

Structural Calculations for CBISC-02 Series

CBISCLXL** SERIES

Prepared for:

PROVENT / RRS

3847 Wabash Drive Mira Loma, CA 91725

Date: July 13, 2022

Project Number: PV2203

For wood, concrete and steel attachment see Roof Anchorage Detail, Form No. CB-62.

Welded Isolation springs housingare standard. For bolted spring housing, neoprene pads and spring cups see Weldment and Bolting Detail, Form No. CB-61

STRUCTURALLY CALCULATED VIBRATION ISOLATION ROOF CURB FOR YORK UNITS

P***B CABINET

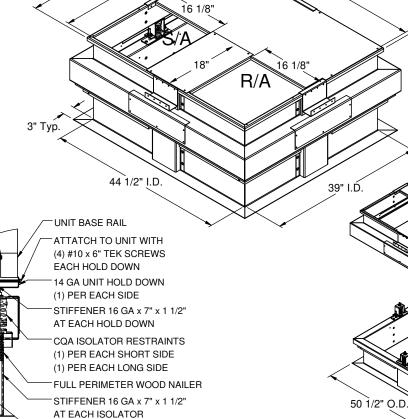
PROVENT P/N	Α	В	EST. WEIGHT
CBISCLXL18**	8"	18"	205 Lbs.
CBISCLXL21**	11"	21"	224 Lbs.
CBISCLXL24**	14"	24"	239 Lbs.

FEATURES

- Roof curbs sides and ends are 14 ga.
- · Fully welded construction.
- · Gasketing package provided.
- Heat treated wood nailer provided.
- · insulated deck pans provided.
- Pitched curbs and taller curbs are available.
- CalDyn OSHPd pre-approved seismic restraints. (OPM-0401-13), (CQA).

NOTES

- Attach ductwork to roof curb. Flanges of duct rest on top of the curb, Support ductwork below the curb.
- Thru the curb utillities are available. Contact you York distributor or Provent directly.


B" TOTAL HEIGHT

(35" MAX WITH PITCH)

(4) #10 TEK SCREWS-

14 GA UPPER RAIL

A" BASE CURB HEIGHT

**Note: Spring configuration must be added to part number at time of order

Meets seismic requirements for the following codes:
CBC 2019
IBC 2018

PROFILE DETAIL

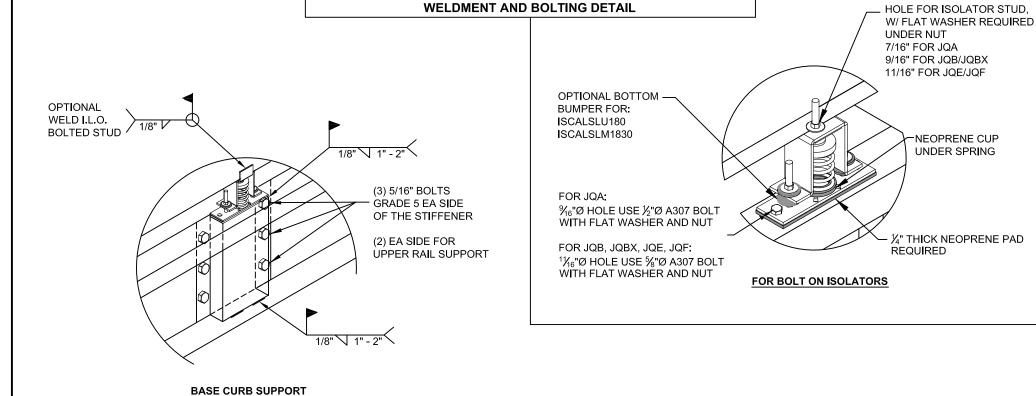
3847 WABASH DRIVE MIRA LOMA, CA 91752

14 GA. CURB

41" O.D.

39" I.D.

PHONE (951) 685-1101 FAX (619) 872-9799 46 1/2" O.D.


44 1/2" I.D.

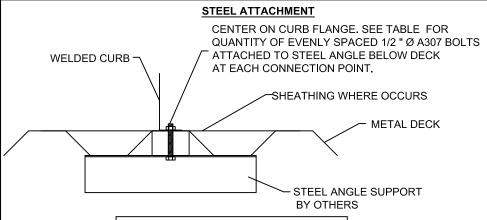
FORM NO: PART NUMBER:
CBISC-02

45" O.D.

 DATE:
 REV:
 DRAWN BY:

 5/19/2022
 4
 JG

3847 WABASH DRIVE MIRA LOMA, CA 91725


PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITTED TO:	F
COMPANY:	(
JOB NAME:	H
EQUIPMENT:	[
NOTES:	(

FORM NO: CB-61

 DATE:
 REV:
 DRAWN BY:

 02/08/18
 1
 ALL

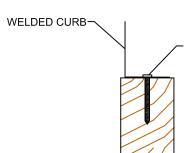
	NO. OF ANCHORAGE BOLTS REQUIRED		
CURB	LONG SIDE	SHORT SIDE	
LXS	3 @ 19.25" O.C.	2 @ 23" O.C.	
LXL	3 @ 19.25" O.C.	2 @ 33" O.C.	
SUN3672	4 @ 21" O.C.	2 @ 27.25" O.C.	
PRD3715	6 @ 14.28" O.C.	3 @ 20.75" O.C.	
PRS	4 @ 20.46" O.C.	2 @ 31.13" O.C.	
PRL	3 @ 36.13" O.C.	2 @ 44" O.C.	
SLU180	4 @ 35.08" O.C.	3 @ 37" O.C.	
SLM1830	5 @ 29.06" O.C	4 @ 24.67" O.C.	
SAV1518	4 @ 37.38" O.C	3 @ 35.56" O.C.	
SAV2025	4 @ 42.04" O.C	3 @ 35.56" O.C.	
SAV28	5 @ 35.63" O.C	3 @ 35.56" O.C.	

ASSUMES:

CONC SLAB fc= 4000PSI MINIMUM 6" MIN THICKNESS NORMAL WEIGHT CONCRETE OR SAND LIGHT WEIGHT Meets seismic requirements for the following codes: CBC 2019 IBC 2018 ROOF ANCHORAGE DETAIL
CBISC Series
LXS
LXL
SUN3672
PRD3715
PRS
PRL
SLU180
SLM1830
SAV1518
SAV2025
SAV28

CONCRETE ATTACHMENT

WELDED CURB


CENTER ON CURB FLANGE.
SEE TABLE FOR QUANTITY OF EVENLY
SPACED 3/4" Ø THREADED ROD IN HILTI
HIT-HY 200 EPOXY WITH 4" EMBED

NO.	OF	ANCHOR.	AGE BO	LTS I	REQUIRED

CURB	LONG SIDE	SHORT SIDE
LXS	7 @ 6.42" O.C.	4 @ 7.67" O.C.
LXL	7 @ 6.42" O.C.	5 @ 8.25" O.C.
SUN3672	9 @ 7.88" O.C.	4 @ 9.08" O.C.
PRD3715	14 @ 5.49" O.C.	9 @ 5.19" O.C.
PRS	10 @ 6.82" O.C.	5 @ 7.78" O.C.
PRL	11 @ 7.23" O.C.	6 @ 8.8" O.C.
SLU180	12 @ 9.57" O.C.	8 @ 10.57" O.C.
SLM1830	18 @ 6.84" O.C.	11 @7.4" O.C.
SAV1518	12 @ 10.19" O.C.	6 @ 14.23" O.C.
SAV2025	14 @ 14.97" O.C.	6 @ 14.23" O.C.
SAV28	14 @ 10.96" O.C.	6 @ 14.23" O.C.

* SIX INCHES FROM EACH CORNER EVENLY SPACED.
** CENTERED.

WOOD ATTACHMENT

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED

'4" Ø x 4.5" SIMPSON SDS SCREWS W/ 2.75"
THREADED EMBED (SGMIN=0.50)

FOUR INCHES FROM EACH CORNER EVENLY SPACED

	NO. OF ANCHORAGE SCREWS REQUIRED			
CURB	LONG SIDE	SHORT SIDE		
LXS	7 @ 7.08" O.C.	5 @ 6.75" O.C.		
LXL	7 @ 7.08" O.C.	7 @ 6.17" O.C.		
SUN3672	9 @ 8.38" O.C.	5 @ 7.81" O.C.		
PRD3715	15 @ 5.38" O.C.	10 @ 5.06" O.C.		
PRS	10 @ 7.26" O.C.	6 @ 7.03" O.C.		
PRL	12 @ 6.93" O.C.	8 @ 6.86" O.C.		
SLU180	14 @ 8.4" O.C.	10 @ 8.67" O.C.		
SLM1830	19 @ 6.68" O.C.	13 @ 6.5" O.C.		
SAV1518	13 @ 9.68" O.C.	9 @ 9.39" O.C.		
SAV2025	15 @ 9.29" O.C.	9 @ 9.39" O.C.		
SAV28	16 @ 9.77" O.C.	9 @ 9.39" O.C.		

SE 3578
EMP. 6/30/23

STRUCTURE

OF CALIFORN

ProVent

3847 WABASH DRIVE MIRA LOMA, CA 91752

PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITTED TO:	F
COMPANY:	C
JOB NAME:	
EQUIPMENT:	D.
NOTES:	6,

FORM NO:
CB-62
DATE: REV: DRAWN BY:

6/30/2022 2 FMM

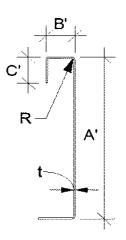
Client: ProVent

---> Negative values indicate opposite load.

PV2203

Drainet.	CBISC-02 Iso Curb	CBISCLXL	
,			
Unit:	ALL YORK P***B CAE	BINEIS	
			*
Upper Curb Inforr	mation		Fo EQ
Hcurb upper =	5.5 in	(Height of upper curb rail)	Wusit
Lcurb =	46.5 in	(Length of upper curb)	(×Lunk)
wcurb =	41 in	(Width of upper curb)	
WGTupper =	38 lbs	(Weight of upper curb)	
			Feway
# Clips long side =	I # Ctips	s short side = 1 물	<u> </u>
Unit Information			Wtms Wtms Wtmax
WGTunit =		(Weight of Unit) 불	VV time VV Time (Fe
Wtmax =	197 lbs	(Maximum corner weight)	
Wtmin =	139 lbs	(Minimum corner weight)	J
Hunit =	55 in		<u></u>
Hcm =	27.5 in	(Height of unit above curb)	
		(Height to Center of mass)	•
Lunit =	51.25 in	(Length of unit)	⊥ WGT _{CURB}
Wunit =	45.75 in	(Width of unit)	1
		-	↓
Seismic Loading -	2018 IBC/2019 CBC		T _{max} C _{max}
Ss =	2.85	- (Worst case for majority of Californ	
Fa =	1.20	(Default Site Class D - Table 11.4-1	
lp =		(Importance Factor Category IV Bui	
Sms =	3.420	(Fa*Ss) ap =	2.5
Sds =	2.280	(2/3*Sms) Rp =	2
Fpmax =	5.130 Wp	(0.4*ap*Sds*Ip)*Wp*3/Rp <=1.6*Sd	s*lp*Wp
FpmaxASD =			naxASD = 2492 lbs
. p	(unit only)	(617) [211, 621, 7]	(unit + upper rail)
Mar. 1.1			(unit + upper rait)
	118 IBC/2019 CBC	,	
Kz =	1.13	(For 60 ft roof height, Exposure C -	Table 26.10-1 ACSE 7-16)
Kzt =	1.00	(Max. assumed topographic factor)	
Kd =	0.85	(Directionality factor Table 26.6-1 A	SCE 7-16)
Ke =	1.00	(Ground Elevation Factor Table 26.9	
V =	110		Cat III-IV bldgs Exp. Cat C, Fig 26.5-1D - ASCE7-16)
			Cat III-1V blugs Exp. Cat C, Fig 20.3-10 - A3CE7-10)
$GCr_{(horiz)} =$	1.9	(Refer Sect 29.4.1 ASCE 7-16)	
$GCr_{(vert)} =$	1.5	(Refer Sect 29.4.1 ASCE 7-16)	
qz		$= 0.00256*Kz*Kzt*Kd*Ke*V^2$ (Eq. 26)	6 10-1 ASCF 7-16)
F _{h ASD trans} =	730 lbs	= 0.6*qz*GCr*Lunit*(Hunit+Hcurb)	
	652 lbs	= 0.6*qz*GCr*Wunit*(Hunit+Hcurb)	
F _{h ASD long} =			
$F_{\text{vert ASD}} =$	436 lbs	= 0.6*qz*GCr*Lunit*Wunit (Eq. 29	.4-3)
Upper Curb Loadi	ng		
<u>Transverse:</u>			
Compression _{SEISMIC} =	2099 lbs	=[FpmaxASD*Hcm+2*(1+0.14S _{DS})* V	Vtmax*wcurb]/wcurb
Tension _{SEISMIC} =	1502 lbs	=[FpmaxASD*Hcm-2*(0.6-0.14S _{DS})*	
	508 lbs	= $[F_{h ASD trans}*Hcm+2*0.6*Wtmax*wc$	
Compression _{WIND} =			
$Tension_{WIND} =$		=[F _{h ASD trans} *Hcm-2*0.6*Wtmin*wci	urb+F _{vertASD} "wcurb/2]/wcurb
	> Negative values	indicate opposite load.	
<u>Longitudinal:</u>			
Compression _{SEISMIC} =	1912 lbs	$=[FpmaxASD*Hcm+2*(1+0.14*S_{DS})*$	Wtmax*Lcurb]/Lcurb
Tension _{SEISMIC} =	1315 lbs	=[FpmaxASD*Hcm-2*(0.6-0.14S _{DS})*	
Compression _{WIND} =	404 lbs	$= [F_{h ASD long} * Hcm + 2*0.6*Wtmax*Lcu$	
Tension _{WIND} =	436 lbs	=[F _{h ASD long} *Hcm-2*0.6*Wtmin*Lcu	vertASD LCui b/ 2]/ LCui b
	-	indicate opposite load.	
Governing Reaction			
Transverse:	$Comp_{MAX} = 2099$	lbs> Along long edge of cu	ırb.
(on long edge)	Tens _{MAX} = 1502	lbs> Along long edge of cu	
	1-0 01		
Longitudinal:	1 INDX		
(on short edge)	$Tens_{MAX} = 1315$	lbs> Along short edge of c	urb.
	> Negative values	indicate annocite load	

Upper curb rail



Curb Design

$$Fy = 50 \text{ ksi}$$
 $Fu = 65 \text{ ksi}$ $E = 29500 \text{ ksi}$ $t = 0.0713 14 \text{ Gauge}$

Calculate Section Properties of Curb

Α'=	5.500	in	a =	5.144 in = A'-(2r+t)
B'=	1.000		a'=	5.429 in = A'-t
C'=	0.000	in (0 if no lips)	b =	0.822 in = B'-[r+t/2+a(r+t/2)]
a =	0.000	(0 - no Lip; 1 w/ lip)	b'=	0.964 in = B'-($t/2+at/2$)
R =	0.1069	(Inside bend radius)	C =	0.000 in = $a[C'-(r+t/2)]$
t =	0.0713	in	c'=	0.000 in = $a(C'-t/2)$
r'=	0.143	in = R+t/2	u =	$0.224 \text{ in } = \pi r/2$
x =	0.129	in (Distance between ce	entroid and wel	centerline)
lx =	1.899	in ⁴	rx =	1.92 in
ly =	0.034	in ⁴	ry =	0.257 in
A =	0.52	in ²	rmin =	0.257 in

Axial Compression Pa =

1.178 k (Max Axial Comp) 1.80

$$Pn/\Omega c = 4.964 \text{ k}$$

 $Fe = 19.75 \text{ ksi}$
 $\lambda c = 1.59$

$$\frac{P_n}{\Omega_c} = \frac{F_n A}{\Omega_c} \qquad If \ \lambda_c \le 1.5; \ F_n = \left(0.658^{\lambda_c^2}\right) F_y \\ If \ \lambda_c > 1.5; \ F_n = \frac{0.877}{\lambda_c^2} F_y \qquad \lambda_c = \sqrt{\frac{F_y}{F_e}}$$

$$A_c = \sqrt{\frac{F_y}{F_e}}$$
 $F_e = \frac{\pi^2 E}{\left(kl/r\right)^2}$

Fn = 17.32 ksi 39.00 in Ly =

Lateral unbraced length (assume k=0.8)

121 $k_y L_y / r_y =$ Compression Check = 0.K.

Check Web Cripplina

h =	5.5 i	in Check li	mits.	C = 7.50	
t =	0.0713 i		77.14 ≤ 200	$C_{R} = 0.08$	(See table C3.4.1-2, fastened
N =	7.00	N/t =	98.18 ≤ 210	$C_{N} = 0.12$	to support, two flange, end
$\Omega_{\rm w} =$	1.75	N/h =	1.273 ≤ 2.0	$C_h = 0.048$	loading)
$P_n =$	1.947 k	R/t =	$1.50 \le 12.0$	/ [7]	([])
$P_n/\Omega_w =$	1.112 k		$P_n = 0$	$Ct^2F_v\sin(90)\left(1-C_R\right)^{\frac{R}{4}}$	$\left(1+C_N\left \frac{N}{t}\right \right)\left(1-C_h\left \frac{h}{t}\right \right)$
: Pu _{Trans} =	2.099 k	web stiffener REQ'D	# clips = 1	\ \(\sigma^{\lambda}\)	$\langle \gamma_i \rangle \langle \gamma_i \rangle$

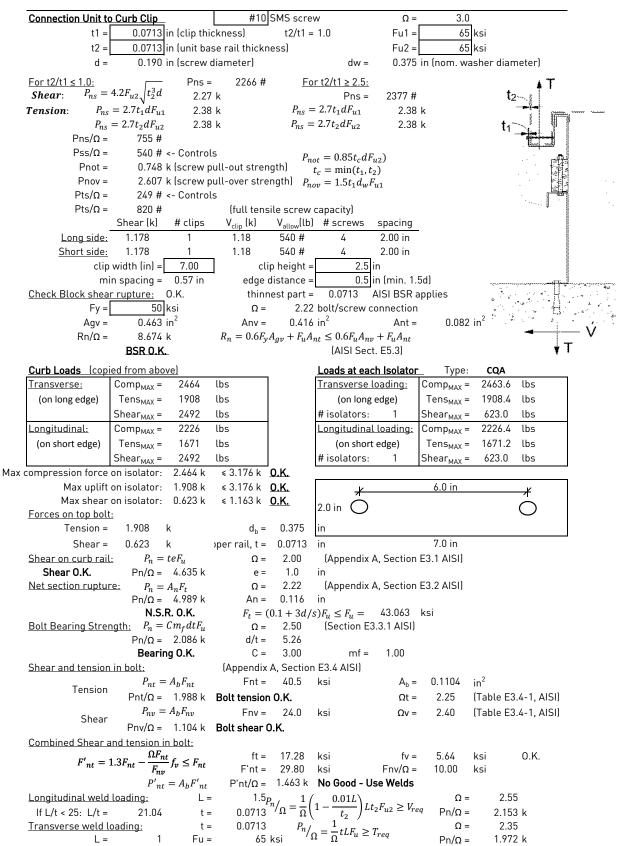
Long side: Pu Short side: $Pu_{Long} =$ 1.912 k web stiffener REQ'D # clips = 1

16Ga x 1-3/16in x 7in (C-channel) Check Web Stiffener $P_n = 0.7(P_{wc} + A_e F_y) \ge P_{wc}$ 7.000 in 0.0566 16 Gauge width of stiffener = Pwc = 1.947 k ts = web of stiff. w = 6.717 in Rs= 0.0849 in Pn = 14.669 k ***Check w/ts ≤ 1.28√E/Fys $\Omega_c =$ 1.70 Ae = 0.380 in^2

w/ts =118.675

 $Pn/\Omega_c =$ 1.28v(E/Fys) =31.091 --> w/ts over limit Use C3.7.2 8.629 k 0.K.

Corner Connections 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts


Tcrnmax = 623 lbs Max(F_{pmaxASD}/4 -OR- Fh_{ASDtrans}/4 corner connections) 1050 lbs Max(Tens/2 -OR- Comp/2 corner connections per side) Vcrnmax = Bolt: 2480 lbs 1208 lbs Tall = Vall = Threaded Insert: Tall = 2860 lbs Vall = 1096 lbs

of Bolts required for Tension = 0.3 # of Bolts required for Shear = 1.0 # of Bolts Used = 2.0

0.604 **O.K.** Check Combined Stress in Bolts & Inserts:

ELD $\Omega = 2.35$ $\frac{P_n}{\Omega} = \frac{1}{\Omega} 0.75tLF_u \ge V_{req} \qquad L_{req'd} = \frac{V_{req}\Omega}{0.75tF_r}$ Check 1/8" welded connection <--- USE WELD Assume L/t > 25: 25*t =1.783 in Lreg'd = 0.710 in

Client:	ProVent	PV2203		Base curb	
Project:	CBISC-02	Iso Curb	CBISCLXL		
Unit:	:: ALL YORK P***B CABINETS				

Base Curb Inform		F _V EQ EQ	
Hbase curb =	25 in	(Height of base curb)	
Lcurb =	50.5 in	(Length of base curb) (x Lunk)	7
wcurb =	45 in	(Width of base curb)	1
WGTbase =	201 lbs	(Weight of base curb)	11
# Springs long side =	1 # Spring	gs short side = 1	188
Unit Information		(Woight of Unit) Wime WGTurut Wim	1
WGTunit =	656 lbs	(Weight of Onit) 후 기 및	Fe
Wt'max =	206 lbs	(Wtmax+1/4*WGTupper)	
Wt'min =	149 lbs	(Wtmin+1/4*WGTupper))	LJ j
Hunit =	55 in	(Height of unit above curb)	1
H'cm =	37.5 in	(Height of unit above curb)	i
Lunit =	51.25 in	(Length of unit)	
Wunit =	45.75 in	(Width of unit)	
WGTunit+upper+base =	895 lbs	(Total weight)	
Seismic Loading -	2018 IBC/2019 CBC	T _{max}	Carex
Ss =	2.85	(Worst case for majority of California)	
Fa =	1.20	(Default Site Class D - Table 11.4-1 ASCE 7-16)	
lp =	1.50	(Importance Factor Category IV Building)	
Sms =	3.420	(Fa*Ss) ap = 2.5	
Sds =	2.280	(2/3*Sms) Rp = 2	
Fpmax =	5.130 Wp	(0.4*ap*Sds*Ip)*Wp*3/Rp <=1.6*Sds*Ip*Wp	
FpmaxASD =	2492 lbs	(0.7*Fpmax) FpmaxASD = 3214 lbs	
	(unit + upper rail)	(unit + upper rail + base curb)	
Wind Loading - 20			
Kz =	1.13	(For 60 ft roof height, Exposure C - Table 26.10-1 ACSE 7-16)	
Kzt =	1.00	(Max. assumed topographic factor)	
Kd =	0.85	(Directionality factor Table 26.6-1 ASCE 7-16)	
Ke =	1.00	(Ground Elevation Factor Table 26.9-1 ASCE 7-16)	
V =	110	(Wind velocity, mph for Occupancy Cat III-IV bldgs Exp. Cat C, Fig 26.5-1D -	ASCE7-16)
GCr _(horiz) =	1.9	(Refer Sect 29.4.1 ASCE 7-16)	
GCr _(vert) =	1.5	(Refer Sect 29.4.1 ASCE 7-16)	
qz	29.8 psf	= 0.00256*Kz*Kzt*Kd*Ke*V ² (Eq. 26.10-1 ASCE 7-16)	
F _{h ASD trans} =	1086 lbs	= 0.6*qz*GCr*Lunit*(Hunit+Hbase curb+10") [Eq. 29.4-2]	
F _{h ASD long} =	970 lbs	= 0.6*qz*GCr*Wunit*(Hunit+Hbase curb+10")	
F _{vert ASD} =	436 lbs	= 0.6*qz*GCr*Lunit*Wunit (Eq. 29.4-3)	
· Vert A3D		(
Base Curb Loading	a		
Transverse:	-		
Compression _{SEISMIC} =	2621 lbs	=[FpmaxASD*H'cm+2*(1+0.14S _{DS})*Wt'max*wcurb]/wcurb	
Tension _{SFISMIC} =	1993 lbs	=[FpmaxASD*H'cm-2*(0.6-0.14S _{DS})*Wt'min*wcurb)]/wcurb	
Compression _{WIND} =	935 lbs	=[F _{h ASD trans} *H'cm+2*0.6*Wt'max*wcurb-F _{vert ASD} *wcurb/2]/wcurb	
Tension _{WIND} =	945 lbs	=[F _{h ASD trans} *H'cm-2*0.6*Wt'min*wcurb+F _{vertASD} *wcurb/2]/wcurb	
WIND		s indicate opposite load.	
Longitudinal:	. 5	11 *** * * ***	
Compression _{SEISMIC} =	2395 lbs	=[FpmaxASD*H'cm+2*(1+0.14*S _{DS})*Wt'max*Lcurb]/Lcurb	
Tension _{SEISMIC} =	1767 lbs	=[FpmaxASD*H'cm-2*(0.6-0.14S _{DS})*Wt'min*Lcurb)]/Lcurb	
SEISMIC			

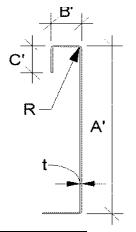
Compression _{SEISMIC} =	2395 lbs	=[FpmaxASD*H*cm+2*(1+0.14*S _{DS} J*Wt*max*Lcurb]/Lcurb
Tension _{SEISMIC} =	1767 lbs	=[FpmaxASD*H'cm-2*(0.6-0.14S _{DS})*Wt'min*Lcurb)]/Lcurb
Compression _{WIND} =	750 lbs	= $[F_{h ASD long}*H'cm+2*0.6*Wt'max*Lcurb-F_{vertASD}*Lcurb/2]/Lcurb$
Tension _{WIND} =	759 lbs	=[F _{h ASD long} *H'cm-2*0.6*Wt'min*Lcurb+F _{vertASD} *Lcurb/2]/Lcurb

---> Negative values indicate opposite load.

Governing Reactions:

<u>Transverse:</u>	Comp _{MAX} =	2621	lbs	> Along long edge of curb.
(on long edge)	Tens _{MAX} =	1993	lbs	> Along long edge of curb.
Longitudinal:	Comp _{MAX} =	2395	lbs	> Along short edge of curb.
(on short edge)	Tens _{MAX} =	1767	lbs	> Along short edge of curb.

^{---&}gt; Negative values indicate opposite load.


6593 Riverdale St. San Diego, CA 92120 (619)727-4800

Page <u>5</u> of <u>7</u>

Calculate Section Properties of Curb

-cion	I TOPCI CCS C	// Oul D		
Α'=	25.000	in	a =	24.644 in = A'-(2r+t)
B'=	1.750	in	a'=	24.929 in = A'-t
C'=	0.000	in (0 if no lips)	b =	1.572 in = B'-[r+t/2+a(r+t/2)]
a =	0.000	(0 - no Lip; 1 w/ lip)	b'=	1.714 in = $B'-(t/2+at/2)$
R=	0.1069	(Inside bend radius)	c =	0.000 in = $a[C'-(r+t/2)]$
t =	0.0713	in	c'=	0.000 in = $a(C'-t/2)$
r'=	0.143	in = R+t/2	u =	$0.224 \text{ in } = \pi r/2$
x =	0.104	in (Distance between	centroid and we	eb centerline)
lx =	128.737	in	rx =	8.00 in
ly =	0.218	in	ry =	0.329 in
A =	2.01	in ²	rmin =	0.329 in
•				

Axial Compression

p. 0001011				
Pu =	1.246 k	(Max Axial Comp)	$\Omega_c =$	1.80
Pn/Ωc =	18.917 k	$(0.610)^2$		
Fe =	19.29 ksi	$P_n = F_n A \qquad \text{If } \lambda_c \le 1.5; \ F_n = \left(0.658^{\lambda_c^2}\right) F_n$	$y = F_y $	$_{\rm F}$ $_{-}$ $\pi^2 E$
λc =	1.61	$\frac{\ddot{\Omega}_c}{\Omega_c} = \frac{\ddot{\Omega}_c}{\Omega_c} \qquad If \ \lambda_c > 1.5; F_n = \frac{0.877}{\lambda^2} F_y$	$\kappa_c - \sqrt{\overline{F_e}}$	$r_e - \frac{1}{(kl/)^2}$
Fn =	16.91 ksi	$\lambda_c > 1.3, \lambda_n = \lambda_c^2 + \lambda_c^2$	•	(7r)
Ly =	50.50 in	Lateral unbraced length		

Compression Check = 0.K.

123

Check Web Crippling

 $k_v L_v / r_v =$

h =	25 in	Check li	mitc.	C = 4.00 →	
n = t =	0.0713 in	h/t =	350.63 ≤ 200	$C_R = 0.14$	(See table C3.4.1-2, fastened
N =	7.00	N/t =	98.18 ≤ 210	$C_N = 0.35$	to support, one flange, end
$\Omega_{\sf w}$ =	1.75	N/h =	$0.28 \le 2.0$	$C_h = 0.02$	loading)
$P_n =$	2.105 k	R/t =	$1.50 \le 9.0$	/ [
$P_n/\Omega_w =$	1.203 k		$P_n =$	$Ct^2F_v\sin(90)\left[1-C_R\right]^{\frac{R}{4}}$	$\left(\frac{R}{t}\right)\left(1+C_N\sqrt{\frac{N}{t}}\right)\left(1-C_h\sqrt{\frac{h}{t}}\right)$
Long side: $Pu_{Trans} =$	2.621 k web	stiffener REQ'D	# clips = 1	\setminus \bigvee^{t}	t = t = t = t
Short side: Pulong =	2.395 k web	stiffener REQ'D	# clips = 1		

Check Web Stiffener

***h/t > 200; use web stiffeners 16Ga x 1.5in x 7in (C-channel)

(assume k=0.8)

width of stiffener = 7.000 in ts = 0.0566 16 Gauge web of stiff. w = 6.717 in Rs = 0.0849 in ***Check w/ts
$$\leq$$
 1.28VE/Fys $\Omega_{\rm c}$ = 1.70 w/ts = 118.675 1.28V[E/Fys] = 31.091 --> w/ts over limit Use C3.7.2 $P_n = 0.7(P_{wc} + A_e F_y) \geq P_{wc}$ Pwc = 2.105 k Ae = 0.380 in Physical Physica

Corner Connections 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts

Tcrnmax =	803 lbs	lbs $Max(F_{pmaxASD}/4 - OR - Fh_{ASDtrans}/4 corner connections)$						
Vcrnmax =	1311 lbs		Max(Tens/2	-0R-	Comp/2 cor	ner	connection	ns per side)
	Bolt:	Tall =	2480	lbs	Va	ll =	1208	lbs
Threaded	Insert:	Tall =	2860	lbs	Va	ll =	1536	lbs
# of Bolts required for Tension = 0.3								

of Bolts required for Shear =

3.0 # of Bolts Used =

Check Combined Stress in Bolts & Inserts: 0.470 **O.K.**

Check 1/8" welded connection

$$\begin{array}{ll} \text{--- USE WELD} & \Omega = & 2.35 \\ \text{in} & P_n/_{\Omega} = \frac{1}{\Omega} 0.75 t L F_u \geq V_{req} & L_{req'd} = \frac{V_{req} \Omega}{0.75 t E_u} \end{array}$$

$$L_{req'd} = \frac{V_{req}\Omega}{0.75tE_c}$$

Curb Loads (copie	ed from upper rail ca	<u>lcs)</u>	Loads at each Isolato	<u>r </u>	CQA
Transverse:	$Comp_{MAX} = 2464$	lbs	Transverse loading:	Comp _{MAX} =	2463.6 lbs
(on long edge)	$Tens_{MAX} = 1908$	lbs	(on long edge)	Tens _{MAX} =	1908.4 lbs
	Shear _{MAX} = 2492	lbs	# isolators: 1	Shear _{MAX} =	623.0 lbs
Longitudinal:	$Comp_{MAX} = 2226$	lbs	Longitudinal loading:	Comp _{MAX} =	2226.4 lbs
(on short edge)	$Tens_{MAX} = 1671$	lbs	(on short edge)	Tens _{MAX} =	1671.2 lbs
	Shear _{MAX} = 2492	lbs	# isolators: 1	$Shear_{MAX} =$	623.0 lbs
compression force	on isolator: 2.464 k	≤ 3.176 k 0.K.		•	
Max uplift	on isolator: 1.908 k	≤ 3.176 k <u>0.K.</u>	<u>, </u>	6.0 in	<u>, </u>
Max shear	on isolator: 0.623 k	≤ 1.163 k <u>0.K.</u>	2.0 in		$\overline{}$
Forces on bottom	bolts:		2.0 111		\cup
d _b =	0.5 in				
base curb, t =	0.0713 in			7.0 in	ΑT
Tension =	0.954 k/bolt				t ₂
Shear =	0.312 k/bolt				
Shear on base cur		$\Omega = 2.00$	(Appendix A, Section	E3.1 AISI)	t ₁
	$Pn/\Omega = 4.635 k$	e = 1.0	in		الباا .
	Shear O.K.				
Net section ruptur		$\Omega = 2.22$	(Appendix A, Section	E3.2 AISI)	
	$Pn/\Omega = 5.909 \text{ k}$				
	N.S.R. O.K.		$/s)F_u \le F_u = 55.250$		
Bolt Bearing Stren	$\frac{\text{gth:}}{r} P_n = Cm_f dt F_u$		(Section E3.3.1 AISI)		
	$Pn/\Omega = 2.781 \text{ k}$	·			
	Bearing O.K.	C = 3.00	mf = 1.00		
Shear and tension		(Appendix A, Section		. 2	
Tension	$P_{nt} = A_b F_{nt}$	Fnt = 45.0 ks	-	in ²	
		Bolt tension O.K.	$\Omega t = 2.25$		
Shear	$P_{nv} = A_b F_{nv}$	Fnv = 27.0 ks	i Ωv = 2.40 ***(Table E3.4-1, A)***	
Combined Shear a	$Pnv/\Omega = 2.209 \text{ k}$	Bott snear U.K.	(Table E3.4-1, F	(151)	-
		ft = 9.72	ksi fv =	1.59	∳ T ksi Ο.K.
$F'_{nt} = 1$	$1.3F_{nt} - \frac{1.3F_{nt}}{F_{nt}} f_v \le F_{nt}$	ft = 9.72 F'nt = 45.00	ksi $Fnv/\Omega =$		ksi O.N.
	$P'_{nt} = A_b F'_{nt}$		Combined Not Applica		
Connection of Curl	b to Supporting Struc				
Roof Loading	SEISMIC: (0.6-0.14)		WIND: 0.6D + W		
<u>Transverse:</u>	Uplift _{MAX}		Shear _{MAX} =	1607	lbs
mpression _{SFISMIC} =	5054 lbs		+Hbase curb)+(1+0.14S _D		 _{ner+hase} *wcurb/2]/wcu
, 32,34110		=[FpmaxASD*(H'cm			

Connection of Curr	to Supporting Struct	<u>ure</u>		
Roof Loading	SEISMIC: (0.6-0.14S	_{DS})D + 0.7E	WIND: 0.6D + W	
<u>Transverse:</u>	Uplift _{MAX} =	4338 lbs	Shear _{MAX} =	1607 lbs
Compression _{SEISMIC} =	5054 lbs	=[FpmaxASD*(H'cm+l	Hbase curb)+(1+0.14S _{DS})*\	NGT _{unit+upper+base} *wcurb/2]/wcurb
Tension _{SEISMIC} =	4338 lbs	=[FpmaxASD*(H'cm+l	Hbase curb)-(0.6-0.14S _{DS})	*WGT _{unit+upper+base} *wcurb/2]/wcurb
Compression _{WIND} =	1559 lbs	=[F _{h ASD trans} *(H'cm+Hb	pase curb)+0.6*WGT _{unit+upp}	_{er+base} *wcurb/2-F _{vert ASD} *wcurb/2]/wcurb
Tension _{WIND} =	1458 lbs	=[F _{h ASD trans} *(H'cm+Hb	pase curb)-0.6*WGT _{unit+upp}	_{er+base} *wcurb/2+F _{vertASD} *wcurb/2]/wcurb
<u>Longitudinal:</u>	Uplift _{MAX} =	: 3852 lbs	Shear _{MAX} =	1607 lbs
Compression _{SEISMIC} =	4568 lbs	=[FpmaxASD*(H'cm+l	Hbase curb)+(1+0.14S _{DS})*\	NGT _{unit+upper+base} *Lcurb/2]/Lcurb
Tension _{SEISMIC} =	3852 lbs	=[FpmaxASD*(H'cm+l	Hbase curb)- $(0.6-0.14S_{DS})$	*WGT _{unit+upper+base} *Lcurb/2]/Lcurb
Compression _{WIND} =	1251 lbs	=[F _{h ASD long} *(H'cm+Hb	ase curb)+0.6*WGT _{unit+uppe}	_{r+base} *Lcurb/2-F _{vert ASD} *Lcurb/2]/Lcurb
Tension _{WIND} =	1150 lbs	=[F _{h ASD long} *(H'cm+Hb	ase curb)-0.6*WGT _{unit+uppe}	_{r+base} *Lcurb/2+F _{vertASD} *Lcurb/2]/Lcurb
Wood Attachmen	t: 1/4"φ x 4.	5" Simpson SDS screws	w/ 2.75" threaded emt (S	Gmin = 0.43)
	Tall _{metal} =	997 lbs	Vall _{metal} = 1097 lbs	5
<u>Transverse:</u>	Tall _{wood} =	760 lbs	Vall _{wood} = 672 lbs	5
# of Scr	ews Req'd for Uplift =	5.71	COMBINED LOADING:	0.986 O.K.

Req'd Min Spacing =

7.08 in o.c.

Use 7 - 1/4" \$\phi\$ x 4.5" Simpson SDS screws @ 7.1 in o.c. along long side of curb w/ 2.75" threaded embed

2.39

of Screws Req'd for Shear =

Total # of screws required =

Min Bolts Req'd Shear =

8.25

Try using

spaced at

Longitudinal:

of Screws Req'd for Uplift = 5.07 COMBINED LOADING: 0.895 O.K. 6.17 in o.c. # of Screws Reg'd for Shear = 2.39 Screw Spacing = Total # of screws required = 7

Use 7 - 1/4"φ x 4.5" Simpson SDS screws @ 6.2 in o.c. along short side of curb w/ 2.75" threaded embed Steel Deck Attachment: 1/2" ϕ A307 Bolts to steel angle below deck 3927 lbs 2209 lbs Tall_{bolt} = Vallbolt = Transverse: 2086 lbs 2192 lbs $Tall_{metal} =$ Vall_{metal} = # of Bolts Req'd for Uplift = 2.08 COMBINED LOADING: 0.840 O.K. # of Bolts Req'd for Shear = 19.25 in o.c. 0.73 Bolt Spacing = Total # of bolts required = 3 Use 3 - 1/2" φ A307 Bolts to steel angle below deck @ 19.3 in o.c. along long side of curb Longitudinal: # of Bolts Reg'd for Uplift = 1.85 COMBINED LOADING: 0.762 O.K. # of Bolts Reg'd for Shear = 0.73 Bolt Spacing = 33.00 in o.c. Total # of bolts required = 2 Use 2 - 1/2" φ A307 Bolts to steel angle below deck @ 33 in o.c. along short side of curb **For Concrete anchorage:** SEISMIC $(0.6-0.14S_{DS})D + 0.7\Omega_{o}E$ Concrete Attachment: 3/4" ϕ thrd'd rods in Hilti Hit-HY 200 epoxy w/ 4" embed $Vall_{LRFD} =$ $Tall_{LRFD} =$ 1957 lbs 4540 lbs $\propto = (1 + 0.2SDS)D + 2.5E = 1.708$ $Vall_{ASD} = Vall_{LRFD}/\alpha =$ $Tall_{ASD} = Tall_{LRFD}/\alpha =$ 1146 lbs 2658 lbs (D = 0.758, E = 0.242) $\overline{\mathsf{Up}}\mathsf{lift}_{\mathsf{MAX}} =$ 8802 lbs 3214 lbs **Transverse:** $Shear_{MAX} =$ =[Ωo*FpmaxASD*(H'cm+Hbase curb)+(1+0.14S_{DS})*WGT_{unit+curb+base}*wcurb/2]/wcurb Compression_{SEISMIC} = 9518 lbs =[Ωo*FpmaxASD*(H'cm+Hbase curb)-(0.6-0.14S_{DS})*WGT_{unit+curb+base}*wcurb/2]/wcurb Tension_{SEISMIC} = 8802 lbs =Ωo*FpmaxASD/2 $Shear_{SEISMIC} =$ 3214 lbs Tapplied = Min Bolts Req'd Uplift = 7.68 spacing = 5.50 in o.c. 1257.4 lbs Vapplied = Min Bolts Req'd Shear = 1.21 spacing = 38.50 in o.c. 267.8 lbs $\frac{V_{apllied}}{\leq 1.2}$ Try using bolts $T_{applied}$ COMBINED LOADING = = 1.206.42 $V_{allow,ASD}$ spaced at in o.c. $T_{allow,ASD}$ Use 7 - 3/4" φ thrd'd rods in Hilti Hit-HY 200 epoxy @ 6.4 in o.c. max. along long side of curb w/ 4" embed Longitudinal: $Uplift_{MAX} =$ 7830 lbs $Shear_{MAX} =$ 3214 lbs $Compression_{SEISMIC} =$ = $[\Omega o*FpmaxASD*(H'cm+Hbase curb)+(1+0.14S_{DS})*WGT_{unit+curb+base}*Lcurb/2]/Lcurb$ 8546 lbs 7830 lbs = $[\Omega o*FpmaxASD*(H'cm+Hbase curb)-(0.6-0.14S_{DS})*WGT_{unit+curb+base}*Lcurb/2]/Lcurb$ Tension_{SEISMIC} = =Ωo*FpmaxASD/2 $Shear_{SEISMIC} =$ 3214 lbs Min Bolts Req'd Uplift = 6.83 spacing = 5.50 in o.c. Tapplied = 1118.5 lbs

33.00 in o.c.

 $T_{applied}$

Vapplied =

 $V_{apllied}$

267.8 lbs

= 1.08

COMBINED LOADING $T_{allow,ASD}$ $V_{allow,ASD}$ Use 5 - 3/4" ϕ thrd'd rods in Hilti Hit-HY 200 epoxy @ 8.3 in o.c. max. along short side of curb w/ 4" embed

1.21 spacing =

bolts

in o.c.

CURB DESIGN SU	MMARY:	CBISC-02	CBISCLXL		Unit:	ALL YORK P***B CABINETS		
UPPER CURB RAIL	THICKNESS:	0.0713 in	14 Gauge					
UNIT CLIP	THICKNESS:	0.0713 in	14 Gauge					
# OF CLIPS (I	# OF CLIPS (LONG SIDE) - 1 clips with 4 - #10 SMS screws each clip							
WEE	STIFFENER:	16Ga x 1-3/	′16in x 7in (C-	channel) stif	fener at eac	h clip		
# OF CLIPS (SI	HORT SIDE) -	1 clips with	4 - #10 SMS	screws each	clip			
WEE	STIFFENER:	16Ga x 1-3/	′16in x 7in (C-	channel) stif	fener at eac	h clip		
VIBRATION ISO	VIBRATION ISOLATOR TYPE: CQA Top stud diameter: 3/8 (1) - CQA Isolators long side					(1) - CQA Isolators long side		
Anchor be	Anchor bolt diameter: 1/2 Anchor hole diamter: 9/16 (1) - CQA Isolators short side							
BASE CURB	BASE CURB THICKNESS: 0.0713 in 14 Gauge ***Must weld top of CQA***							
WE	STIFFENER:	16Ga x 1.5i	n x 7in (C-cha	nnel) stiffen	er at each cl	ip on base curb		
CORNER CO	ONNECTION:	Use minimu	ım 3 - 1/4" ф	SAE Grade 8	bolts w/ 1/	4-20-UNC Threaded inserts		
CURB		WOOD		STE	<u>EL</u>	<u>CONCRETE</u>		
ANCHORAGE	1/4"¢ x 4.5'	' Simpson SE	OS screws w/	1/2" φ A30	7 Bolts to	3/4" φ thrd'd rods in Hilti Hit-HY		
ANCHORAGE	2.75" thre	aded embed	d (SGmin =	steel angle	below deck	200 epoxy w/ 4" embed		
LONG DIRECTION	7	@ 7.08 in o.	.c.	3 @ 19.2	25 in o.c.	7 @ 6.42 in o.c.		
SHORT DIRECTION	7	@ 6.17 in o.	.c.	2 @ 33	in o.c.	5 @ 8.25 in o.c.		