required for Tension = 0.2	<u> </u>

of Bolts required for Shear = 0.6 # of Bolts Used = 1.0 ***If combined fails: USE --> 2.0

Check Combined Stress in Bolts & Inserts: 0.732 O.K. StressComb = 0.366 O.K.

Check 1/8" welded connection \sim --- USE WELD $\Omega = 2.35$

Assume L/t > 25: 25*t = 1.415 in Lreq'd = 0.516 in
$$P_n/\Omega = \frac{1}{\Omega} 0.75tLF_u \ge V_{req}$$
 $L_{req'd} = \frac{V_{req}\Omega}{0.75tF_u}$

Connection of Curb to Supporting Structure

Connection of Curb to Supporting Structure								
Roof Loading	SEISMIC: (0.6-0.14SE	OS)D + 0.7E	WIND: 0.6D + W					
<u>Transverse:</u>	Uplift _{MAX} =		Shear _{MAX} =	890 lbs				
Compression _{SEISMIC} =	2535 lbs	=[FpmaxASD*(Hcm+l	dcurb)+(1+0.14S _{DS})*(WGT _{ur}	_{nit+curb} /2)*wcurb]/wcurb				
Tension _{SEISMIC} =	2143 lbs	=Comp _{SEISMIC} -(0.6-0.1	4S _{DS})*(WGTunit+curb)					
Compression _{WIND} =	1589 lbs	$=[F_{h transASD}*(Hcm+Hc$	urb)+0.6*(WGT _{unit+curb} /2)*w	curb-F _{vertASD} *wcurb/2]/wcurb				
Tension _{WIND} =	1845 lbs	$=[F_{h transASD}*(Hcm+Hc$	urb)-0.6*(WGT _{unit+curb} /2)*w	curb+F _{vertASD} *wcurb/2]/wcurb				
<u>Longitudinal:</u>	Uplift _{MAX} =	1557 lbs	Shear _{MAX} =	836 lbs				
Compression _{SEISMIC} =	1949 lbs	=[FpmaxASD*(Hcm+l	dcurb)+(1+0.14S _{DS})*(WGT _{ur}	_{nit+curb} /2)*Lcurb]/Lcurb				
$Tension_{SEISMIC} =$	1557 lbs	1 02101110	4S _{DS})*(WGTunit+curb)					
$Compression_{WIND} =$	646 lbs			curb-F _{vertASD} *Lcurb/2]/Lcurb				
Tension _{WIND} =	901 lbs			curb+F _{vertASD} *Lcurb/2]/Lcurb				
Wood Attachment	t: 1/4"φ x 3.5	" Simpson SDS screw	s w/ 2.25" thr<u>eaded emt</u> (S	Gmin = 0.43)				
	Tall _{metal} =	997 lbs	Vall _{metal} = 1097 lb:	s				
<u>Transverse:</u>	Tall _{wood} =	616 lbs	Vall _{wood} = 400 lb:	s				
# of Scr	ews Req'd for Uplift =	3.48	COMBINED LOADING:	0.806 O.K.				
# of Scr	ews Req'd for Shear =	2.22	Screw Spacing =	19.0 in o.c.				
Total #	of screws Required =	5						
1/4"φ x 3.5" Simpson SDS screws @ 19 in o.c. along long side of curb								
<u>Longitudinal:</u>	<u>Longitudinal:</u>							
	ews Req'd for Uplift =	2.5	COMBINED LOADING:	0.804 O.K.				
	ews Req'd for Shear =	2.1	Screw Spacing =	15.2 in o.c.				
Total # of screws Required =4								
1/4"\(\phi\x x 3.5" Simpson SDS screws @ 15.2 in o.c. along short side of curb								
Steel Deck Attachment: 1/2" \(\phi\) A307 Bolts to steel angle below deck								
-	Tall _{bolt} =		Vall _{bolt} = 2209 lb					
<u>Transverse:</u>	Tall _{metal} =	1656 lbs	Vall _{metal} = 1756 lb					
	Bolts Req'd for Uplift =	1.29	COMBINED LOADING:	0.585 O.K.				
	olts Req'd for Shear =	0.51	Bolt Spacing =	72.0 in o.c.				
T	" (D !: D ! !	0						

Total # of Bolts Required = 2 1/2" \(\phi \) A307 Bolts to steel angle below deck @ 72 in o.c. along long side of curb Longitudinal:

of Bolts Req'd for Uplift = 0.94 COMBINED LOADING: 0.376 0.K.

of Bolts Req'd for Shear = 0.48 Req'd Min Spacing = 41.5 in o.c.

Total # of Bolts Required = 2

For Concrete anchorage: SEISMIC $[0.6-0.14SDS]D + 0.7\Omega_o E$ $(\Omega_o = 2.5)$ w/ 4" embed Concrete Attachment: 3/4" ϕ Hilti Hit-HY 200 adhesive anchors 1722 lbs $Vall_{LRFD} =$ 2032 lbs $\propto = (1 + 0.2SDS)D + 2.5E = 1.87$ $Tall_{LRFD} =$ 920.9 lbs $Vall_{ASD} = Vall_{LRFD}/\alpha =$ 1086.6 lbs $Tall_{ASD} = Tall_{LRFD}/\alpha =$ (D = 0.465, E = 0.535)Uplift_{MAX} = Shear_{MAX} = 2090 lbs 4564 lbs Transverse: $= [2.5*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*(WGT_{unit+curb}/2)*wcurb]/wcurb$ Compression_{SEISMIC} = 4956 lbs Tension_{SEISMIC} = 4564 lbs =Comp_{SEISMIC}-(0.6-0.14S_{DS})*(WGTunit+curb) $Shear_{SEISMIC} =$ 2090 lbs =2.5*FpmaxASD/2 Min Bolts Req'd Uplift = 4.96 spacing = 15.00 in o.c. Tapplied = 760.6 lbs Vapplied = 60 in o.c. 348.4 lbs Min Bolts Req'd Shear = 2.00 spacing = $\frac{T_{applied}}{T_{allow,ASD}} + \frac{V_{apllied}}{V_{allow,ASD}}$ $\frac{V_{apllied}}{2} \le 1.2 = 1.15$ Try using 6 bolts COMBINED LOADING = spaced at 14.40 in o.c. Use 6 - 3/4" φ Hilti Hit-HY 200 adhesive anchors @ 14.4 in o.c. max. along long side of curb w/ 4" embed Shear_{MAX} = 2090 lbs Longitudinal: Uplift_{MAX} = 3099 lbs $= [2.5*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*(WGT_{unit+curb}/2)*Lcurb]/Lcurb$ $Compression_{SEISMIC} =$ 3491 lbs 3099 lbs =Comp_{SEISMIC}-(0.6-0.14S_{DS})*(WGTunit+curb) Tension_{SEISMIC} = Shear_{SEISMIC} = 2090 lbs =2.5*FpmaxASD/2 Min Bolts Req'd Uplift = 3.37 spacing = 9.833333 in o.c.Tapplied = 619.7 lbs 2.00 spacing = 29.5 in o.c. Vapplied = 418.1 lbs Min Bolts Req'd Shear = $\frac{T_{applied}}{T_{allow,ASD}} + \frac{V_{apllied}}{V_{allow,ASD}}$ $V_{apllied} \le 1.2 = 1.06$ Try using 5 bolts COMBINED LOADING = spaced at 10.38 in o.c. Use 5 - 3/4" φ Hilti Hit-HY 200 adhesive anchors @ 10.4 in o.c. max. along short side of curb w/ 4" embed

I							
CURB DESIGN SU	CBWC-301						
CURB RAIL	. THICKNESS:	0.0566 in	16 Gauge				
UNIT CLIP	0.0566 in	0.0566 in 16 Gauge					
# OF CLIPS (I	# OF CLIPS (LONG SIDE) - 2 clips with 2 - #10 SMS screws each clip						
WEE	STIFFENER:	16Ga x 3/4'	' x 7" (C-chan	nel) stiffer	er at each clip		
# OF CLIPS (SI	# OF CLIPS (SHORT SIDE) - 2 clips with 2 - #10 SMS screws each clip						
WE	WEB STIFFENER: 16Ga x 3/4" x 7" (C-channel) stiffener at each clip						
CORNER CO	CORNER CONNECTION: Use 2 - 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts						
CURB	WOOD		9	STEEL	<u>CONCRETE</u>		
ANCHORAGE	1/4" φ Simp	oson SDS scr	ew w/ 2.25"	1/2" φ A307 bolts		3/4" ф thrd'd rod in Hilti HIT-HY	
ANCHORAGE	threaded	embed (SG	min=0.43)			200 epoxy, min. 4" embed	
LONG DIRECTION		5 @ 19 in o.d	:.	2 @	72 in o.c.	6 @ 14.4 in o.c.	
SHORT DIRECTION	@ 15.17 in c).C.	2 @ 4	11.5 in o.c.	5 @ 10.38 in o.c.		