

6593 Riverdale St. San Diego, CA 92120 619-727-4800

Structural Calculations

for

CBISC-04 Series

CBISCPRD3715** SERIES

Prepared for:

PROVENT / RRS

3847 Wabash Drive Mira Loma, CA 91725

Date: July 13, 2022 Project Number: PV2203

· ProVent	3847 WABASH DRIVE MIRA LOMA, CA 91725	SUBMITTED TO: COMPANY:	FORM NO: CB-61		
	PHONE (951) 685-1101	EQUIPMENT:	DATE:	REV :	DRAWN BY:
	FAX (619) 872-9799	NOTES:	02/08/18	1	ALL

		STEE			ACCUMES.		Meets seismic	ROOF ANCHORAGE DETA	٩L
					CONC SLAB		requirements for the	CBISC Series	
			NTER UN GURB FLANGE. NITITY OF EVENI V SDAC				following codes:	LXS	
			ACHED TO STEEL ANGL	E BELOW DECK	6" MIN THICKNESS		CBC 2019	LXL	
	WELDED CU		EACH CONNECTION POIN	NT.	NORMAL WEIGHT CONCRETE		IBC 2018	SUN3672	
					OR SAND LIGHT WEIGHT			PRD3715	
		Ν /	-SHEATHING WHE	ERE OCCURS				PRS	
								PRL	
				– METAL DECK	CONCRETE ATTACHMENT			SLU180	
								SLM1830	
								SAV1518	
						— CENTER ON CUP	RB FLANGE.	SAV2025	
			\mathbf{k}			SEE TABLE FOR	QUANTITY OF EVENLY	SAV28	
			STEEL ANGL	E SUPPORT					
			BY OTHERS						
		NO. OF ANCHORAG	E BOLTS REQUIRED						
[CURB	LONG SIDE	SHORT SIDE			e	NO. OF ANCHORAG	E BOLTS REQUIRED	
Γ	LXS	3 @ 19.25" O.C.	2 @ 23" O.C.		<u> </u>	CURB	LONG SIDE	SHORT SIDE	
[LXL	3 @ 19.25" O.C.	2 @ 33" O.C.			LXS	7 @ 6.42" O.C.	4 @ 7.67" O.C.	
[SUN3672	4 @ 21" O.C.	2 @ 27.25" O.C.			LXL	7 @ 6.42" O.C.	5 @ 8.25" O.C.	
[PRD3715	6 @ 14.28" O.C.	3 @ 20.75" O.C.			SUN3672	9 @ 7.88" O.C.	4 @ 9.08" O.C.	
[PRS	4 @ 20.46" O.C.	2 @ 31.13" O.C.			PRD3715	14 @ 5.49" O.C.	9 @ 5.19" O.C.	
Γ	PRL	3 @ 36.13" O.C.	2 @ 44" O.C.			PRS	10 @ 6.82" O.C.	5 @ 7.78" O.C.	
Γ	SLU180	4 @ 35.08" O.C.	3 @ 37" O.C.			PRL	11 @ 7.23" O.C.	6 @ 8.8" O.C.	
- [SLM1830	5 @ 29.06" O.C	4 @ 24.67" O.C.			SLU180	12 @ 9.57" O.C.	8 @ 10.57" O.C.	
Ī	SAV1518	4 @ 37.38" O.C	3 @ 35.56" O.C.			SLM1830	18 @ 6.84" O.C.	11 @7.4" O.C.	
[SAV2025	4 @ 42.04" O.C	3 @ 35.56" O.C.			SAV1518	12 @ 10.19" O.C.	6 @ 14.23" O.C.	
Ī	SAV28	5 @ 35.63" O.C	3 @ 35.56" O.C.			SAV2025	14 @ 14.97" O.C.	6 @ 14.23" O.C.	
-				* SIX INCHES FROM F	ACH CORNER EVENLY SPACED	SAV28	14 @ 10.96" O.C.	6 @ 14.23" O.C.	
				** CENTERED.					
				1		1			
	<u>wo</u>	OD ATTACHMENT							

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 1/4" Ø x 4.5" SIMPSON SDS SCREWS W/ 2.75" THREADED EMBED (SGMIN=0.50)

	NO. OF ANCHORAGE SCREWS REQUIR					
CURB	LONG SIDE	SHORT SIDE				
LXS	7 @ 7.08" O.C.	5 @ 6.75" O.C.				
LXL	7 @ 7.08" O.C.	7 @ 6.17" O.C.				
SUN3672	9 @ 8.38" O.C.	5 @ 7.81" O.C.				
PRD3715	15 @ 5.38" O.C.	10 @ 5.06" O.C.				
PRS	10 @ 7.26" O.C.	6 @ 7.03" O.C.				
PRL	12 @ 6.93" O.C.	8 @ 6.86" O.C.				
SLU180	14 @ 8.4" O.C.	10 @ 8.67" O.C.				
SLM1830	19 @ 6.68" O.C.	13 @ 6.5" O.C.				
SAV1518	13 @ 9.68" O.C.	9 @ 9.39" O.C.				
SAV2025	15 @ 9.29" O.C.	9 @ 9 39" O.C.				
SAV28	16 @ 9.77" O.C.	9 @ 9.39" O.C.				

FOUR INCHES FROM EACH CORNER EVENLY SPACED

3847 WABASH DRIVE MIRA LOMA, CA 91752 PHONE (951) 685-1101

PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITTED TO:	FORM NO:					
COMPANY:	CB-62					
EQUIPMENT:	DATE:	REV:	DRAWN BY:			
	6/30/2022	2	FMM			

MOUR GROUP

g

	Connectio	on Unit to	Curb Clip		#10	SMS scre	w	Ω =	3.0			-
		t1 =	0.0713	in (clip thi	ckness)	t2/t1 =	: 1.0	Fu1 =	65	ksi		
		t2 =	0.0713	in (unit ba	se rail thickr	ness)		Fu2 =	65	ksi		
		d =	0.190	in (screw o	diameter)		dw =	0.375	in (nom. wa	asher diam	neter)	
	For t2/t1	<u>≤ 1.0:</u>		Pns =	2266 #	Fc	or t2/t1 ≥ 2.5:				↓ T	
	Shear:	$P_{ns} =$	$4.2F_{u2} t_2^3 d$	2.27	k		Pns =	2377 #		t ₂	~	
	Tension:	P_{ns}	$= 2.7t_1 dF_{u1}$	2.38	k	$P_{ns} =$	$= 2.7t_1 dF_{u1}$	2.38	k			
		P_{ns}	$= 2.7t_2 dF_{u2}$	2.38	k	$P_{ns} =$	$= 2.7t_2 dF_{u2}$	2.38	k	t1	. I I	
		$Pns/\Omega =$	755 #							•1		
		Pss/Ω =	540 #	<- Control	S	р	h = 0.85t dI	7)				
		Pnot =	0.748	k (screw p	ull-out strer	ngth)	$t_c = \min(t_1, t_2)$	(u_2)				4
		Pnov =	2.607	k (screw p	ull-over stre	ength) P _n	$v_{ov} = 1.5t_1 d_w l$	F _{u1}				
		$Pts/\Omega =$	249 #	<- Control	S							
		$Pts/\Omega =$	820 #		(full tens	sile screw	capacity)				1	
		-	Shear (k)	# clips	V _{clip} (k)	V _{allow} (lb)	# screws	spacing				
	Lo	<u>ng side:</u>	3.117	3	1.04	540 #	4	2.00 in				
	She	ort side:	3.117	2	1.56	540 #	4	2.00 in				
		clip	width (in) =	7.00	cl	ip height =	2.5	in				
		mi	n spacing =	0.57 in	edge	distance =	.0.5	in (min. 1.5	5d)		·····	
	<u>Check Blo</u>	ock shea	r rupture:	0.K.	thinr	nest part =	0.0713	AISI BSR a	pplies	2	.,	
		⊢y =	50	ksi	Ω =	2.22	bolt/screw o	connection		. 2	- 11	
		Agv =	0.463	in ⁻	Anv =	0.416		Ant =	0.082	in · · ·	` -	$-\dot{\mathbf{v}}$
		$Rn/\Omega =$	8.674	k	$R_n = 0.6F_y$	$A_{gv} + F_u A$	$nt \leq 0.6F_uA_{nt}$	$F_u A_{nt}$			<u> </u>	т
		. , .	BSR U.K.	L ,			(AISI Sec	t. E5.3)	-		Ţ	1
	Curb Load	is (copi	ed from abo	<u>vej</u>	lha	1	Loads at ea	ch isolator	Iype:		1	٦
	(an lane	se:	Comp _{MAX} =	2109	lbs		Transverse (av. lang	toading:	Comp _{MAX} =	2004.0	lbs	
	(on long	edge)	Tens _{MAX} =	3667	lDS		(on long	edge)	Tens _{MAX} =	1833.3	lDS	
	1	1	Snear _{MAX} =	64/5	lbs		# Isolators:	Z	Snear _{MAX} =	809.3	lDS	
	Longituai	<u>nal:</u>	Comp _{MAX} =	3661	lbs		Longitudina	<u>l loading:</u>	Comp _{MAX} =	1830.5	lDS	
	(on shor	t edge)	Tens _{MAX} =	2219	lbs		(on shor	t edge)	lens _{MAX} =	1109.3	lbs	
M			Snear _{MAX} =	64/5 2 FF / Iv	LDS	0.4	# Isolators:	Z	Snear _{MAX} =	809.3	lDS	
Max	.ompressi			2.004 K	S 3.170 K	<u>0.K.</u>			(0:5			1
	M: M:	ax upull	on isolator:	1.033 K	< 1 1 4 3 k	<u>0.K.</u> 0 K			0.0 111		╉	
	Forces on	ton holt		0.007 K	\$ 1.100 K	<u>0.n.</u>	2.0 in 🔿				0	
	Te	ension =	<u>.</u> 1.833	k	d. =	0.375	in					
		Shear =	0.809	k	ner rail t =	0.0713	in		7 0 in			
	Shear on	curb rail	· P. =	teE.	0 =	2 00	(Annendix	A Section	F3 1 AISI)			
	Shear	0.K.	$Pn/\Omega =$	4.635 k	e =	1.0	in	.,				
	Net section	on ruptur	<u>re:</u> $P_n =$	$A_n F_t$	Ω =	2.22	(Appendix	A, Section	E3.2 AISI)			
			$Pn/\Omega =$	4.989 k	An =	0.116	in					
			N.S.	R. 0.K.	$F_t = 0$	(0.1 + 3d)	$(s)F_u \leq F_u =$	43.063	ksi			
	<u>Bolt Bear</u>	ing Strer	<u>ngth:</u> $P_n =$	Cm _f dtF _u	Ω =	2.50	(Section E	3.3.1 AISI)				
			$Pn/\Omega =$	2.086 k	d/t =	5.26						
			Bearin	ng 0.K.	C =	3.00	mt =	1.00				
	Shear and	<u>tension</u>	<u>in bolt:</u>	4 F	lAppendix	A, Section	n E3.4 AISIJ	٨	0.1107	. 2		
		Tension	$P_{nt} =$	Abr _{nt}		40.5	KSI	A _b =	0.1104	IN ²	(4 4 6 1)	
			$Pnt/\Omega = D$	1.988 K	Bolt tensior	1 U.K.		$\Omega t =$	2.25	(Table E3.	.4-1, AISIJ	
		Shear	$P_{nv} =$	A _b F _{nv}	Env =	24.0	ksi	Ωv =	2.40	(Table E3.	.4-1, AISIJ	
			$Pnv/\Omega =$	1.104 k	Bolt shear (D.K.						
	Combined	i Shear a	nd tension i	<u>n bolt:</u>	<i>c</i> ,	1/ /0	lua:	£ .	7 00	lua:	0.1/	
		$F'_{nt} = 1$	$1.3F_{nt} - \frac{3Hn}{F}$	$\frac{t}{f_v} \leq F_{nt}$	F'nt -	10.00	KSI kci	$IV = E_{DV}/Q =$	7.33 10.00	KSI kci	U.K.	
			гпv D'	$= A \cdot F'$	P'nt/0 -	1 128 k	No Good - I	se Welde	10.00	N91		
	Lonaitudi	nal weld	Ioading.	- 11b1 nt	1 5.	<u>20</u> K	ΛΟ ΟΟΟΟ - Ο (0.017 \		0 -	2 55	i	
	If /t = ?	25. 1 /t -	21 በ/	L - t -	יי 1.3 <u>7</u> ח חקו ח	$\sum_{n=1}^{\infty} n/\Omega = \frac{1}{\Omega} ($	$1 - \frac{0.01L}{t} L$	$t_2 F_{u2} \ge V_{re}$	- 22 = Pn/O	2.55	{	
	Transvers	se weld l	pading:	t =	0.0713	22 (Pr /		77	Ω =	2.35	j	
		L =	1	Fu =	65	ksi ⁻ "/	$\Omega = \frac{1}{\Omega} t L F_u \ge \frac{1}{\Omega} t L F_u = \frac{1}{\Omega$	I _{req}	Pn/Ω =	1.972	? k	

	Client:	ProVent	PV2203		Base	e curb			
	Project:	CBISC-04	Iso Curb	CBISCPRD	3715				
	Únit:	ZT.ZR.ZJ 03	37-150: ZF	.ZH.ZJ.ZR.XP	.DH. DM.DF.DR	.BP 078	-150		
			,					A	
	Base Curb Inform	ation						Fy	
	Hbase curb =	25	lin	(Height of b	ase curb)		{ <u>E</u> O	EC	
	l curb =	83 375	in	(Length of L	hase curbl			Wusit	
	wourb -	53.5	in	(Width of h		1			
	WGTbase -	3/3	lbc	(Woight of k			1		
# c		243	tus # Coringe	(Welgilt of t	2 2	{	Fe	<i>WAX</i>	
# J		Z	# Springs	s short side =	Z	5			10
		170/	U	() ()	1	I E	Wtmp	WGTUNIT	Wimaxi
		1/36	lDS	(weight of t		臣		V	
	vvt max =	538	lDS	(wtmax+1/2	**wGTupperJ		<u>; </u>		
	vvt min =	386	lbs	(Wtmin+1/4	*WGTupperJJ		LJ		k
	Hunit =	50.75	in	(Height of u	init above curb	- el el a	. <u>R</u>		X
	H'cm =	35.375	in	(Hcm+10"(ເ	ipper+spring]]	핏[포 물	. '	-	
	Lunit =	89	in	(Length of ı	unit)				
	Wunit =	59	in	(Width of ur	nit)	÷	1		<u> </u>
W	GTunit+upper+base =	2146	lbs	(Total weigl	ht)	-	≼ v		- √-v
	Seismic Loading -	2018 IBC/2	019 CBC	_			Tree T		Caur
	Ss =	2.85		(Worst case	e for majority of	Califor	nia)		
	Fa =	1.20		(Default Sit	e Class D - Tab	le 11.4-	1 ASCE 7-16]		
	= a	1.50		(Importance	e Factor Catego	rv III Bu	uildina)		
	Sms =	3.420		(Fa*Ss)	J	, ap =	2.5		
	Sds =	2 280		(2/3*Sms)		Rn =	2.0		
	Enmax -	5 130	W/n	(0 (*ap*Sd	*In)*\//n*3/Pn	-1 6*C	dc*ln*\Wn		
	EnmovASD -	4475	lbc	(0.4 ap 503) , h) wh outh	-1.0 5 En	max ASD =	7704 lbc	
	rpinaxASD =	(upit i uppo	us r rail)	(0.7 Fpillax	.)	гр			
	Windlooding 20						(unit + uppe	er rait + base curb)	
		10 100/2019		([the labe Trans		T-61-0/10		
	KZ =	1.13			of neight, Expo	sure C	- Table 26.10	-1 AUSE /-16J	
	Kzt =	1.00		(Max. assur	ned topographi	c factor			
	Kd =	0.85		Directiona	lity factor Table	26.6-1	ASCE 7-16J		
	Ke =	1.00		(Ground Ele	evation Factor T	able 26	.9-1 ASCE 7-	16)	
	V =	110		(Wind veloc	ity, mph for Oco	upancy	Cat III-IV blo	lgs Exp. Cat C, Fig 2	6.5-1D - ASCE7-16J
	GCr _(horiz) =	1.9		(Refer Sect	29.4.1 ASCE 7-	16)			
	GCr _(vert) =	1.5		(Refer Sect	29.4.1 ASCE 7-	16)			
	07	29.8	nsf	= 0 00256*k	<pre></pre>	/ ² (Fa 3	26 10-1 ASCE	7-16]	
	FLACE =	1798	lhs	= 0.6*az*G(Cr*Lunit*(Hunit	+Hhase	curb+10") (Fa 29 4-21	
	FLACE	1192	lhs	= 0.6*qz*G(r*Wunit*(Huni	+Hhase	curb+10"	-4. 27. 4 2)	
	F	976	lhe	- 0.6 qz 60	r*Lunit*Wunit		9 (_3)		
	vert ASD -	//0	105	= 0.0 qz 00		נבץ. 2	7.4-5)		
		_							
	Base Curb Loading	g_							
~	<u>Iransverse:</u>	F (00			D*U! 0*(4.0	1/0	*\	11/ 1	
Cor	mpression _{SEISMIC} =	5699	lbs	=[FpmaxAS	D*H cm+2*(1+U	.145 _{DS} J	*Wt max*wci	urb]/wcurb	
_	lension _{SEISMIC} =	4065	lbs	=[FpmaxAS	D*H cm-2*(0.6-	0.145 _{DS}	_s J*Wt`min*wo	curb]]/wcurb	
С	ompression _{WIND} =	1345	lbs	=[F _{h ASD trans}	*H'cm+2*0.6*W	't'max*\	wcurb-F _{vert AS}	_{,D} *wcurb/2]/wcurb	
	Tension _{WIND} =	1214	lbs	=[F _{h ASD trans}	*H'cm-2*0.6*W	't'min*v	vcurb+F _{vertASI}	³ *wcurb/2]/wcurb	
		> Negati	ve values	indicate oppo	site load.				
	<u>Longitudinal:</u>								
Cor	mpression _{SEISMIC} =	4165	lbs	=[FpmaxAS	D*H'cm+2*(1+0	.14*S _{DS}	,)*Wt'max*Lo	urb]/Lcurb	
	Tension _{SEISMIC} =	2531	lbs	=[FpmaxAS	D*H'cm-2*(0.6-	0.14S _{DS}	_s)*Wt'min*Lc	urb)]/Lcurb	
С	ompression _{WIND} =	662	lbs	=[F _{h ASD long} *	H'cm+2*0.6*W	'max*L	.curb-F _{vertASD}	*Lcurb/2]/Lcurb	
	Tension _{WIND} =	531	lbs	=[FhASDlopg*	H'cm-2*0.6*Wt	'min*L	curb+F _{vertAsn} *	*Lcurb/2]/Lcurb	
		> Neaati	ve values	indicate oppo	site load.				
	Governing Reactio	ns:							
Γ	Transverse:	Comp _{MAX} =	5699	lbs	> Along long e	dge of c	urb.		
	(on long edge)	Tene	4045	lhs			urb		
ŀ	(on long cuge)	Comm	4000	lba			ourb.		
	Longitudinal:	comp _{MAX} =	4165	LDS	> Along short	eage of	curb.		
	(on short edge)	Tens _{MAY} =	2531	lbs	> Along short	edge of	curb.		

---> Negative values indicate opposite load.

MOUR GROUP ENGINEERING + DESIGN

g

Curb Loads (copie	ed from upper rail cal	<u>cs]</u>		Loads at eac	h Isolato	rType:	CQA		_
Transverse:	Comp _{MAX} = 5109	lbs	Ī	Transverse lo	bading:	Comp _{MAX} =	2554.5	lbs	7
(on long edge)	$Tens_{MAX} = 3667$	lbs		(on long e	edge)	Tens _{MAX} =	1833.3	lbs	
	Shear _{MAX} = 6475	lbs		# isolators:	2	Shear =	809.3	lbs	
Longitudinal:	$Comp_{MAX} = 3661$	lbs		Longitudinal	loading:	Comp _{MAX} =	1830.5	lbs	_
(on short edge)	$Tens_{MAX} = 2219$	lbs		(on short	edge)	Tensmax =	1109.3	lbs	
(011 01101 2 2482)	Shear $= 6475$	lbs		# isolators:	2	Shearway =	809.3	lbs	
Max compression force	on isolator 2 554 k	≤ 3 176 k	ок			A MAX			
Max unlift (on isolator: 1833 k	≼ 3 176 k	0.K.	k		6 0 in		И	٦
Max shear o	on isolator: 0.809 k	≤ 1.163 k	0.K.			010 111		*	
Forces on bottom I	nolts		<u>vii u</u>	2.0 in 🔾				\bigcirc	
<u> </u>	0.5 in								
base curb. t =	0.0713 in					7.0 in		1 T	
Tension =	0.917 k/bolt						to.		
Shear =	0.405 k/bolt								
Shear on base curl	D: $P_n = teF_n$	Ω =	2.00	(Appendix A	. Sectior	E3.1 AISI)	t ₁		
	$Pn/\Omega = 4.635 k$	e =	1.0	in					
	Shear O.K.							관련	
Net section rupture	$e: P_n = A_n F_t$	Ω =	2.22	(Appendix A	, Sectior	E3.2 AISI)	. •		
	$Pn/\Omega = 5.909 k$	An =	0.107	in					
	N.S.R. 0.K.	$F_t =$	(0.1 + 3d)	$(s)F_u \leq F_u =$	55.250	ksi	•.	essa 🚺 👘	· .
Bolt Bearing Stren	<u>gth:</u> $P_n = Cm_f dtF_u$	Ω =	2.50	(Section E3.	.3.1 AISI)				
-	$Pn/\Omega = 2.781 k$	d/t =	7.01						
	Bearing O.K.	C =	3.00	mf =	1.00				
Shear and tension	in bolt:	(Appendix	A, Section	n E3.4 AISI)					
Tonsion	$P_{nt} = A_b F_{nt}$	Fnt =	45.0 ksi	$A_b =$	0.1963	in ²		····· ···[] •]	θu
Tension	Pnt/Ω = 3.927 k	Bolt tension	n 0.K.	Ωt =	2.25		ن ن و	ļ,	ي (۲۰۰۰ مار او او او
Shoar	$P_{nv} = A_b F_{nv}$	Fnv =	27.0 ksi	Ωv =	2.40			* 23 *.	a:
Silear	$Pnv/\Omega = 2.209 k$	Bolt shear	0.K.	***(Table	E3.4-1, A	\ISI)***	-		- V
Combined Shear a	nd tension in bolt:				_			ψT	
$F'_{nt} = 1$	$.3F_{nt} - \frac{\Omega F_{nt}}{\Gamma} f_v \le F_{nt}$	ft =	9.34	ksi	fv =	2.06	ksi	0.K.	
	F_{nv}	Fint =	45.00	ksi	$Fnv/\Omega =$	11.25	ksi		
Connection of Curt	$P_{nt} = A_b F_{nt}$	$P'nt/\Omega =$	3.927 K		ot Applica	able -> F nt :	= FNt		
Connection of Curr	SEISMIC. (0.4.0.1/S								
Transverse.		0205	lbc			2052	lbc	Т	
	0ptint _{MAX} =	· 0375		Jilhaaa aymh).(1	$1 \cdot 0.1/C$)*WCT	LDS *		
				Hbase curb)+(1+0.145 _D		oper+base 'WC	CULD/2]/W0	JUND
rension _{SEISMIC} =			*(LL' LL	Hbase curb)-((J.0-U.142	DSJ'WGI _{unit+}	upper+base V	v/[2/d1UOV	
Compression _{WIND} =	2184 LDS	=[F _{h ASD trans}	*(II' II	base curbJ+0.6	*WOT	+upper+base "Wo	CUFD/Z-F _{ve}	rt ASD "WCUI	
rension _{WIND} =	1873 LDS	=LF _{h ASD trans}		base curb)-0.6	· vvG I _{unit}	+upper+base 'Wo	urb/2+F _{ve}	rtASD WCUI	D/Z]/WCUID
		52/9		Sr	$hear_{MAX} =$	3803	LDS *! -		
Compression _{SEISMIC} =	6996 LDS	=[FpmaxAS		Hbase curb)+(1+0.145 _D		oper+base [™] LC	ULD/2]/LC	urb '
lension _{SEISMIC} =	5279 lbs	=[FpmaxAS	D*(H'cm+	Hbase curbJ-(l	J.6-U.145	DSJ*WGI _{unit+}	upper+base [*] L	_curb/2]/L	.curb
Compression _{WIND} =	1019 lbs	=[F _{h ASD long} ¹	"(H"cm+Hb	ase curbJ+U.6	*WGI _{unit+}	upper+base*LC	urb/2-F _{vert}	ASD*Lcurt)/2]/Lcurb
Tension _{WIND} =	707 lbs	=[F _{h ASD long}	*(H'cm+Ht	base curbJ-0.6	*WGT _{unit+}	upper+base*Lc	urb/2+F _{vert}	_{tASD} *Lcurb	0/2]/Lcurb
Wood Attachmen	t: 1/4"φx4.	5" Simpson S	SDS screw	/ w/ 2.75" thre	aded em	t (SGmin = 0	.43]		
	Tall _{metal} =	997	lbs	Vall _{metal} =	1097	lbs			
Transverse:	Tall _{wood} =	- 760	lbs	Vall _{wood} =	672	lbs			
# of Scr	ews Req'd for Uplift =	11.05		COMBINED I	OADING	0.966	0.K.		
# of Scr	ews Req'd for Shear =	5.73	1	Req'd Min S	spacing =	5.38	in o.c.		
Total #	# of screws required =	15	1						
<u>Use 15 - 1/4"ф x</u>	4.5" Simpson SDS screw	/s @ 5.4 in o.c	. along lon	g side of curb w	/ 2.75" th	readed embe	ed		

g MOUR GROUP ENGINEERING + DESIGN

	Longitudinal:		
	# of Screws Req'd for Uplift	= 6.95 COMBINED LOADING: 0.924 C).K.
	# of Screws Reg'd for Shear	= 5.73 Screw Spacing = 5.06 ii	1 0.C.
	Total # of screws required	= 10	
	Use 10 - 1/4"ф x 4.5" Simpson SDS screy	//s @ 5.1 in o.c. along short side of curb w/ 2.75" threaded embe	d
	Steel Deck Attachment: 1/2" φ A3		
	Tall _{bolt}	= 3927 lbs Vall _{bolt} = 2209 lbs	
	<u>Transverse:</u> Tall _{metal}	2086 lbs Vall _{metal} = 2192 lbs	
	# of Bolts Req'd for Uplift	= 4.02 COMBINED LOADING: 0.866 C).K.
	<pre># of Bolts Req'd for Shear</pre>	= <u>1.76</u> Bolt Spacing = <u>14.28</u> in	n o.c.
	Total # of bolts required	= 6	
	<u>Use 6 - 1/2" φ A307 Bolts to steel angle</u>	below deck @ 14.3 in o.c. along long side of curb	
	Longitudinal:		
	# of Bolts Req'd for Uplift	= 2.53 COMBINED LOADING: 0.617 C).K.
	# of Bolts Req'd for Shear	= 1.76 Bolt Spacing = 20.75 ii	1 O.C.
	Total # of bolts required	= 3	
	Use 3 - 1/2" ϕ A307 Bolts to steel angle	below deck @ 20.8 in o.c. along short side of curb	
	For Concrete anchorage: SEISMI	$U_0 = 2.0$	
	Concrete Attachment: 3/4 of th	a a rods in Hilli Hit-HY 200 epoxy W/ 4" embed	
	$Iall_{LRFD} = 195$	V = V = V = V = V = V = V = V = V = V =	-0.2SDS)D + 2.5E = 1.708
	$Iall_{ASD} = Iall_{LRFD}/\alpha = 114$	5 lbs Vall _{ASD} = Vall _{LRFD} / α = 2658 lbs (1	D = 0.758, E = 0.242)
~	Iransverse: Uplift _{MAX}	= 17092 lbs Shear _{MAX} = 7706 l	
Co	mpression _{SEISMIC} = 18809 lbs	= $[\Omega \circ FpmaxASD^*(H'cm+Hbase curb]+(1+0.14S_{DS})^*WGI_{unit}$	+curb+base*wcurb/2]/wcurb
	Tension _{SEISMIC} = 17092 lbs	= $[\Omega \circ FpmaxASD^*(H'cm+Hbase curb]-(0.6-0.14S_{DS})^*WGT_{ur}$	hit+curb+base [*] wcurb/2]/wcurb
	Shear _{SEISMIC} = 7706 lbs	$=\Omega o^* FpmaxASD/2$	
	Min Bolts Req'd Uplift = 14.9	2 spacing = 5.10 in o.c. Tapplied =	1220.8 lbs
ĺ	Min Bolts Req'd Shear = 2.9) spacing = 35.69 in o.c. Vapplied =	335.1 lbs
	Iry using 14 bolts	COMBINED LOADING = $\frac{I_{applied}}{T} + \frac{V_{apllied}}{V} \le 1.2$ =	1.19
	Spaced at 5.49 In o.c.	$I_{allow,ASD} = V_{allow,ASD}$	ad
	<u>Use 14 - 3/4 φ tilita a roas in Hitt Hit-H</u>	10940 lbc Shoor - 7704 ll	eu bc
<u>ر</u>	$\frac{12576 \text{ bs}}{12576 \text{ bs}}$	$= \frac{10000 \text{ (DS}}{10000 \text{ (DS}} = \frac{10000 \text{ (DS}} = \frac{10000 \text{ (DS}} = \frac{10000 \text{ (DS}} = 10000 \text{ (D$	*L curb/2]/L curb
00	Tansian - 10940 lbs	$= [\Omega \circ F \text{pmaxASD} (\Pi \circ \Pi + \Pi \text{base curb}) + (\Pi + \Pi + 3 \text{bs}) \text{ Wor}_{\text{unit}}$	+curb+base LCUID/2]/LCUID
	$\frac{10000 \text{ LDS}}{2000 \text{ LDS}}$	= $[\Omega 0]$ =	hit+curb+base LCUID/2J/LCUID
	Silear _{SEISMIC} = //U6 LDS	= 10° rpindxASU/2	007 2 lbc
	Min Bolts Req d Uplift = 9.4	o spacing = 4.61 in o.c. lapplied =	70/.2 LDS
	Tryucing 9 bolts	$T_{\text{result}} = \frac{1}{20.75 \text{ m} 0.0.5} \text{ Varplied} = \frac{1}{7}$	JJJ.1 LDS
	snaced at 519 in o c	COMBINED LOADING = $\frac{r_{appliea}}{T_{u}} + \frac{r_{apulea}}{V_{u}} \le 1.2$ =	0.99
	Spacea at 0.17 1110.0.	allow,ASD Vallow,ASD	

Use 9 - 3/4" ϕ thrd'd rods in Hilti Hit-HY 200 epoxy @ 5.2 in o.c. max. along short side of curb w/ 4" embed

CURB DESIGN SU	MMARY:	CBISC-04	CBISCPRD37	15	Unit:	ZT,ZR,ZJ 037-150;				
UPPER CURB RAIL	THICKNESS:	0.0713 in	14 Gauge			ZF,ZH,ZJ,ZR,XP,DH, DM,DF,DR,BP				
UNIT CLIP	THICKNESS:	0.0713 in	14 Gauge							
# OF CLIPS (I	# OF CLIPS (LONG SIDE) - 3 clips with 4 - #10 SMS screws each clip									
WE	WEB STIFFENER: 16Ga x 1-3/16in x 7in (C-channel) stiffener at each clip									
# OF CLIPS (SI	HORT SIDE) -	2 clips with	4 - #10 SMS	screws each	clip					
WE	B STIFFENER:	NOT REQU	IRED							
VIBRATION ISOLATOR TYPE: CQA Top stud diameter: 3/8 (2) - CQA Isolators long side										
Anchor be	olt diameter:	1/2	Anchor ho	le diamter:	9/16	(2) - CQA Isolators short side				
BASE CURB	THICKNESS:	0.0713 in	14 Gauge			***Must weld top of CQA***				
WE	B STIFFENER:	16Ga x 1.5i	n x 7in (C-cha	nnel) stiffene	er at each c	ip on base curb				
CORNER CO	ONNECTION:	Use minim	um 4 - 1/4" φ	SAE Grade 8	bolts w/ 1/	4-20-UNC Threaded inserts				
CLIPR		WOOD		STEEL		<u>CONCRETE</u>				
	1/4"¢ x 4.5'	' Simpson SI	OS screws w/	1/2" ф A30	07 Bolts to	3/4" φ thrd'd rods in Hilti Hit-HY				
ANCHORAGE	2.75" thre	aded embe	d (SGmin =	steel angle	below deck	200 epoxy w/ 4" embed				
LONG DIRECTION	15	6 @ 5.38 in c).C.	6 @ 14.28 in o.c.		14 @ 5.49 in o.c.				
SHORT DIRECTION	10) @ 5.06 in c).C.	3 @ 20.7	75 in o.c.	9 @ 5.19 in o.c.				