

Structural Calculations for CBISC-05 Series

CBISCPRS** SERIES

Prepared for:

PROVENT / RRS

3847 Wabash Drive Mira Loma, CA 91725

Date: July 13, 2022

Project Number: PV2203

For wood, concrete and steel attachment see Roof Anchorage Detail, Form No. CB-62. Welded Isolation springs housingare standard. For bolted spring housing, neoprene pads and spring cups see Weldment and Bolting Detail, Form No. CB-61 **FEATURES**

STRUCTURALLY CALCULATED VIBRATION ISOLATION **ROOF CURB FOR YORK UNITS**

ZX 04-07; XX A7, ZX A7, ZY, ZQ, XY, XQ, ZL 04-06

20 7/16

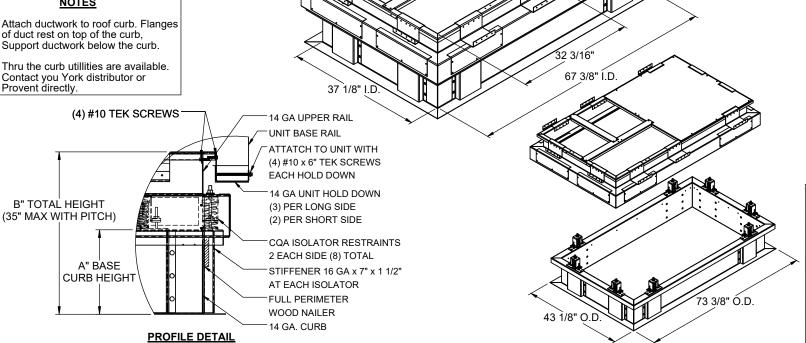
R/A

13 3/4'

40 11/16" O.D.

37 3/16" I.D.

PROVENT P/N	Α	В	EST. WEIGHT
CBISCPRS18**	8"	18"	305 Lbs.
CBISCPRS21**	11"	21"	320 Lbs.
CBISCPRS24**	14"	24"	335 Lbs.


**Note: Spring configuration must be added to part number at time of order

Meets seismic requirements for the following codes: CBC 2019 IBC 2018

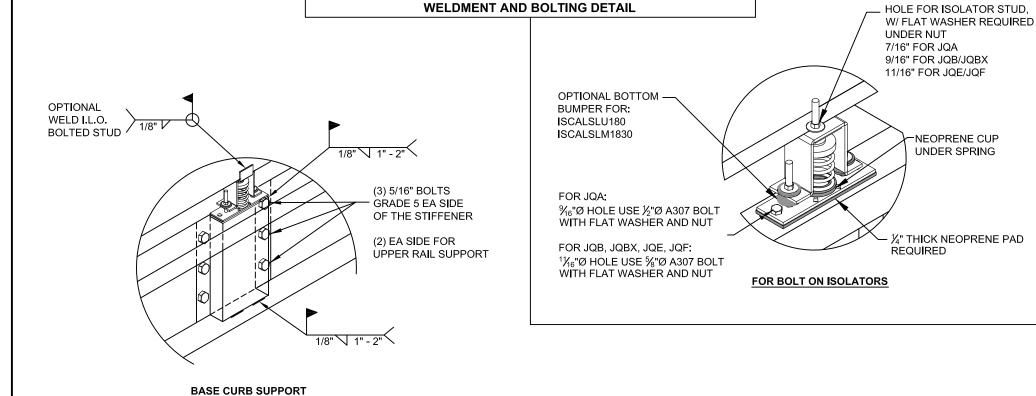
- Roof curbs sides and ends are 14 ga.
- Fully welded construction.
- Gasketing package provided.
- Heat treated wood nailer provided.
- insulated deck pans provided.
- Pitched curbs and taller curbs are available.
- CalDyn OSHPd pre-approved seismic restraints. (OPM-0401-13), (CQA).

NOTES

- Attach ductwork to roof curb. Flanges of duct rest on top of the curb, Support ductwork below the curb.
- Thru the curb utillities are available. Contact you York distributor or Provent directly.

3847 WABASH DRIVE MIRA LOMA, CA 91752

70 7/8" Ó.D.


67 3/8" Í.D.

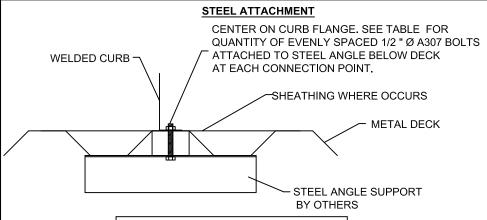
PHONE (951) 685-1101 FAX (619) 872-9799

SORWILED IO:	١
COMPANY:	
JOB NAME:	ŀ
EQUIPMENT:	
NOTES:	

FORM NO: PART NUMBER: CBISC-05

DATE: REV: DRAWN BY: 4/25/2022 3 **FMM**

3847 WABASH DRIVE MIRA LOMA, CA 91725


PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITTED TO:	F
COMPANY:	(
JOB NAME:	H
EQUIPMENT:	[
NOTES:	(

FORM NO: CB-61

 DATE:
 REV:
 DRAWN BY:

 02/08/18
 1
 ALL

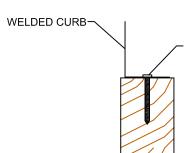
	NO. OF ANCHORAG	E BOLTS REQUIRED
CURB	LONG SIDE	SHORT SIDE
LXS	3 @ 19.25" O.C.	2 @ 23" O.C.
LXL	3 @ 19.25" O.C.	2 @ 33" O.C.
SUN3672	4 @ 21" O.C.	2 @ 27.25" O.C.
PRD3715	6 @ 14.28" O.C.	3 @ 20.75" O.C.
PRS	4 @ 20.46" O.C.	2 @ 31.13" O.C.
PRL	3 @ 36.13" O.C.	2 @ 44" O.C.
SLU180	4 @ 35.08" O.C.	3 @ 37" O.C.
SLM1830	5 @ 29.06" O.C	4 @ 24.67" O.C.
SAV1518	4 @ 37.38" O.C	3 @ 35.56" O.C.
SAV2025	4 @ 42.04" O.C	3 @ 35.56" O.C.
SAV28	5 @ 35.63" O.C	3 @ 35.56" O.C.

ASSUMES:

CONC SLAB fc= 4000PSI MINIMUM 6" MIN THICKNESS NORMAL WEIGHT CONCRETE OR SAND LIGHT WEIGHT Meets seismic requirements for the following codes: CBC 2019 IBC 2018 ROOF ANCHORAGE DETAIL
CBISC Series
LXS
LXL
SUN3672
PRD3715
PRS
PRL
SLU180
SLM1830
SAV1518
SAV2025
SAV28

CONCRETE ATTACHMENT

WELDED CURB


CENTER ON CURB FLANGE.
SEE TABLE FOR QUANTITY OF EVENLY
SPACED 3/4" Ø THREADED ROD IN HILTI
HIT-HY 200 EPOXY WITH 4" EMBED

NO.	OF	ANCHOR.	AGE BO	LTS I	REQUIRED

CURB	LONG SIDE	SHORT SIDE
LXS	7 @ 6.42" O.C.	4 @ 7.67" O.C.
LXL	7 @ 6.42" O.C.	5 @ 8.25" O.C.
SUN3672	9 @ 7.88" O.C.	4 @ 9.08" O.C.
PRD3715	14 @ 5.49" O.C.	9 @ 5.19" O.C.
PRS	10 @ 6.82" O.C.	5 @ 7.78" O.C.
PRL	11 @ 7.23" O.C.	6 @ 8.8" O.C.
SLU180	12 @ 9.57" O.C.	8 @ 10.57" O.C.
SLM1830	18 @ 6.84" O.C.	11 @7.4" O.C.
SAV1518	12 @ 10.19" O.C.	6 @ 14.23" O.C.
SAV2025	14 @ 14.97" O.C.	6 @ 14.23" O.C.
SAV28	14 @ 10.96" O.C.	6 @ 14.23" O.C.

* SIX INCHES FROM EACH CORNER EVENLY SPACED.
** CENTERED.

WOOD ATTACHMENT

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED

'4" Ø x 4.5" SIMPSON SDS SCREWS W/ 2.75"
THREADED EMBED (SGMIN=0.50)

FOUR INCHES FROM EACH CORNER EVENLY SPACED

	NO. OF ANCHORAGE	SCREWS REQUIRED
CURB	LONG SIDE	SHORT SIDE
LXS	7 @ 7.08" O.C.	5 @ 6.75" O.C.
LXL	7 @ 7.08" O.C.	7 @ 6.17" O.C.
SUN3672	9 @ 8.38" O.C.	5 @ 7.81" O.C.
PRD3715	15 @ 5.38" O.C.	10 @ 5.06" O.C.
PRS	10 @ 7.26" O.C.	6 @ 7.03" O.C.
PRL	12 @ 6.93" O.C.	8 @ 6.86" O.C.
SLU180	14 @ 8.4" O.C.	10 @ 8.67" O.C.
SLM1830	19 @ 6.68" O.C.	13 @ 6.5" O.C.
SAV1518	13 @ 9.68" O.C.	9 @ 9.39" O.C.
SAV2025	15 @ 9.29" O.C.	9 @ 9.39" O.C.
SAV28	16 @ 9.77" O.C.	9 @ 9.39" O.C.

SE 3578
EMP. 6/30/23

STRUCTURE

OF CALIFORN

ProVent

3847 WABASH DRIVE MIRA LOMA, CA 91752

PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITTED TO:	F
COMPANY:	C
JOB NAME:	
EQUIPMENT:	D.
NOTES:	6

FORM NO:
CB-62
DATE: REV: DRAWN BY:

6/30/2022 2 FMM

Client:	ProVent	PV2203	Upper curb rail
Project:	CBISC-05	Iso Curb	CBISCPRS
Unit:	YORK ZX 04	4-07; XX A7	; ZY, ZQ, XY, XQ 04-06

Unit: [YORK ZX 04-07; X	X A7; ZY, ZQ, XY, XQ 04-06					
Upper Curb Inform	ation			EQ	Fv	EQ	
Hcurb upper =	5.5 in	(Height of upper curb	rail)	<u> </u>	VVunit		1
Lcurb =	70.375 in	(Length of upper curb]		(× Lunk)		1
wcurb =	40.1875 in	(Width of upper curb)	T	; 			1
WGTupper =	56 lbs	(Weight of upper curb)	1			1
# Clips long side =	3 # 0	Clips short side = 2	T	Fewa	y		<u> </u> =
Unit Information			T Krut	1	T I		<u> </u>
WGTunit =	916 lbs	(Weight of Unit)		Wtms	↓ WGTι	UNIT Wilman	F _n
Wtmax =	275 lbs	(Maximum corner wei	ight)	•	•		
Wtmin =	195 lbs	(Minimum corner weig	ght)	└/		n.	}
Hunit =	40.56 in	(Height of unit above of	curb) ្អ 🕌 🚡				·
Hcm =	20.28 in	(Height to center of m	curb) (and Hadah	٦		7	
Lunit =	74.05 in	(Length of unit)			⊥ wgτ₀	CURB	
Wunit =	48.88 in	(Width of unit)	1		- 7		
			-4	∢		-	-v
Seismic Loading -	2018 IBC/2019 CE	3C		Tmax		ļ c	-mex
Ss =	2.85	(Worst case for major	ity of Californ	nia)			
Fa =	1.20	(Default Site Class D -	- Table 11.4-1	I ASCE 7-16)			
lp =	1.50	(Importance Factor Ca	ategory III Bu	ilding)			
Sms =	3.420	(Fa*Ss)	ap =	2.5			
Sds =	2.280	(2/3*Sms)	Rp =	2			
Fpmax =	5.130 Wp	(0.4*ap*Sds*Ip)*Wp*3	3/Rp <=1.6*Sc	dW*ql*at			
ΓACD	2200 lbc	(0.7*Enmov)	Гъ	may ACD	2/00 lbs		

Wind Loading - 2018 IBC/2019 CBC

(unit only)

3289 lbs

Fpmax = FpmaxASD =

Loading - Zu	10 100/2017 000	_
Kz =	1.13	(For 60 ft roof height, Exposure C - Table 26.10-1 ACSE 7-16)
Kzt =	1.00	(Max. assumed topographic factor)
Kd =	0.85	(Directionality factor Table 26.6-1 ASCE 7-16)
Ke =	1.00	(Ground Elevation Factor Table 26.9-1 ASCE 7-16)
V =	110	(Wind velocity, mph for Occupancy Cat III-IV bldgs Exp. Cat C, Fig 26.5-1D - ASCE7-16)
$GCr_{(horiz)} =$	1.9	(Refer Sect 29.4.1 ASCE 7-16)
$GCr_{(vert)} =$	1.5	(Refer Sect 29.4.1 ASCE 7-16)
qz	29.8 psf	= $0.00256*Kz*Kzt*Kd*Ke*V^2$ (Eq. 26.10-1 ASCE 7-16)
F _{h ASD trans} =	803 lbs	= 0.6*qz*GCr*Lunit*(Hunit+Hcurb) (Eq. 29.4-2)
Fh ASD long =	530 lbs	= 0.6*qz*GCr*Wunit*(Hunit+Hcurb)

FpmaxASD =

3490 lbs

(unit + upper rail)

Upper Curb Loading

F_{vert ASD} =

T	ra	ns	ve	rs	е	:

Compression _{SEISMIC} =	2385 lbs	=[FpmaxASD*Hcm+2*(1+0.14S _{DS})*Wtmax*wcurb]/wcurb
Tension _{SEISMIC} =	1551 lbs	=[FpmaxASD*Hcm-2*(0.6-0.14S _{DS})*Wtmin*wcurb)]/wcurb
Compression _{WIND} =	399 lbs	= $[F_{h ASD trans}*Hcm+2*0.6*Wtmax*wcurb-F_{vert ASD}*wcurb/2]/wcurb$
Tension _{WIND} =	508 lbs	=[F _{h ASD trans} *Hcm-2*0.6*Wtmin*wcurb+F _{vertASD} *wcurb/2]/wcurb
	All in the second	5 P 3 P 4 P 5

673 lbs = 0.6*qz*GCr*Lunit*Wunit [Eq. 29.4-3]

(0.7*Fpmax)

---> Negative values indicate opposite load.

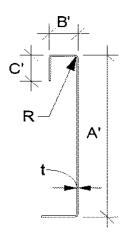
Longitudinal:

Compression _{SEISMIC} =	1673 lbs	=[FpmaxASD*Hcm+2*(1+0.14*S _{DS})*Wtmax*Lcurb]/Lcurb
Tension _{SEISMIC} =	839 lbs	=[FpmaxASD*Hcm-2*(0.6-0.14S _{DS})*Wtmin*Lcurb)]/Lcurb
Compression _{WIND} =	146 lbs	= $[F_{h ASD long}^*Hcm+2*0.6*Wtmax*Lcurb-F_{vertASD}^*Lcurb/2]/Lcurb$
Tension _{WIND} =	256 lbs	=[F _{h ASD long} *Hcm-2*0.6*Wtmin*Lcurb+F _{vertASD} *Lcurb/2]/Lcurb

---> Negative values indicate opposite load.

Governing Reactions:

<u>Transverse:</u>	Comp _{MAX} =	2385	lbs	> Along long edge of curb.
(on long edge)	Tens _{MAX} =	1551	lbs	> Along long edge of curb.
Longitudinal:	Comp _{MAX} =	1673	lbs	> Along short edge of curb.
(on short edge)	Tens _{MAX} =	839	lbs	> Along short edge of curb.


^{---&}gt; Negative values indicate opposite load.

Curb Design

Calculate Section Properties of Curb

Α'=	5.500	in	a =	5.144 in = A'-(2r+t)
B'=	1.750	in	a'=	5.429 in = A'-t
C'=	0.000	in (0 if no lips)	b =	1.572 in = B'-[r+t/2+a(r+t/2)]
a =	0.000	(0 - no Lip; 1 w/ lip)	b'=	1.714 in = $B'-(t/2+at/2)$
R=	0.1069	(Inside bend radius)	C =	0.000 in = $a[C'-(r+t/2)]$
t =	0.0713	in	c'=	0.000 in = $a(C'-t/2)$
r'=	0.143	in = R+t/2	u =	$0.224 \text{ in } = \pi r/2$
x =	0.337	in (Distance between c	entroid and wel	b centerline)
lx =	2.687	in ⁴	rx =	2.08 in
ly =	0.169	in ⁴	ry =	0.521 in
A =	0.62	in ²	rmin =	0.521 in

Axial Compression

U				
Pa =	1.645 k	(Max Axial Comp)	$\Omega_c =$	1.80
$Pn/\Omega c =$	13.768 k	$If \lambda = 15 F \left(0.650\lambda^2\right)F$	_	
Fe =	91.64 ksi	$\frac{P_n}{P_n} = \frac{F_n A}{F_n} \qquad If \ \lambda_c \le 1.5; \ F_n = \left(0.658^{\lambda_c^2}\right) F_3$	$\gamma = F_y $	$F = \frac{\pi^2 E}{\pi^2 E}$
λc =	0.74	$\frac{\kappa}{\Omega_c} = \frac{\kappa}{\Omega_c}$ If $\lambda_c > 1.5$; $F_n = \frac{0.877}{\lambda_c^2} F_y$	$\kappa_c - \sqrt{\overline{F_e}}$	$F_e = \frac{k L}{(kl/L)^2}$
Fn =	39.79 ksi	λ_c^2 113, $\lambda_n = \lambda_c^2$	•	(7r)
Ly =	36.69 in	Lateral unbraced length		

56 (assume k=0.8) Compression Check = 0.K.

Check Web Crippling

h = t = N =	5.5 in 0.0713 in 7.00	Check limits: h/t = 77.14 ≤ 200 N/t = 98.18 ≤ 210	C = 7.50 $C_R = 0.08$ $C_N = 0.12$	(See table C3.4.1-2, fastened to support, two flange, end
$\Omega_{\rm W}$ =	1.75	$N/h = 1.273 \le 2.0$	$C_h = 0.048$	loading)
P _n =	1.947 k	$R/t = 1.50 \le 12.0$	$/$ \sqrt{p}	$\left(\begin{array}{c} \overline{N} \end{array}\right) \left(\begin{array}{c} \overline{b} \end{array}\right)$
$P_n/\Omega_w =$	1.112 k	$P_n = Ct^2$	$F_y \sin(90) \left(1 - C_R \right) \left(\frac{R}{t} \right)$	$\left(1+C_N\sqrt{\frac{N}{t}}\right)\left(1-C_h\sqrt{\frac{h}{t}}\right)$
Long side: $Pu_{Trans} =$	0.795 k	<u>0.K.</u> # clips = 3	(11)	(1,)(1,)
Short side: $Pu_{Long} =$	0.836 k	<u>O.K.</u> # clips = 2		

Check Web Stiffener N/A $P_n = 0.7(P_{wc} + A_e F_y) \ge P_{wc}$ 7.000 in 0.0566 16 Gauge 1.947 k width of stiffener = Pwc = ts = web of stiff. w = 6.717 in Rs= 0.0849 in Pn = 14.669 k ***Check w/ts ≤ 1.28√E/Fys $\Omega_c =$ 1.70 Ae = $0.380 in^{2}$

118.675 w/ts =

 $Pn/\Omega_c =$ 1.28v(E/Fys) =31.091 --> w/ts over limit Use C3.7.2 8.629 k Not Req'd

Corner Connections 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts

 $Max(F_{pmaxASD}/4 \ -OR- \ Fh_{ASDtrans}/4 \ corner \ connections)$ Tcrnmax = 873 lbs 1192 lbs Max(Tens/2 -OR- Comp/2 corner connections per side) Vcrnmax = 2480 lbs 1208 lbs Bolt: Tall = Vall = 1096 lbs Threaded Insert: Tall = 2860 lbs Vall =

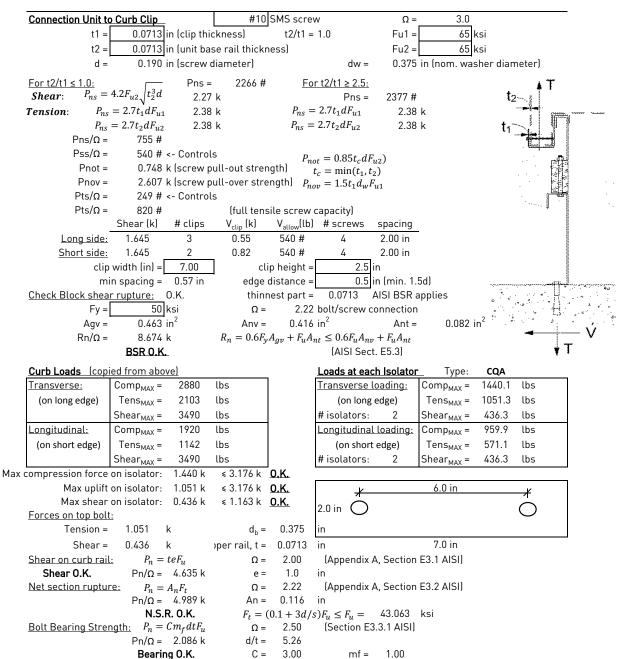
> # of Bolts required for Tension = 0.4 # of Bolts required for Shear = 1.1

of Bolts Used = 3.0

Check Combined Stress in Bolts & Inserts: 0.480 **0.K.**

ELD $\Omega = 2.35$ $\frac{P_n}{\Omega} = \frac{1}{\Omega} 0.75t L F_u \ge V_{req} \qquad L_{req'd} = \frac{V_{req} \Omega}{0.75t F_u}$ Check 1/8" welded connection <--- USE WELD Assume L/t > 25: 25*t =1.783 in Lreg'd = 0.806 in

Shear and tension in bolt:


Tension

Shear

 $P_{nt} = A_b F_{nt}$

 $P_{nv} = A_b F_{nv}$

 $Pnt/\Omega = 1.988 k$ Bolt tension O.K.

Snear P	nv/Ω =	1.104 k	Bolt shear O	.K.					
Combined Shear and to	ension in	bolt:							
E' _ 1 2 E	ΩF_{nt}	f _ E	ft =	9.52	ksi	fv =	3.95	ksi	0.K.
$r_{nt} - 1.5r_n$	$t - \frac{1}{F_{nv}}$	$J_v \geq r_{nt}$	F'nt =	36.65	ksi	$fv = Fnv/\Omega = Ined 0.K.$	10.00	ksi	
	$P'_{nt} =$	$= A_b F'_{nt}$	$P'nt/\Omega =$	1.799 k	Combi	ned O.K.			
Longitudinal weld load	ing:	L =	1.5 _P	, 1,	0.0	1L	Ω =	:	2.55
If $L/t < 25$: $L/t =$	21.04	t =	0.0713	$\gamma_{\Omega} = \frac{\Omega}{\Omega}$	$1-\frac{1}{t_2}$	$\frac{1L}{2} Lt_2 F_{u2} \ge V_{req}$	Pn/Ω =	:	2.153 k
Transverse weld loading	ı <u>g:</u>		0.0713	P_n	$\frac{1}{-\frac{1}{2}}$	$LF_u \ge T_{req}$	Ω =	:	2.35
L =	1	Fu =	65 I	ksi /	$\Omega - \frac{\Omega}{\Omega}$	$2 r_u \ge r_{eq}$	Pn/Ω =	:	1.972 k

(Appendix A, Section E3.4 AISI)

40.5

24.0

ksi

ksi

0.1104

2.25

2.40

(Table E3.4-1, AISI)

(Table E3.4-1, AISI)

 $A_b =$

 $\Omega t =$

Ωv =

Fnt =

Fnv =

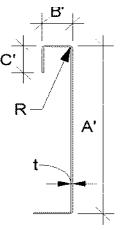
Client:	ProVent	PV2203		Base curb
			CBISCPRS	
Unit:	YORK ZX 04	4-07; XX A7;	ZY, ZQ, XY, XQ 04-06	

•			.	
Base Curb Informa			FQ FQ	
Hbase curb =	25 in	(Height of base curb)	Wusit	1
Lcurb =	73.375 in	(Length of base curb)	(×Lunk)	<u>1</u>
wcurb =	43.125 in	(Width of base curb)		1
WGTbase =	279 lbs	(Weight of base curb)	: 	1
# Springs long side =	2 # Spring	s short side = 2	Frway	i 68
Unit Information		3 31101 C 3100 = 2	1407	:
WGTunit =	916 lbs	(Weight of Unit)	Wtmax WGTunit Wtmax	F ₀
Wt'max =	289 lbs	(Wtmax+1/4*WGTupper)	•	
Wt'min =	209 lbs	(Wtmin+1/4*WGTupper))	toj <u> </u>	
Hunit =	40.56 in	(Height of unit above curb)		
H'cm =	30.28 in	(Hcm+10"(upper+spring))	. 7	
Lunit =	74.05 in	(Length of unit)	Ŭ WGT _{CURB}	
Wunit =	48.88 in	(Width of unit)		
WGTunit+upper+base =	1251 lbs	(Total weight)	← ∨ ←	-v
Seismic Loading -	2018 IBC/2019 CBC	_	▼ T _{max}	MIRX.
Ss =	2.85	(Worst case for majority of Califor	nia)	
Fa =	1.20	(Default Site Class D - Table 11.4-	1 ASCE 7-16)	
lp =	1.50	(Importance Factor Category III Bu	uilding)	
Sms =	3.420	(Fa*Ss) ap =	2.5	
Sds =	2.280	(2/3*Sms) Rp =	2	
Fpmax =	5.130 Wp	(0.4*ap*Sds*Ip)*Wp*3/Rp <=1.6*S	ds*Ip*Wp	
FpmaxASD =	3490 lbs		maxASD = 4492 lbs	
'	(unit + upper rail)		(unit + upper rail + base curb)	
Wind Loading - 20'				
Kz =	1.13	(For 60 ft roof height, Exposure C	- Table 26.10-1 ACSE 7-16)	
Kzt =	1.00	(Max. assumed topographic factor		
Kd =	0.85	(Directionality factor Table 26.6-1		
Ke =	1.00	(Ground Elevation Factor Table 26		
V =	110	(Wind velocity, mph for Occupancy	Cat III-IV bldgs Exp. Cat C, Fig 26.5-1D - A	SCE7-16)
GCr _(horiz) =	1.9	(Refer Sect 29.4.1 ASCE 7-16)	3 1 7 3	•
GCr _(vert) =	1.5	(Refer Sect 29.4.1 ASCE 7-16)		
			2/ 10 1 4005 7 1/1	
qz	29.8 psf	$= 0.00256*Kz*Kzt*Kd*Ke*V^{2} (Eq. 3)$		
F _{h ASD trans} =	1318 lbs	= 0.6*qz*GCr*Lunit*(Hunit+Hbase		
F _{h ASD long} =	870 lbs	= 0.6*qz*GCr*Wunit*(Hunit+Hbase		
F _{vert ASD} =	673 lbs	= 0.6*qz*GCr*Lunit*Wunit (Eq. 2	7.4-3)	
D 0 11 "				
Base Curb Loading	} _			
<u>Transverse:</u>	3213 lbs	=[FpmaxASD*H'cm+2*(1+0.14S _{DS})	*\\/t'may*\uaurh]/\uaurh	
Compression _{SEISMIC} =	2334 lbs			
Tension _{SEISMIC} =		=[FpmaxASD*H'cm-2*(0.6-0.14S _D)		
Compression _{WIND} =	935 lbs	=[F _{h ASD trans} *H'cm+2*0.6*Wt'max*v		
Tension _{WIND} =	1012 lbs	=[F _{h ASD trans} *H'cm-2*0.6*Wt'min*v	vcui n+r _{vertASD} . wcurb/2]/wcurb	
	> Negative values	indicate opposite load.		
<u>Longitudinal:</u>	2202 16-	[F====, ACD* '===, 2*(1, 0, 1/*C)*\\/*\n==*\ a\\n=\\	
Compression _{SEISMIC} =	2202 lbs	=[FpmaxASD*H'cm+2*(1+0.14*S _{DS}		
Tension _{SEISMIC} =	1323 lbs	=[FpmaxASD*H'cm-2*(0.6-0.14S _D		
Compression _{WIND} =	369 lbs	=[F _{h ASD long} *H'cm+2*0.6*Wt'max*L		
Tension _{WIND} =	445 lbs	=[F _{h ASD long} *H'cm-2*0.6*Wt'min*L	CUCD+r _{vertASD} *LCUCD/2]/LCUCD	
Covernie - Dee 1	> Negative values	indicate opposite load.		

Governing Reactions:

<u>Transverse:</u>	Comp _{MAX} =	3213	lbs	> Along long edge of curb.
(on long edge)	Tens _{MAX} =	2334	lbs	> Along long edge of curb.
Longitudinal:	Comp _{MAX} =	2202	lbs	> Along short edge of curb.
(on short edge)	Tens _{MAX} =	1323	lbs	> Along short edge of curb.

^{---&}gt; Negative values indicate opposite load.


6593 Riverdale St. San Diego, CA 92120 (619)727-4800

Page <u>5</u> of <u>7</u>

Calculate Section Properties of Curb

1 10001000			
25.000	in	a =	24.644 in = A'-(2r+t)
1.750	in	a'=	24.929 in = A'-t
0.000	in (0 if no lips)	b =	1.572 in = B'-[r+t/2+a(r+t/2)]
0.000	(0 - no Lip; 1 w/ lip)	b'=	1.714 in = $B'-(t/2+at/2)$
0.1069	(Inside bend radius)	c =	0.000 in = $a[C'-(r+t/2)]$
0.0713	in	c'=	0.000 in = a(C'-t/2)
0.143	in = R+t/2	u =	$0.224 \text{ in } = \pi r/2$
0.104	in (Distance between o	centroid and we	b centerline)
128.737	in	rx =	8.00 in
0.218	in	ry =	0.329 in
2.01	in ²	rmin =	0.329 in
	25.000 1.750 0.000 0.000 0.1069 0.0713 0.143 0.104 128.737 0.218	25.000 in 1.750 in 0.000 in (0 if no lips) 0.000 (0 - no Lip; 1 w/ lip) 0.1069 (Inside bend radius) 0.0713 in 0.143 in = R+t/2	25.000 in a = 1.750 in a'= 0.000 in (0 if no lips) b = 0.000 (0 - no Lip; 1 w/ lip) b'= 0.1069 (Inside bend radius) c = 0.0713 in c'= 0.143 in = R+t/2 u = 0.104 in (Distance between centroid and we 128.737 in rx = 0.218 in ry =

Axial Compression

Pu =	1.745 k	(Max Axial Co	omp)	$\Omega_c =$	1.80
Pn/Ωc =	8.960 k		$(0.650)^2$	_	
Fe =	9.14 ksi	$P_n F_n A$	If $\lambda_c \le 1.5$; $F_n = \left(0.658^{\lambda_c^2}\right) F_y$	$_{\gamma}$ $_{-}$ $ F_{y} $	$\pi^2 E$
λc =	2.34	$\frac{P_n}{\Omega_c} = \frac{F_n A}{\Omega_c}$	If $\lambda_c > 1.5$; $F_n = \frac{0.877}{\lambda^2} F_y$	$\kappa_c = \sqrt{\overline{F_e}}$	$r_e = \frac{1}{(kl/1)^2}$
Fn =	8.01 ksi		$\lambda_c > 1.5, \lambda_c = \lambda_c^2$	٧	(r)
Ly =	73.38 in	Lateral unbra	aced length		
$k_y L_y / r_y =$	179	(assume k=0	.8)		

Compression Check = 0.K.

Check Web Crippling

h =	25 in	Check li	mits:	C = 4.00	(6
t =	0.0713 in	h/t =	$350.63 \le 200$	$C_R = 0.14$	(See table C3.4.1-2, fastened
N =	7.00	N/t =	98.18 ≤ 210	$C_N = 0.35$	to support, one flange, end
Ω_{w} =	1.75	N/h =	$0.28 \le 2.0$	$C_h = 0.02$	loading)
$P_n =$	2.105 k	R/t =	$1.50 \le 9.0$	/	\overline{N}
$P_n/\Omega_w =$	1.203 k		$P_n =$	$Ct^2F_v\sin(90)$ $1-C_R$	$\left(\frac{R}{t}\right)\left(1+C_N\sqrt{\frac{N}{t}}\right)\left(1-C_h\sqrt{\frac{h}{t}}\right)$
Long side: $Pu_{Trans} =$	1.606 k web	stiffener REQ'D	# clips = 2	\ \\'\'	
Short side: $Pu_{long} =$	1.101 k	<u>0.K.</u>	# clips = 2		

***h/t > 200; use web stiffeners 16Ga x 1.5in x 7in (C-channel)

Check Web Stiffener

width of stiffener =	7.000 in	ts =	0.0566 16 Gauge
web of stiff. w =	6.717 in	Rs =	0.0849 in
***Check w/ts ≤ 1.	28√E/Fys	Ω_{c} =	1.70
w/ts =	118.675		

***Check w/ts
$$\leq$$
 1.28VE/Fys $\Omega_{\rm c}$ = 1.70 w/ts = 118.675
1.28V(E/Fys) = 31.091 --> w/ts over limit Use C3.7.2 $P_n = 0.7(P_{wc} + A_e F_y) \geq P_{wc}$ Pwc = 2.105 k Ae = 0.380 in² Pn = 14.780 k Pn/ $\Omega_{\rm c}$ = 8.694 k **0.K.**

1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts **Corner Connections**

Tcrnmax =	1123 lbs	Max(F _{pmaxASD} /4 -OR- Fh _{ASDtrans} /4 corner connections)						s)
Vcrnmax =	1606 lbs		Max(Tens/2	-0R-	Comp/2 corner	connection	ns per s	ide)
	Bolt:	Tall =	2480	lbs	Vall =	1208	lbs	
Threaded	Insert:	Tall =	2860	lbs	Vall =	1096	lbs	
	(D 1)				۰.			

of Bolts required for Tension = 0.5

1.5 # of Bolts required for Shear = 3.0 # of Bolts Used =

Check Combined Stress in Bolts & Inserts: 0.640 **O.K.**

Check 1/8" welded connection <--- USE WELD

Curb Loads (copi	<u>ied from upper rail cal</u>	<u>cs)</u>		Loads at each Isolator Type: CQA	
Transverse:	Comp _{MAX} = 2880	lbs		<u>Transverse loading:</u> Comp _{MAX} = 1440.1 lb	os
(on long edge)	Tens _{MAX} = 2103	lbs			os
	Shear _{MAX} = 3490	lbs			os
Longitudinal:	$Comp_{MAX} = 1920$	lbs			os
(on short edge)	Tens _{MAX} = 1142	lbs			os
, , , ,	Shear _{MAX} = 3490	lbs		, , , , , , , , , , , , , , , , , , , ,	os
Max compression force		≤ 3.176 k	0.K.	100.00	
•	on isolator: 1.051 k	≤ 3.176 k		د 6.0 in	v
Max shear	on isolator: 0.436 k	≤ 1.163 k			_
Forces on bottom	bolts:			2.0 in ()
d _b =	0.5 in				
base curb, t =	0.0713 in			7.0 in	<u> </u>
Tension =	0.526 k/bolt			t _{2~.} 』	•
Shear =	0.218 k/bolt				
Shear on base cur	$P_n = teF_u$	Ω =	2.00	(Appendix A, Section E3.1 AISI) t ₁	
	$Pn/\Omega = 4.635 k$	e =	1.0	in . The state of	
	Shear O.K.				
Net section ruptur	$\underline{re:} \qquad P_n = A_n F_t$	Ω =	2.22	(Appendix A, Section E3.2 AISI)	
	$Pn/\Omega = 5.909 \text{ k}$	An =	0.107	in :	
	N.S.R. O.K.	$F_t =$	(0.1 + 3d)	$F_{u} \leq F_{u} = 55.250$ ksi	
Bolt Bearing Strer	$\underline{ngth:} P_n = Cm_f dt F_u$	Ω =		(Section E3.3.1 AISI)	
	$Pn/\Omega = 2.781 \text{ k}$	d/t =			
	Bearing O.K.	C =		mf = 1.00	
Shear and tension				E3.4 AISI)	
Tension	$P_{nt} = A_b F_{nt}$		45.0 ksi	$A_b = 0.1963 \text{ in}^2$	
	$Pnt/\Omega = 3.927 k$			$\Omega t = 2.25$	
Shear	$P_{nv} = A_b F_{nv}$		27.0 ksi	$\Omega v = 2.40$	
	$Pnv/\Omega = 2.209 k$	Bolt shear	0.K.	***(Table E3.4-1, AISI)***	<u> </u>
	and tension in bolt:	ft =	5.35	Lai 6. 4.44 Lai 6	, † T
$F'_{nt} =$	$1.3F_{nt} - \frac{\Omega F_{nt}}{F_{nv}} f_v \le F_{nt}$	τι = F'nt =			l.K.
	$P'_{nt} = A_b F'_{nt}$			ksi $Fnv/\Omega = 11.25$ ksi Combined Not Applicable -> F'nt = Fnt	
Connection of Cur	b to Supporting Struct		J./2/ K	Combined Not Applicable ->1 III = 1 III	
Roof Loading	SEISMIC: (0.6-0.145			WIND: 0.6D + W	
Transverse:			lhs	Shear _{MAX} = 2246 lbs	
Compression _{SEISMIC} =	6584 lbs			Hbase curb)+(1+0.14S _{DS})*WGT _{unit+upper+base} *wcur	h/21/wcurh
Tension _{SEISMIC} =	5583 lbs			Hbase curb)-(0.6-0.14S _{DS})*WGT _{unit+upper+base} *wcu	
Compression _{WIND} =	1728 lbs			pase curb)+0.6*WGT _{unit+upper+base} *wcurb/2-F _{vert AS}	
Tension _{WIND} =	1651 lbs			pase curb)-0.6*WGT _{unit+upper+base} *wcurb/2+F _{vertAS}	
Longitudinal:				$Shear_{MAX} = 2246 lbs$	5D ***Carb/21/Wearb
Compression _{SEISMIC} =	4210 lbs			Hbase curb)+(1+0.14S _{DS})*WGT _{unit+upper+base} *Lcur	h/2]/L curb
	4210 (DS			Thase curbj+(1+0.143 _{DS}) WoT _{unit+upper+base} Lcur	טן בןן בכנוו ט ו אסו אי

1/4"φ x 4.5" Simpson SDS screw: w/ 2.75" threaded emt [SGmin = 0.43] Wood Attachment: 997 lbs $Vall_{metal} =$ 1097 lbs Tall_{metal} = Transverse: $\mathsf{Tall}_{\mathsf{wood}} =$ 760 lbs $Vall_{wood} =$ 672 lbs 7.35 COMBINED LOADING: 0.943 O.K. # of Screws Req'd for Uplift = 3.34 7.26 in o.c. # of Screws Req'd for Shear = Req'd Min Spacing = Total # of screws required = 10

 $= [FpmaxASD*(H'cm+Hbase\ curb)-(0.6-0.14S_{DS})*WGT_{unit+upper+base}*Lcurb/2]/Lcurb$

 $= [F_{h \, ASD \, long}*(H'cm + Hbase \, curb) + 0.6*WGT_{unit+upper+base}*Lcurb/2 - F_{vert \, ASD}*Lcurb/2]/Lcurb$

 $= [F_{h \; ASD \; long}*(H'cm + Hbase \; curb) - 0.6*WGT_{unit+upper+base}*Lcurb/2 + F_{vertASD}*Lcurb/2]/Lcurb/2 + F_{vertASD}*Lcurb/2 + F_{vertASD}*Lcurb$

3209 lbs

694 lbs

617 lbs

Compression_{SFISMIC} = $Tension_{SEISMIC} =$

 $Compression_{WIND} =$

Tension $_{WIND}$ =

Use 10 - 1/4"φ x 4.5" Simpson SDS screws @ 7.3 in o.c. along long side of curb w/ 2.75" threaded embed

Min Bolts Req'd Shear =

7.78

Try using

spaced at

ongitudinal:		
# - f C D!- f	/ 00	COMP

COMBINED LOADING: 0.913 O.K. # of Screws Req'd for Uplift = 4.22 3.34 Screw Spacing = # of Screws Reg'd for Shear = 6

7.03 in o.c. Total # of screws required = Use 6 - 1/4"φ x 4.5" Simpson SDS screws @ 7 in o.c. along short side of curb w/ 2.75" threaded embed Steel Deck Attachment: 1/2" ϕ A307 Bolts to steel angle below deck 3927 lbs 2209 lbs Tall_{bolt} = Vallbolt = Transverse: 2086 lbs 2192 lbs $Tall_{metal} =$ Vall_{metal} = # of Bolts Req'd for Uplift = 2.68 COMBINED LOADING: 0.840 O.K. # of Bolts Req'd for Shear = 20.46 in o.c. Bolt Spacing = 1.02 Total # of bolts required = 4 Use 4 - 1/2" φ A307 Bolts to steel angle below deck @ 20.5 in o.c. along long side of curb Longitudinal: # of Bolts Reg'd for Uplift = 1.54 COMBINED LOADING: 0.555 O.K. 31.13 in o.c. # of Bolts Reg'd for Shear = 1.02 Bolt Spacing = Total # of bolts required = 2 Use 2 - 1/2" φ A307 Bolts to steel angle below deck @ 31.1 in o.c. along short side of curb **For Concrete anchorage:** SEISMIC $(0.6-0.14S_{DS})D + 0.7\Omega_{o}E$ Concrete Attachment: 3/4" ϕ thrd'd rods in Hilti Hit-HY 200 epoxy w/ 4" embed $Tall_{LRFD} =$ 1957 lbs $Vall_{LRFD} =$ 4540 lbs $\propto = (1 + 0.2SDS)D + 2.5E = 1.708$ $Vall_{ASD} = Vall_{LRFD}/\alpha =$ $Tall_{ASD} = Tall_{LRFD}/\alpha =$ 1146 lbs 2658 lbs (D = 0.758, E = 0.242) $\overline{\mathsf{Up}}\mathsf{lift}_{\mathsf{MAX}} =$ 11341 lbs Shear_{MAX} = 4492 lbs **Transverse:** $= [\Omega o*FpmaxASD*(H'cm+Hbase\ curb) + (1+0.14S_{DS})*WGT_{unit+curb+base}*wcurb/2]/wcurb$ Compression_{SEISMIC} = 12342 lbs =[Ωo*FpmaxASD*(H'cm+Hbase curb)-(0.6-0.14S_{DS})*WGT_{unit+curb+base}*wcurb/2]/wcurb Tension_{SEISMIC} = 11341 lbs 4492 lbs =Ωo*FpmaxASD/2 $Shear_{SEISMIC} =$ Tapplied = Min Bolts Req'd Uplift = 9.90 spacing = 6.82 in o.c. 1134.1 lbs Vapplied = Min Bolts Req'd Shear = 1.69 spacing = 61.38 in o.c. 299.5 lbs $\frac{V_{apllied}}{2} \le 1.2$ Try using 10 bolts $T_{applied}$ COMBINED LOADING = = 1.106.82 $V_{allow,ASD}$ spaced at in o.c. $T_{allow,ASD}$ Use 10 - 3/4" ϕ thrd'd rods in Hilti Hit-HY 200 epoxy @ 6.8 in o.c. max. along long side of curb w/ 4" embed Longitudinal: Uplift_{MAX} = 6593 lbs $Shear_{MAX} =$ 4492 lbs $Compression_{SEISMIC} =$ = $[\Omega o*FpmaxASD*(H'cm+Hbase curb)+(1+0.14S_{DS})*WGT_{unit+curb+base}*Lcurb/2]/Lcurb$ 7594 lbs 6593 lbs = $[\Omega o*FpmaxASD*(H'cm+Hbase curb)-(0.6-0.14S_{DS})*WGT_{unit+curb+base}*Lcurb/2]/Lcurb$ Tension_{SEISMIC} = 4492 lbs =Ωo*FpmaxASD/2 $Shear_{SEISMIC} =$ Min Bolts Req'd Uplift = 5.76 spacing = 6.23 in o.c. Tapplied = 941.9 lbs

31.13 in o.c.

 $T_{applied}$

Vapplied =

 $V_{apllied}$

299.5 lbs

COMBINED LOADING $T_{allow,ASD}$ $V_{allow,ASD}$ Use 5 - 3/4" ϕ thrd'd rods in Hilti Hit-HY 200 epoxy @ 7.8 in o.c. max. along short side of curb w/ 4" embed

1.69 spacing =

bolts

in o.c.

CURB DESIGN SU	MMARY:	CBISC-05	CBISCPRS		Unit:	YORK ZX 04-07; XX A7; ZY, ZQ, XY,		
UPPER CURB RAIL THICKNESS:			14 Gauge			XQ 04-06		
UNIT CLIP THICKNESS:		0.0713 in	14 Gauge					
# OF CLIPS (LONG SIDE) - 3 clips with 4 - #10 SMS sc					lip			
WEB STIFFENER: NOT REQUIRED								
# OF CLIPS (SI	HORT SIDE) -	2 clips with	4 - #10 SMS	screws each c	lip			
WEE	STIFFENER:	NOT REQU	IRED					
VIBRATION ISOLATOR TYPE: CQA Top stud diameter: 3/8 (2) - CQA Isolators long side						(2) - CQA Isolators long side		
Anchor bolt diameter: 1/2 Anchor hole diameter: 9/16 (2) - CQA Isolators short si					(2) - CQA Isolators short side			
BASE CURB THICKNESS: 0.0713 in 14 GaugeBolt or Weld 0.K						Bolt or Weld O.K		
WEE	WEB STIFFENER: 16Ga x 1.5in x 7in (C-channel) stiffener at each clip on base curb							
CORNER CONNECTION: Use minimum 3 - 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts								
CURB WOOD				STEEL CONCRETE		<u>CONCRETE</u>		
ANCHORAGE 1/4" $\phi \times 4.5$		Simpson SDS screws w/		1/2" φ A307 Bolts to		3/4" φ thrd'd rods in Hilti Hit-HY		
		aded embed (SGmin =		steel angle below deck		200 epoxy w/ 4" embed		
LONG DIRECTION	10	@ 7.26 in c).C.	4 @ 20.46 in o.c.		10 @ 6.82 in o.c.		
SHORT DIRECTION	SHORT DIRECTION 6 @ 7.03 in o.c. 2 @ 31.13 in o.c. 5 @ 7.78 in o.c.					5 @ 7.78 in o.c.		