

Structural Calculations for CBWC-121 Series

CBWCSAV1518** SERIES

Prepared for:

PROVENT / RRS

3847 Wabash Drive Mira Loma, CA 91725

Date: September 25, 2023

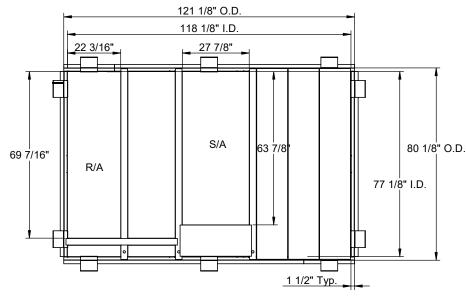
Project Number: PV2312

For wood, concrete and steel attachments see Roof Anchorage Detail, Form Nos. CB-60

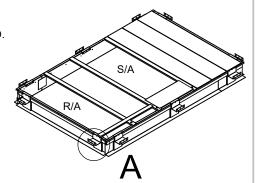
STRUCTURALLY CALCULATED WELDED ROOF CURBS FOR SUNCHOICE UNITS

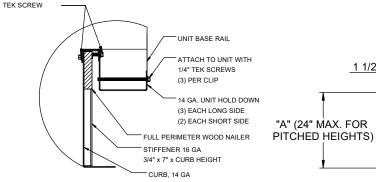
PROVENT P/N	Α	EST. WEIGHT
CBWCSAV151808	08"	230 Lbs.
CBWCSAV151811	11"	265 Lbs.
CBWCSAV151814	14"	300 Lbs.
CBWCSAV151824	24"	415 Lbs.

FEATURES


AV 15-18, AD 15-18, AH 15, AL 15, HV 13

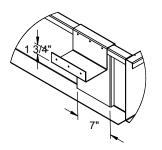
- Roof curb sides and ends are 14 Ga. galvanized steel.
- Gasketing package provided.
- Heat treated wood nailer provided.
- Insulated sloped deck pans provided.
- Pitched curbs and taller curbs are available.


Notes


Attached ductwork to roof curb. Flanges of duct rest on top of curb. Support ductwork below the curb.

ATTACH TO CURB WITH

Meets seismic requirements for the following codes: CBC 2022 IBC 2021



CURB DETAIL

3"

1 1/2"

"A" (24" MAX. FOR

REGISTER

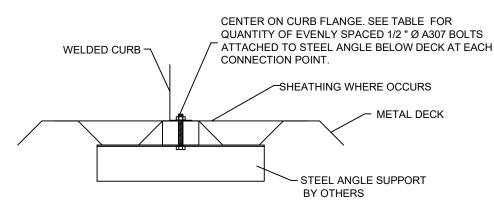
HOLD DOWN DETAIL

DETAIL A

3847 WABASH DRIVE MIRA LOMA, CA 91752

PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITED TO:	
COMPANY:	
JOB NAME:	
EQUIPMENT:	
NOTES:	


FORM NO: **CBWC-121**

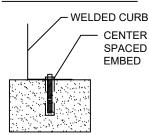
PART NUMBER: CBWCSAV1518 SERIES

DATE: 8/28/2023 REV: 1

DRAWN BY: FMM

STEEL ATTACHMENT

	NO. OF ANCHORAGE BOLTS REQUIRED			
CURB	LONG SIDE	SHORT SIDE		
LXS	2 @ 34.5" O.C.	2 @ 19" O.C.		
LXL	2 @ 34.5" O.C.	2 @ 29" O.C.		
SUN3672	2 @ 60.5" O.C.	2 @ 24.75" O.C.		
PRD3715	2 @ 68.88" O.C.	2 @ 39" O.C.		
PRS	2 @ 58.88" O.C.	2 @ 28.69" O.C.		
PRL	2 @ 72" O.C.	2 @ 41.5" O.C.		
SAV1518	3 @ 54.56" O.C	2 @ 68.13" O.C.		
SAV2025 3 @ 61.56" O.C SAV28 3 @ 69.75" O.C		2 @ 68.13" O.C.		
		2 @ 68.13" O.C.		

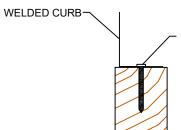

ASSUMES:

CONC SLAB f'c= 4000PSI MINIMUM 4" MIN THICKNESS NORMAL WEIGHT CONCRETE MIN. 7-1/4" EDGE DISTANCE

Meets seismic requirements for the following codes: CBC 2022 IBC 2021

ROOF ANCHORAGE DETAIL					
CBKD Series	CBWC Series				
LXS	LXS				
LXL	LXL				
SUN3672	SUN3672				
PRD3715	PRD3715				
PRS	PRS				
PRL	PRL				
SAV1518	SAV1518				
SAV2025	SAV2025				
SAV28	SAV28				

CONCRETE ATTACHMENT



CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 1/2" Ø THREADED ROD IN HILTI HIT-HY 200 V3 EPOXY WITH 2-1/2" **EMBED**

	NO. OF ANCHORAGE BOLTS REQUIRED		
CURB	LONG SIDE	SHORT SIDE	
LXS	2 @ 34.5" O.C.	2 @ 19.0" O.C.	
LXL	2 @ 34.5" O.C.	2 @ 29" O.C.	
SUN3672	2 @ 60.5" O.C.	2 @ 24.75" O.C.	
PRD3715	4 @ 22.96" O.C.	2 @ 39" O.C.	
PRS	2 @ 58.88" O.C.	2 @ 28.69" O.C.	
PRL	3 @ 36" O.C.	2 @ 41.5" O.C.	
SAV1518	4 @ 36.38" O.C.	2 @ 68.13" O.C.	
SAV2025	4 @ 41.04" O.C.	3 @ 34.06" O.C.	
SAV28	5 @ 34.88" O.C.	3 @ 34.06" O.C.	

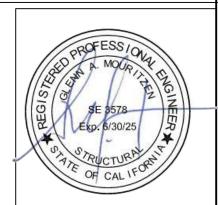
* SIX INCHES FROM EACH CORNER EVENLY SPACED. ** CENTERED.

WOOD ATTACHMENT

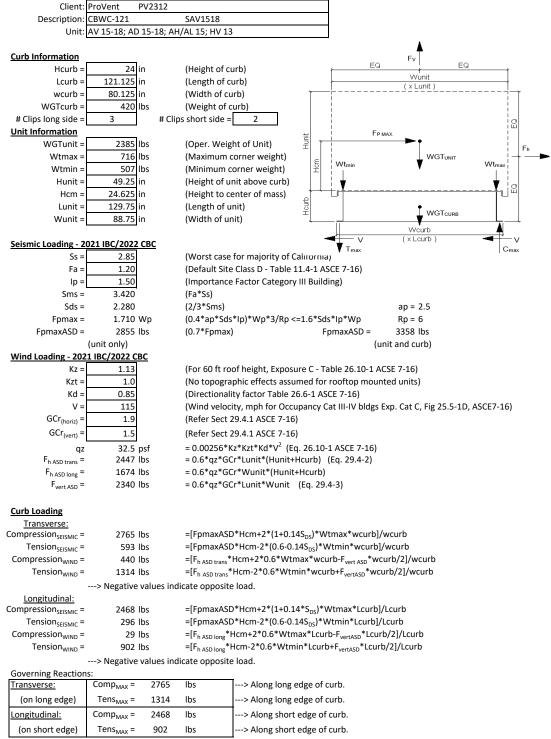
CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED

1/4" Ø x 3.5" SIMPSON SDS SCREWS W/2.25" THREADED EMBED INTO WOOD FRAMING

FOUR INCH	ES FROM	EACH
CORNER EV	JENI Y SE	PACED



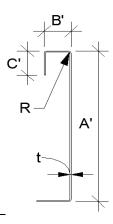
3847 WABASH DRIVE MIRA LOMA, CA 91725


PHONE (951) 685-1101 FAX (619) 872-9799

	NO. OF ANOHORAGE SCILLING			
	REQUIRED			
CURB	LONG SIDE	SHORT SIDE		
LXS	4 @ 12.83" O.C.	3 @ 11.5" O.C.		
LXL	4 @ 12.83" O.C.	3 @ 16.5" O.C.		
SUN3672	4 @ 21.5" O.C.	3 @ 14.38" O.C.		
PRD3715	7 @ 12.15" O.C.	5 @ 10.75" O.C.		
PRS	4 @ 20.96" O.C.	3 @ 16.35" O.C.		
PRL	6 @ 15.2" O.C.	4 @ 15.17" O.C.		
SAV1518	6 @ 22.63" O.C.	5 @ 18.03" O.C.		
SAV2025	7 @ 21.19" O.C.	5 @ 18.03" O.C.		
SAV28	8 @ 20.5" O.C.	5 @ 18.03" O.C.		

NO OF ANCHORAGE SCREWS

SUBMITTED TO:	CB-60			
EQUIPMENT:	DATE:	REV:	DRAWN BY:	
NOTES:	8/28/2023	10	FMM	


^{---&}gt; Negative values indicate opposite load.

Fy =	50 ksi	Fu =	65 ksi
E =	29500 ksi	t =	0.0713 14 Gauge

Calculate Section Properties of Curb

A'=	24.000	in	a =	23.644 in	= A'-(2r+t)
B'=	1.500	in	a'=	23.929 in	= A'-t
C'=	0.000	in (0 if no lips)	b =	1.322 in	$= B'-[r+t/2+\alpha(r+t/2)]$
α=	0.000	(0 - no Lip; 1 w/ lip)	b'=	1.464 in	$= B'-(t/2+\alpha t/2)$
R =	0.1069	(Inside bend radius)	c =	0.000 in	$= \alpha[C'-(r+t/2)]$
t =	0.0713	in	c'=	0.000 in	$= \alpha(C'-t/2)$
r'=	0.143	in = $R+t/2$	u =	0.224 in	= πr/2
x =	0.080	in (Distance between o	centroid and web o	enterline)	
lx =	110.108	in ⁴	rx =	7.60 in	
ly =	0.137	in ⁴	ry =	0.268 in	
A =	1.91	in ²	rmin =	0.268 in	

Axial Compression

Pu =	1.427 k	(Max Axial Con	np)	Ωc =	1.80
$Pn/\Omega c =$	5.104 k		$E_{\lambda} = 1E_{\lambda} E_{\lambda} = (0.6E0\lambda_{0}^{2})E_{\lambda}$		
Fe =	5.50 ksi	$\frac{P_n}{Q} = \frac{F_n A}{Q}$	If $\lambda_c \le 1.5$; $F_n = \left(0.658^{\lambda_c^2}\right) F_y$	F_{y}	$\pi^2 E$
λc =	3.02	$\frac{\Omega_c}{\Omega_c} = \frac{\Omega_c}{\Omega_c}$	If $\lambda_c > 1.5$; $F_n = \frac{0.877}{\lambda_c^2} F_y$	$\lambda_c = \sqrt{\frac{F_y}{F_e}}$	$F_e = \frac{1}{(kl/1)^2}$
Fn =	4.82 ksi	c c	$\lambda_c > 1.5, \lambda_n = \lambda_c^2$	٧	(γr)
Ly =	77.125 in	Lateral unbrace	ed length		

Compression Check = O.K.

230

Check Web Crippling

 $k_y L_y / r_y =$

h =	24 in	Check lim	nits:	C = 4.00	7
t =	0.0713 in	h/t =	336.61 ≤ 260	$C_R = 0.14$	(See table C3.4.1-2, fastened to
N =	7.00	N/t =	98.18 ≤ 210	$C_N = 0.35$	support, one flange, end loading)
$\Omega_{\rm w}$ =	1.75	N/h =	$0.291667 \le 2.0$	$C_h = 0.02$	J
P _n =	2.130 k	R/t =	1.50 ≤ 9.0	/	
$P_n/\Omega_w =$	1.217 k		P_n	$= Ct^2F_{\nu}\sin(90) \left(1 - C\right)$	$\left(\frac{R}{t}\right)\left(1+C_N\right)\frac{N}{t}\left(1-C_h\right)\frac{h}{t}$
Long side: Pu _{Trans} =	0.922 k	<u>O.K.</u>	# clips = 3	, , ,	(x,t)
Short side: Pu _{Long} =	1.234 k	web stiffener REQ'D	# clips = 2	•	,

***h/t > 260; use web stiffeners

(assume k=0.8)

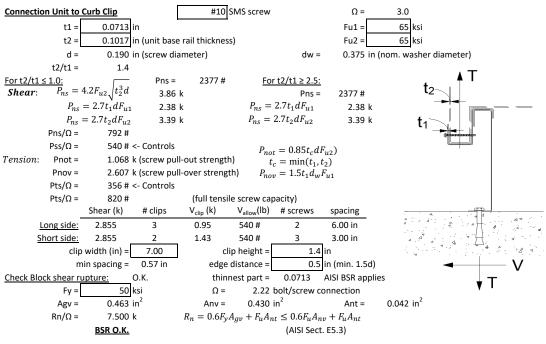
Check Web Stiffener 16Ga x 3/4" x 6" (C-channel)

CHECK WED SUITERIE	10		iiiiei)		
width of stiffener =	6.000 in		ts =	0.0566 16 Gauge	
web of stiff. w =	5.717 in		Rs =	0.0849 in	
***Check w/ts ≤ 1.28v	'E/Fys		Ωc =	1.70	
w/ts =	101.007				
1.28√(E/Fys) =	31.091	> w/ts over limit	Use C3.7.2		

 $P_n = 0.7(P_{wc} + A_e F_y) \ge P_{wc}$ Pwc = 2.130 k Pwc = Ae=

 0.324 in^2 12.817 k Pn = $Pn/\Omega =$ 7.539 k <u>O.K.</u>

Corner Connections


1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts

 $Max(F_{pmaxASD}/4 - OR- Fh_{ASDtrans}/4 corner connections)$ Tcrnmax = 839 lbs Vcrnmax = 1383 lbs Max(Tens/2 -OR- Comp/2 corner connections per side) 2480 lbs Vall = 1208 lbs Bolt: Tall = Threaded Insert: Tall = 2860 lbs Vall = 1536 lbs

> # of Bolts required for Tension = 0.3 # of Bolts required for Shear = 1.1 # of Bolts Used = 3.0

Check Combined Stress in Bolts & Inserts:

Check 1/8" welded connection

Connection of Curb to Supporting Structure

Roof Loading	SEISMIC: (0.6-0.14S _{DS})D + 0.7E		WIND: 0.6D + W	
<u>Transverse:</u>	Uplift _{MA}	x = 1814 lbs	Shear _{MAX} =	1679 lbs
Compression _{SEISMIC} =	3888 lbs	=[FpmaxASD*(Hcm+H	curb)+(1+0.14S _{DS})*WGT _{unit+cur}	_{rb} *wcurb/2]/wcurb
Tension _{SEISMIC} =	1644 lbs	=[FpmaxASD*(Hcm+Hd	curb)-(0.6-0.14S _{DS})*WGT _{unit+c}	_{urb} *wcurb/2]/wcurb
$Compression_{WIND} =$	1156 lbs	=[F _{h ASD trans} *(Hcm+Hcu	rb)+0.6*WGT _{unit+curb} *wcurb/	2-F _{vert ASD} *wcurb/2]/wcurb
Tension _{WIND} =	1814 lbs	=[F _{h ASD trans} *(Hcm+Hcu	rb)-0.6*WGT _{unit+curb} *wcurb/2	2+F _{vertASD} *wcurb/2]/wcurb
Longitudinal:	Uplift _{MAX}		Shear _{MAX} =	1679 lbs
Compression _{SEISMIC} =	3198 lbs	=[FpmaxASD*(Hcm+H	curb)+(1+0.14S _{DS})*WGT _{unit+cui}	_{rb} *Lcurb/2]/Lcurb
Tension _{SEISMIC} =	954 lbs	=[FpmaxASD*(Hcm+Hd	curb)-(0.6-0.14 S_{DS})*WGT _{unit+c}	_{urb} *Lcurb/2]/Lcurb
$Compression_{WIND} =$	343 lbs	=[F _{h ASD long} *(Hcm+Hcur	b)+0.6*WGT _{unit+curb} *Lcurb/2	-F _{vert ASD} *Lcurb/2]/Lcurb
Tension _{WIND} =	1001 lbs	=[F _{h ASD long} *(Hcm+Hcu	b)-0.6*WGT _{unit+curb} *Lcurb/2-	F _{vertASD} *Lcurb/2]/Lcurb
Mood Attachments	Mood Attachment: 1/4" by 2 E" Simpson SDS scrows _ w/ 2 2E" threaded cmb (SGmin = 0.42)			

Wood Attachment:	1/4"ф x 3.5" Sin	npson SDS scre	ws w/ 2.25" thre	w/ 2.25" threaded emb (SGmin = 0.43)			
	Tall _{metal} =	997 lbs	Vall _{metal} =	1097 lbs			
<u>Transverse:</u>	Tall _{wood} =	616 lbs	Vall _{wood} =	672 lbs			
# of Screws	Req'd for Uplift =	2.94	COMBINED L	OADING:	0.907 O.K.		
# of Screws	Req'd for Shear =	2.50	Screw	/ Spacing =	22.6 in o.c.		
Total # of s	screws Required =	6					
1/4" + v 2 F" Cimpson C	DC corous @ 22 6 in a	a alana lana si	do of ourb w/2 2F	" throaded amb	ad		

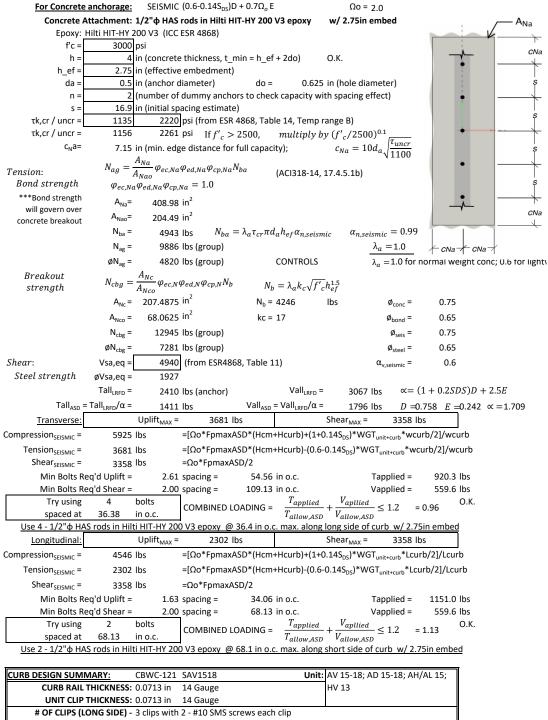
1/4"\psi x 3.5" Simpson SDS screws @ 22.6 in o.c. along long side of curb w/ 2.25" threaded embed Longitudinal:

of Screws Req'd for Uplift = 1.6
of Screws Req'd for Shear = 2.5
Total # of screws Required = 5

COMBINED LOADING: 0.824 O.K.

Screw Spacing = 18.0 in o.c.

1/4" ϕ x 3.5" Simpson SDS screws @ 18 in o.c. along short side of curb w/ 2.25" threaded embed


174 \$ x 3.5 Simpson 355 screws (# 10 in o.e. diong short side of carb W/ 2.25 timedaed embed						
Steel Deck Atta	chment: 1/2" φ A30	1/2" φ A307 Bolts to steel angle below deck				
	Tall _{bolt} =	3927	lbs Vall _{bolt}	= 2209 lbs		
<u>Transverse:</u>	Tall _{metal} =	2086	lbs Vall _{metal}	= 2192 lbs		
	# of Bolts Req'd for Uplift =	0.87	COMBINED	LOADING:	0.230 O.K.	
	# of Bolts Req'd for Shear =	0.77	В	olt Spacing =	54.6 in o.c.	
	Total # of Bolts Required =	3				
1/2" φ A307 Bolts to steel angle below deck @ 54.6 in o.c. along long side of curb						
Longitudinal	·					

of Bolts Req'd for Uplift = 0.48 COMBINED LOADING: 0.295 O.K.

of Bolts Req'd for Shear = 0.77 Req'd Min Spacing = 68.1 in o.c.

Total # of Bolts Required = 2

 $1/2"\ \varphi$ A307 Bolts to steel angle below deck @ 68.1 in o.c. along short side of curb

CURB DESIGN SUM	MARY:	CBWC-121	SAV1518	Uı	nit:	AV 15-18; AD 15-18; AH/AL 15;	
CURB RAIL	THICKNESS:	0.0713 in	14 Gauge		I	HV 13	
UNIT CLIP	THICKNESS:	0.0713 in	14 Gauge				
# OF CLIPS (LONG SIDE) - 3 clips with 2 - #10 SMS screws each clip							
WEB STIFFENER: 16Ga x 3/4" x 6" (C-channel) stiffener at each clip # OF CLIPS (SHORT SIDE) - 2 clips with 3 - #10 SMS screws each clip							
							WEB STIFFENER: 16Ga x 3/4" x 6" (C-channel) stiffener at each clip CORNER CONNECTION: Use 3 - 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts
CURB		WOOD		<u>STEEL</u>		<u>CONCRETE</u>	
ANCHORAGE	1/4"φ x 3.5'	' Simpson SI	OS screws w/	1/2" φ A307 Bolts t	to	1/2"φ HAS rods in Hilti HIT-HY	
ANCHORAGE	2.25"	threaded e	mbed	steel angle below de	eck	200 V3 epoxy w/ 2.75in embed	
LONG DIRECTION	6	@ 22.63 in c).C.	3 @ 54.56 in o.c.		4 @ 36.38 in o.c.	
SHORT DIRECTION	5	@ 18.03 in c).C.	2 @ 68.13 in o.c.		2 @ 68.13 in o.c.	