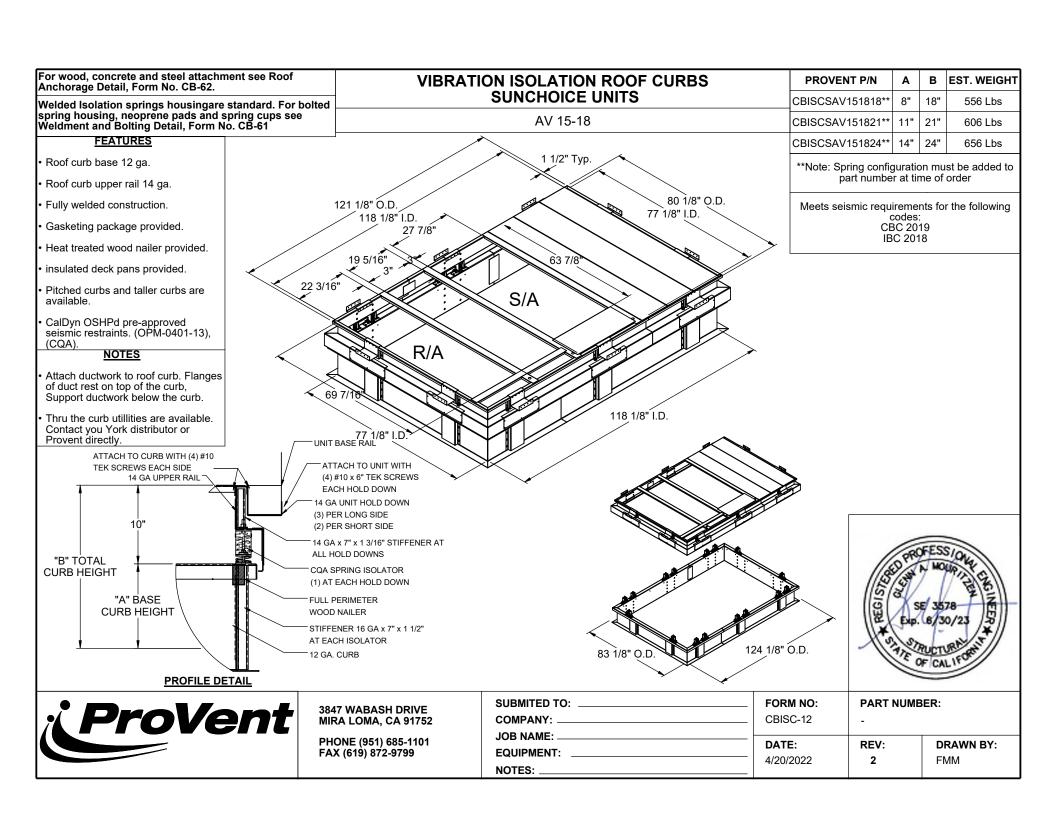
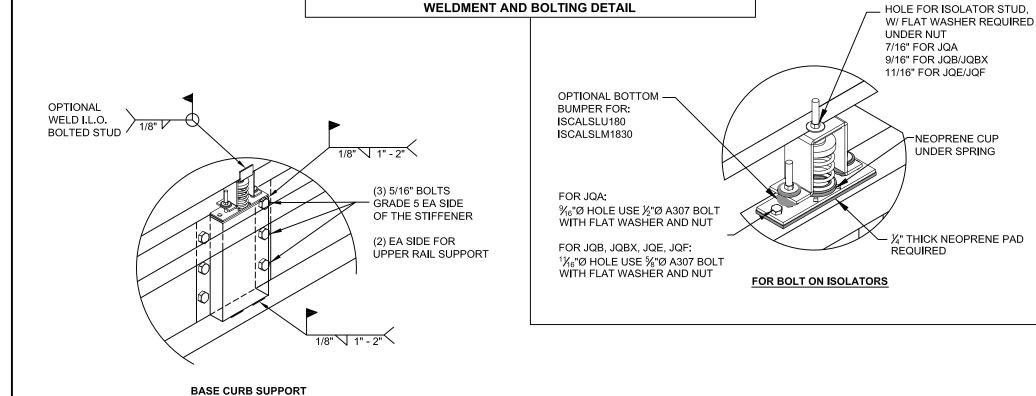


Structural Calculations for

CBISC-12 Series

CBISCSAV1518** SERIES


Prepared for:

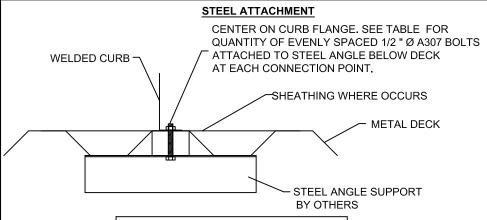

PROVENT / RRS

3847 Wabash Drive Mira Loma, CA 91725

Date: July 13, 2022

Project Number: PV2203

3847 WABASH DRIVE MIRA LOMA, CA 91725


PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITTED TO:	F
COMPANY:	(
JOB NAME:	H
EQUIPMENT:	[
NOTES:	(

FORM NO: CB-61

 DATE:
 REV:
 DRAWN BY:

 02/08/18
 1
 ALL

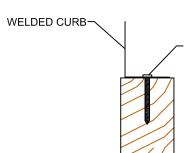
	NO. OF ANCHORAGE BOLTS REQUIRED				
CURB	LONG SIDE	SHORT SIDE			
LXS	3 @ 19.25" O.C.	2 @ 23" O.C.			
LXL	3 @ 19.25" O.C.	2 @ 33" O.C.			
SUN3672	4 @ 21" O.C.	2 @ 27.25" O.C.			
PRD3715	6 @ 14.28" O.C.	3 @ 20.75" O.C.			
PRS	4 @ 20.46" O.C.	2 @ 31.13" O.C.			
PRL	3 @ 36.13" O.C.	2 @ 44" O.C.			
SLU180	4 @ 35.08" O.C.	3 @ 37" O.C.			
SLM1830	5 @ 29.06" O.C	4 @ 24.67" O.C.			
SAV1518	4 @ 37.38" O.C	3 @ 35.56" O.C.			
SAV2025	4 @ 42.04" O.C	3 @ 35.56" O.C.			
SAV28	5 @ 35.63" O.C	3 @ 35.56" O.C.			

ASSUMES:

CONC SLAB fc= 4000PSI MINIMUM 6" MIN THICKNESS NORMAL WEIGHT CONCRETE OR SAND LIGHT WEIGHT Meets seismic requirements for the following codes: CBC 2019 IBC 2018 ROOF ANCHORAGE DETAIL
CBISC Series
LXS
LXL
SUN3672
PRD3715
PRS
PRL
SLU180
SLM1830
SAV1518
SAV2025
SAV28

CONCRETE ATTACHMENT

WELDED CURB


CENTER ON CURB FLANGE.
SEE TABLE FOR QUANTITY OF EVENLY
SPACED 3/4" Ø THREADED ROD IN HILTI
HIT-HY 200 EPOXY WITH 4" EMBED

NO.	OF	ANCHOR.	AGE BO	LTS I	REQUIRED

CURB	LONG SIDE	SHORT SIDE
LXS	7 @ 6.42" O.C.	4 @ 7.67" O.C.
LXL	7 @ 6.42" O.C.	5 @ 8.25" O.C.
SUN3672	9 @ 7.88" O.C.	4 @ 9.08" O.C.
PRD3715	14 @ 5.49" O.C.	9 @ 5.19" O.C.
PRS	10 @ 6.82" O.C.	5 @ 7.78" O.C.
PRL	11 @ 7.23" O.C.	6 @ 8.8" O.C.
SLU180	12 @ 9.57" O.C.	8 @ 10.57" O.C.
SLM1830	18 @ 6.84" O.C.	11 @7.4" O.C.
SAV1518	12 @ 10.19" O.C.	6 @ 14.23" O.C.
SAV2025	14 @ 14.97" O.C.	6 @ 14.23" O.C.
SAV28	14 @ 10.96" O.C.	6 @ 14.23" O.C.

* SIX INCHES FROM EACH CORNER EVENLY SPACED.
** CENTERED.

WOOD ATTACHMENT

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED

'4" Ø x 4.5" SIMPSON SDS SCREWS W/ 2.75"
THREADED EMBED (SGMIN=0.50)

FOUR INCHES FROM EACH CORNER EVENLY SPACED

	NO. OF ANCHORAGE SCREWS REQUIRED					
CURB	LONG SIDE	SHORT SIDE				
LXS	7 @ 7.08" O.C.	5 @ 6.75" O.C.				
LXL	7 @ 7.08" O.C.	7 @ 6.17" O.C.				
SUN3672	9 @ 8.38" O.C.	5 @ 7.81" O.C.				
PRD3715	15 @ 5.38" O.C.	10 @ 5.06" O.C.				
PRS	10 @ 7.26" O.C.	6 @ 7.03" O.C.				
PRL	12 @ 6.93" O.C.	8 @ 6.86" O.C.				
SLU180	14 @ 8.4" O.C.	10 @ 8.67" O.C.				
SLM1830	19 @ 6.68" O.C.	13 @ 6.5" O.C.				
SAV1518	13 @ 9.68" O.C.	9 @ 9.39" O.C.				
SAV2025	15 @ 9.29" O.C.	9 @ 9.39" O.C.				
SAV28	16 @ 9.77" O.C.	9 @ 9.39" O.C.				

SE 3578
EMP. 6/30/23

STRUCTURE

OF CALIFORN

ProVent

3847 WABASH DRIVE MIRA LOMA, CA 91752

PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITTED TO:	F
COMPANY:	C
JOB NAME:	
EQUIPMENT:	D.
NOTES:	6,

FORM NO:
CB-62
DATE: REV: DRAWN BY:

6/30/2022 2 FMM

I						
	ProVent PV2203		per curb rail			
	CBISC-12 Iso Curb	CBISCSAV1518				
Unit:	Sunchoice 15-18					
Hanna Cumb Inform	aatian				Fv	
Upper Curb Inforn Hourb upper =	5.5 in	(Unight of upper ourb	ma:1) 4	EO	EC)
Lcurb =	121.125 in	(Height of upper curb			Wunit	
		(Length of upper curb	J		(×Lunk)	
wcurb =	80.125 in	(Width of upper curb)	, []			1
WGTupper =	103 lbs	(Weight of upper curb	i !	FPWAY		
# Clips long side =	3 # Clips	short side = 2		. 1 462	+	160 180
Unit Information	2200	(O		Wtme	WGTunit	Wi _{max}
WGTunit =	2380 lbs	(Oper. Weight of Unit)	(1)	1	Y	Fa Fa
Wtmax =	666 lbs	(Maximum corner wei	· ! ! «	Y		<u> </u>
Wtmin =	506 lbs	(Minimum corner weig	" / ↓			1. 1
Hunit =	49.25 in	(Height of unit above of	2012	4		
Hcm =	24.625 in	(Height to center of m	assl 깊(포함	` 	_	! '
Lunit =	129.75 in	(Length of unit)	}		∐ WGT _{CURB}	
Wunit =	88.75 in	(Width of unit)	*		7	<u>`</u>
				ŧ ∨		- ✓
	2018 IBC/2019 CBC	-		T _{mex}		Cmex
Ss =	2.85	(Worst case for major				
Fa =	1.20	(Default Site Class D -	- Table 11.4-1	ASCE 7-16)		
lp =	1.50	(Importance Factor Ca	ategory III Bui	ilding)		
Sms =	3.420	(Fa*Ss)	ap =	2.5		
Sds =	2.280	(2/3*Sms)	Rp =	2		
Fpmax =	5.130 Wp	(0.4*ap*Sds*Ip)*Wp*3	8/Rp <=1.6*Sd	ls*Ip*Wp		
FpmaxASD =	8547 lbs	(0.7*Fpmax)	Fpr	maxASD =	8916 lbs	
	(unit only)			(unit	+ upper rail)	
Wind Loading - 20	18 IBC/2019 CBC					
Kz =	1.13	(For 60 ft roof height,	Exposure C -	Table 26.10-1	ACSE 7-16)	
Kzt =	1.00	(Max. assumed topogr				
Kd =	0.85	(Directionality factor 1		ASCE 7-161		
Ke =	1.00	(Ground Elevation Fac				
V =	110	(Wind velocity, mph fo			Exp. Cat C. Fig 2	6.5-1D - ASCE7-16)
GCr _(horiz) =	1.9	(Refer Sect 29.4.1 ASC				,
GCr _(vert) =	1.5	(Refer Sect 29.4.1 ASC				
				/ 10 1 4005 7	1 /)	
qz	29.8 psf	= 0.00256*Kz*Kzt*Kd*			16)	
F _{h ASD trans} =	1673 lbs	= 0.6*qz*GCr*Lunit*(F				
F _{h ASD long} =	1145 lbs	= 0.6*qz*GCr*Wunit*(
F _{vert ASD} =	2141 lbs	= 0.6*qz*GCr*Lunit*W	Junit (Eq. 29	⁷ .4-3)		
Upper Curb Loadii	<u>ng</u>					
<u>Transverse:</u>	/00F !!	[E ACD#11 21	(4 0 4 (6)	A41 + .34		
Compression _{SEISMIC} =	4385 lbs	=[FpmaxASD*Hcm+2*				
$Tension_{SEISMIC} =$	2343 lbs	=[FpmaxASD*Hcm-2*				
$Compression_{WIND} =$	243 lbs	= $[F_{h ASD trans}*Hcm+2*0]$				
Tension _{WIND} =	978 lbs	$=[F_{h ASD trans}*Hcm-2*0]$.6*Wtmin*wc	urb+F _{vertASD} *wc	urb/2]/wcurb	
	> Negative values	ndicate opposite load.				
<u>Longitudinal:</u>						
$Compression_{SEISMIC} =$	3496 lbs	=[FpmaxASD*Hcm+2*				
$Tension_{SEISMIC} =$	1454 lbs	=[FpmaxASD*Hcm-2*				
$Compression_{WIND} =$	-38 lbs	=[F _{h ASD long} *Hcm+2*0.				
Tension _{WIND} =	696 lbs	$=[F_{h ASD long}^*Hcm-2*0.6]$	6*Wtmin*Lcu	rb+F _{vertASD} *Lcui	rb/2]/Lcurb	
	> Negative values	ndicate opposite load.				
Governing Reactio	•					
Transverse:	$Comp_{MAX} = 4385$	lbs> Along I	long edge of cu	urb.		

--> Along long edge of curb.

---> Along short edge of curb.

---> Along short edge of curb.

lbs

lbs

lbs

2343

3496

1454

 $Tens_{MAX} =$

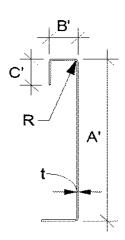
 $Comp_{MAX} =$

Tens_{MAX} =

(on long edge)

(on short edge)

Longitudinal:


^{---&}gt; Negative values indicate opposite load.

Calculate Section Properties of Curb

Α'=	5.500	in	a =	5.144 in = A'-(2r+t)
B'=	1.750	in	a'=	5.429 in = A'-t
C'=		in (0 if no lips)	b =	1.572 in = B'-[r+t/2+a(r+t/2)]
a =	0.000	(0 - no Lip; 1 w/ lip)	b'=	1.714 in = B'-(t/2+at/2)
R=	0.1069	(Inside bend radius)	c =	0.000 in = $a[C'-(r+t/2)]$
t =	0.0713	in	c'=	0.000 in = $a(C'-t/2)$
r'=	0.143	in = R+t/2	u =	$0.224 \text{ in } = \pi r/2$
x =	0.337	in (Distance between c	entroid and wel	o centerline)
lx =	2.687		rx =	2.08 in
ly =	0.169	in ⁴	ry =	0.521 in
A =	0.62	in ²	rmin =	0.521 in

Axial Compression

Pa =	4.273 k	(Max Axial Comp)		$\Omega_c =$	1.80
$Pn/\Omega c =$	5.794 k	163	$= 1.5$ $E = (0.650 \lambda c^2) E$		
Fe =	19.09 ksi		$F_{c} \le 1.5; \ F_{n} = \left(0.658^{\lambda_{c}^{2}}\right) F_{y}$	$\lambda - \frac{F_y}{F_y}$	$E = \frac{\pi^2 E}{\pi^2 E}$
λc =	1.62	$\frac{\overline{\Omega_c}}{\Omega_c} = \frac{\overline{\Omega_c}}{\Omega_c}$ If λ	$F_{rc} > 1.5; F_n = \frac{0.877}{\lambda_c^2} F_y$	$\kappa_c - \sqrt{F_e}$	$l_e = \frac{1}{(kl/r)^2}$
Fn =	16.74 ksi	-,	λ_c^2	,	(71)
Ly =	80.38 in	Lateral unbraced le	ength		

$k_y L_y / r_y = 123$ Compression Check = 0.K.

Check Web Crippling

Ρ

h =	5.5 in	Check lir	nits:	C = 7.50	(6table 02./ 1.2.fastanal
t =	0.0713 in	h/t =	77.14 ≤ 200	$C_R = 0.08$	(See table C3.4.1-2, fastened
N =	7.00	N/t =	98.18 ≤ 210	$C_N = 0.12$	to support, two flange, end
$\Omega_{\rm w}$ =	1.75	N/h =	$1.273 \le 2.0$	$C_h = 0.048$	loading)
$P_n =$	1.947 k	R/t =	$1.50 \le 12.0$	$/$ \sqrt{P}	$\left(\begin{array}{c} \overline{N} \end{array}\right) \left(\begin{array}{c} \overline{b} \end{array}\right)$
$P_n/\Omega_w =$	1.112 k		$P_n = Ct$	$t^2 F_y \sin(90) \left(1 - C_R \left \frac{K}{t} \right \right)$	$\left(1+C_N\sqrt{\frac{N}{t}}\right)\left(1-C_h\sqrt{\frac{h}{t}}\right)$
u _{Trans} =	1.462 k <u>webs</u>	stiffener REQ'D	# clips = 3	\ \(\sigma^{\ilde{\chi}}\)	\ \\'\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Check Web Stiffener 16Ga x 1-3/16in x 7in (C-channel) $P_n = 0.7 \left(P_{wc} + A_e F_y \right) \ge P_{wc}$ 0.0566 16 Gauge width of stiffener = 7.000 in ts= Pwc = 1.947 k 6.717 in 0.0849 in Pn = 14.669 k web of stiff. w = Rs= 1.70 $\Omega_c =$ 0.380 in^2 ***Check w/ts ≤ 1.28√E/Fys Ae =

(assume k=0.8)

w/ts = 118.675

1.28v(E/Fys) = 31.091 ---> w/ts over limit Use C3.7.2 $Pn/\Omega_c = 8.629 \text{ k}$

Corner Connections 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts

Tcrnmax = 2229 lbs $Max(F_{pmaxASD}/4 \ -OR- \ Fh_{ASDtrans}/4 \ corner \ connections)$ Vcrnmax = 2192 lbs Max(Tens/2 -OR- Comp/2 corner connections per side) 2480 lbs 1208 lbs Bolt: Tall = Vall = Threaded Insert: Tall = 2860 lbs Vall = 1536 lbs

> # of Bolts required for Tension = 0.9 # of Bolts required for Shear = 1.8

of Bolts Used = 3.0

Check Combined Stress in Bolts & Inserts: 0.905 O.K.

Check 1/8" welded connection	< U	SE WELD	Ω =	2.35	
Assume L/t > 25: 25*t =	1.783 in	P_{n} / $1_{0.75}$	41 F > 11	$L_{req'd} = \frac{V}{0}.$	$r_{eq}\Omega$
Lrea'd =	1.482 in	$\Omega_{\Omega} = \frac{1}{\Omega} 0.75$	$tLr_u \geq v_{req}$	$L_{req'd} - \overline{0}$.	$75tF_{ii}$

Connection Unit to Curb Clip	#10 SMS screw	Ω =	3.0
t1 = 0.1017 in (clip th	ickness) t2/t1 = 0.7	Fu1 =	65 ksi
t2 = 0.0713 in (unit b	ase rail thickness)	Fu2 =	65 ksi
d = 0.190 in (screw	diameter) d	w = 0.375 i	in (nom. washer diameter)
For t2/t1 ≤ 1.0: Pns	= 2266 # <u>For t2/t1 ≥ 2</u>	5.	, T
Shear : $P_{ns} = 4.2F_{u2}\sqrt{t_2^3d}$ 2.2		s = 2377 #	†a
Tension : $P_{ns} = 2.7t_1 dF_{u1}$ 3.3			
$P_{ns} = 2.7t_2 dF_{u2}$ 2.3			1 11
$r_{ns} = 2.77 c_2 c_1 r_{12}$ 2.5 Pns/ Ω = 755 #	7 ns = 1. 02 at 1	2.001	11
$Pss/\Omega = 540 \# <- Control$	ls		. []
Pnot = 0.748 k (screw	$P_{not} = 0.85$	$f_c dF_{u2}$	
	pull-out strength) $t_c = \min(pull-over strength) P_{nov} = 1.5t_1$	(t_1, t_2)	
Pts/ Ω = 249 # <- Control		$u_w r_{u1}$	
$Pts/\Omega = 820 \#$	(full tensile screw capacity)		· · · · · · · · · · · · · · · · · · ·
Shear(k) # clips		vs spacing	
Long side: 4.273 3	1.42 540 # 4	2.00 in	
Short side: 4.273 2	2.14 540 # 4	2.00 in	
clip width (in) = 7.00	_	2.5 in	
min spacing = 0.57 in	<u> </u>	0.5 in (min. 1.5	'4)
Check Block shear rupture: 0.K.	thinnest part = 0.0713		
Fv = 50 ksi	$\Omega = 2.22 \text{ bolt/scr}$		ppacs
Agv = 0.661 in^2		Ant =	0.117 in ²
$R_{\rm N}/\Omega = 12.372 \text{ k}$	$R_n = 0.6F_v A_{av} + F_u A_{nt} \le 0.6F_v$		3.117 III
111/22 - 12.072 K	$n_n = 0.01 yrigv + 1urint \le 0.01$	1-nv -u-nt	i _

Loads at each Isolator

Transverse loading:

isolators:

isolators:

(on long edge)

Longitudinal loading:

(on short edge)

3

Type:

 $Comp_{MAX} =$

 $Tens_{MAX} =$

 $Shear_{MAX} =$

 $Comp_{MAX} =$

 $Tens_{MAX} =$

 $Shear_{MAX} =$

6.0 in

CQA

1927.7

934.5

891.6

1663.4 lbs

1001.3 lbs 891.6

lbs

lbs

lbs

Curb Loads	СО	pied	from	above)

				_
<u>Transverse:</u>	Comp _{MAX} =	4990	lbs	
(on long edge)	Tens _{MAX} =	3004	lbs	
	Shear _{MAX} =	8916	lbs	
Longitudinal:	Comp _{MAX} =	3855	lbs	
(on short edge)	Tens _{MAX} =	1869	lbs	
	Shear _{MAX} =	8916	lbs	
		4 000 1	0.457.1	

Max compression force on isolator: $1.928 \text{ k} \leq 3.176 \text{ k}$ **Q.K.** Max uplift on isolator: 1.001 k $\leq 3.176 \text{ k}$ 0.K. Max shear on isolator: 0.892 k $\leq 1.163 \text{ k}$ 0.K.

Forces on top bolt:

Tension = 1.001 k $d_b = 0.375$ 0.892 k Shear =

7.0 in oper rail, t = 0.07132.00 $P_n = teF_u$ Ω = Shear on curb rail: (Appendix A, Section E3.1 AISI) Shear O.K. $Pn/\Omega = 4.635 \text{ k}$ 1.0 e = (Appendix A, Section E3.2 AISI)

Ω = Net section rupture: 2.22 $P_n = A_n F_t$ $Pn/\Omega = 4.989 \text{ k}$ An = 0.116

N.S.R. O.K. $F_t = (0.1 + 3d/s)F_u \le F_u = 43.063$ ksi Bolt Bearing Strength: $P_n = Cm_f dt F_u$ $\Omega = 2.50$ (Section E3.3.1 AISI)

 $Pn/\Omega = 2.086 \text{ k}$ d/t =5.26

Bearing O.K. C = 3.001.00 mf =

Shear and tension in bolt: (Appendix A, Section E3.4 AISI)

 $P_{nt} = A_b F_{nt}$ Fnt = 40.5 ksi $A_b =$ 0.1104 in² Tension $Pnt/\Omega = 1.988 k$ Bolt tension O.K. $\Omega t =$ 2.25 (Table E3.4-1, AISI) $P_{nv} = A_b F_{nv}$ Fnv = 24.0 Ωv = 2.40 (Table E3.4-1, AISI) ksi Shear $Pnv/\Omega = 1.104 k$ **Bolt shear 0.K.**

in

Combined Shear and tension in bolt:

 $F'_{nt} = 1.3F_{nt} - \frac{\Omega F_{nt}}{F_{nv}} f_v \le F_{nt}$ ft = 9.07 8.07 fv = 0.K. ksi ksi F'nt = 19.95 ksi Fnv/Ω = 10.00 ksi $P'_{nt} = A_b F'_{nt}$ $P'nt/\Omega = 0.979 k$ No Good - Use Welds

Client:	ProVent	PV2203		Base curb
Project:	CBISC-12	Iso Curb	CBISCSAV1518	
Unit:	Sunchoice	15-18		

01111.	anchoice to to							
Base Curb Informati	i				. F _V			
Hbase curb =	<u>14 in</u>	(Hainht of book sumb)		EO	F. V	EQ		-4
		(Height of base curb)]		∀Vur]
Lcurb =	124.125 in	(Length of base curb)	, 		(× Lu	nk.)] 1
wcurb =	83.125 in	(Width of base curb)					*. *	
WGTbase =	553 lbs	(Weight of base curb)		Frus				1_
# Springs long side =	3 # Springs	s short side = 2 불		1 P W P	<u>"</u>			180
Unit Information	2002 11		7 1 1	Wtmsn		WGTunit	Wilmax	
WGTunit =	2380 lbs	(Oper. Weight of Unit + 5%)	HCm		. ▼	***************************************		Fa
Wt'max =	692 lbs	(Wtmax+1/4*WGTupper)		y			Ť	
Wt'min =	532 lbs	(Wtmin+1/4*WGTupper))						u i
Hunit =	49.25 in	(Height of unit above curb)	Hrung upper					*
H'cm =	34.625 in		를 끌 크	`	_		'	
Lunit =	129.75 in	(Length of unit)			Ţ	WGT _{CURB}		
Wunit =	88.75 in	(Width of unit)	•		7		<u>_</u>	
WGTunit+upper+base =	3036 lbs	(Total weight)	-	↓				-v
Seismic Loading - 20		-		Tmax			C	Zalex
Ss =	2.85	(Worst case for majority of Ca						
Fa =	1.20	(Default Site Class D - Table 1						
Ip =	1.50	(Importance Factor Category	III Bui	•				
Sms =	3.420		ap =	2.5				
Sds =	2.280		Rp =	2				
Fpmax =	5.130 Wp	(0.4*ap*Sds*Ip)*Wp*3/Rp <=1						
FpmaxASD =	8916 lbs	(0.7*Fpmax)	Fpn	naxASD =	10902	lbs		
	ınit + upper rail)			(unit + upper	rail + ba	ase curb)		
Wind Loading - 2018								
Kz =	1.13	(For 60 ft roof height, Exposur		Table 26.10-1	1 ACSE 7	-16)		
Kzt =	1.00	(Max. assumed topographic fa						
Kd =	0.85	(Directionality factor Table 26						
Ke =	1.00	(Ground Elevation Factor Tabl			-			
V =	110	(Wind velocity, mph for Occup	ancy	Cat III-IV bldg	s Exp. C	at C, Fig 26.5	5-1D - A	(SCE7-16)
GCr _(horiz) =	1.9	(Refer Sect 29.4.1 ASCE 7-16)						
GCr _(vert) =	1.5	(Refer Sect 29.4.1 ASCE 7-16)						
qz	29.8 psf	$= 0.00256*Kz*Kzt*Kd*Ke*V^{2}$ ((Ea. 2	6.10-1 ASCE 7	7-16)			
F _{h ASD trans} =	2239 lbs	= 0.6*qz*GCr*Lunit*(Hunit+H]		
F _{h ASD long} =	1531 lbs	= 0.6*qz*GCr*Wunit*(Hunit+H						
F _{vert ASD} =	2141 lbs	= 0.6*qz*GCr*Lunit*Wunit (E						

Base Curb Loading

_						
- 1	ra	ns	VΔ	rc	Δ	
	ı a	113	٧C	<u> </u>	C	•

Compression _{SEISMIC} =	5540 lbs	=[FpmaxASD*H'cm+2*[1+0.14S _{DS} J*Wt'max*wcurb]/wcurb			
Tension _{SEISMIC} =	3416 lbs	=[FpmaxASD*H'cm-2*(0.6-0.14S _{DS})*Wt'min*wcurb)]/wcurb			
Compression _{WIND} =	692 lbs	=[F _{h ASD trans} *H'cm+2*0.6*Wt'max*wcurb-F _{vert ASD} *wcurb/2]/wcurb			
Tension _{WIND} =	1365 lbs	=[F _{h ASD trans} *H'cm-2*0.6*Wt'min*wcurb+F _{vertASD} *wcurb/2]/wcurb			
> Negative values indicate opposite load					

Longitudinal:

Compression _{SEISMIC} =	4313 lbs	=[FpmaxASD*H'cm+2*(1+0.14*S _{DS})*Wt'max*Lcurb]/Lcurb
Tension _{SEISMIC} =	2189 lbs	=[FpmaxASD*H'cm-2*(0.6-0.14S _{DS})*Wt'min*Lcurb)]/Lcurb
Compression _{WIND} =	187 lbs	= $[F_{h ASD long}*H'cm+2*0.6*Wt'max*Lcurb-F_{vertASD}*Lcurb/2]/Lcurb$
Tension _{WIND} =	860 lbs	=[F _{h ASD long} *H'cm-2*0.6*Wt'min*Lcurb+F _{vertASD} *Lcurb/2]/Lcurb

---> Negative values indicate opposite load. Governing Reactions:

<u>Transverse:</u>	Comp _{MAX} =	5540	lbs	> Along long edge of curb.
(on long edge)	Tens _{MAX} =	3416	lbs	> Along long edge of curb.
Longitudinal:	Comp _{MAX} =	4313	lbs	> Along short edge of curb.
(on short edge)	Tens _{MAX} =	2189	lbs	> Along short edge of curb.

^{---&}gt; Negative values indicate opposite load.

6593 Riverdale St. San Diego, CA 92120 (619)727-4800

Page _ 5 of 7 __

A'

Calculate Section Properties of Curb

A'=	14.000	in	a =	13.492 in = A'-(2r+t)
B'=	1.750	in	a'=	13.898 in $= A'-t$
C'=	1.000	in (0 if no lips)	b =	1.242 in = B'-[r+t/2+a(r+t/2)]
a =	1.000	(0 - no Lip; 1 w/ lip)	b'=	1.648 in = $B'-(t/2+at/2)$
R =	0.1525	(Inside bend radius)	c =	0.746 in = $a[C'-(r+t/2)]$
t =	0.1017	in	c'=	0.949 in = $a(C'-t/2)$
r'=	0.203	in = R+t/2	u =	$0.319 \text{ in } = \pi r/2$
x =	0.297	in (Distance between	centroid and we	eb centerline)
lx =	45.336	in	rx =	4.88 in
ly =	0.610	in	ry =	0.566 in
A =	1.91	in ²	rmin =	0.566 in

Pu =	4.458 k	(Max Axial Comp)	Ω_c =	1.80
$Pn/\Omega c =$	9.779 k	(0.650^{12}) F	_	
Fe =	10.53 ksi	$\frac{P_n}{\Omega_c} = \frac{F_n A}{\Omega_c} \qquad If \ \lambda_c \le 1.5; \ F_n = \left(0.658^{\lambda_c^2}\right) F_y$ $If \ \lambda_c > 1.5; \ F_n = \frac{0.877}{\lambda_c^2} F_y$	F_y	$\pi^2 E$
λc =	2.18	$\frac{\overline{\Omega_c}}{\Omega_c} = \frac{0.877}{\Omega_c}$	$\Lambda_c = \sqrt{\overline{F_e}}$	$r_e = \frac{1}{(kl/)^2}$
Fn =	9.23 ksi	$\lambda_c > 1.3, \lambda_n = \lambda_c^2 + \lambda_c^2$	V	(7r)
Ly =	117.63 in	Lateral unbraced length		
$k_v L_v / r_v =$	166	(assume k=0.8)		

$k_v L_v / r_v =$ Compression Check = 0.K.

Check Web Crippling

h =	14 in	Check lii	mits:	C = 4.00	7 (5 00 (4.0 ()
t =	0.1017 in	h/t =	$137.66 \le 200$	$C_R = 0.14$	(See table C3.4.1-2, fastened
N =	7.00	N/t =	68.83 ≤ 210	$C_N = 0.35$	to support, one flange, end
$\Omega_{\rm w}$ =	1.75	N/h =	$0.5 \le 2.0$	$C_h = 0.02$	loading)
P _n =	4.578 k	R/t =	$1.50 \le 9.0$	/	$\lceil p \rceil / \lceil p \rceil / \lceil p \rceil$
$P_n/\Omega_w =$	2.616 k		$P_n =$	$Ct^{2}F_{v}\sin(90)$ $1-C_{E}$	$\left(\frac{R}{t}\right)\left(1+C_N\right)\left(1-C_h\right)\left(1-C_h\right)$
Long side: $Pu_{Trans} =$	1.847 k	<u>0.K.</u>	# clips = 3	(\sqrt{t}
Short side: $Pu_{Long} =$	2.157 k	<u>0.K.</u>	# clips = 2		

Check Web Stiffener N/A

Corner Connections 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts

Tcrnmax =	2726 lbs	•	Max(F _{pmaxAS}	_{SD} /4 -0	R- Fh _{ASDtrans} /4 o	corner cont	nections)
Vcrnmax =	2770 lbs		Max(Tens/2	2 -OR-	Comp/2 corner	connection	ns per side)
	Bolt:	Tall =	2480	lbs	Vall =	1208	lbs
Threaded	Insert:	Tall =	2860	lbs	Vall =	1536	lbs
# 0	of Bolts req	uired fo	r Tension =		1.1	<u>-</u>	

of Bolts required for Shear = # of Bolts Used = 4.0

Check Combined Stress in Bolts & Inserts: 0.848 **0.K.**

<--- USE WELD Check 1/8" welded connection

Curb Loads (copi	ed from upper rail cal	cs)	_	Loads at each Isolat	<u>or</u> Type:	CQA	
<u>Transverse:</u>	Comp _{MAX} = 4990	lbs		Transverse loading:	Comp _{MAX} =	1663.4	lbs
(on long edge)	Tens _{MAX} = 3004	lbs		(on long edge)	Tens _{MAX} =		lbs
	Shear _{MAX} = 8916	lbs		# isolators: 3	Shear _{MAX} =	891.6	lbs
Longitudinal:	Comp _{MAX} = 3855	lbs	<u> </u>	Longitudinal loading			lbs
(on short edge)	Tens _{MAX} = 1869	lbs		(on short edge)	Tens _{MAX} =	934.5	lbs
	Shear _{MAX} = 8916	lbs		# isolators: 2	Shear _{MAX} =	891.6	lbs
compression force	on isolator: 1.928 k	≤ 3.176 k	0.K.				
Max uplift	on isolator: 1.001 k	≤ 3.176 k	<u>0.K.</u>	<u></u>	6.0 in		*
Max shear	on isolator: 0.892 k	≤ 1.163 k	<u>0.K.</u>	2.0 in			$\stackrel{\sim}{\frown}$
Forces on bottom	<u>bolts:</u>			2.0 111			\cup
$d_b =$	0.5 in						
base curb, t =	0.1017 in				7.0 in		≜ T
Tension =	0.501 k/bolt					t ₂	
Shear =	0.446 k/bolt						
Shear on base cur	\underline{b} : $P_n = teF_u$	Ω =	2.00	(Appendix A, Section	on E3.1 AISI)	tı 🚉	-
	$Pn/\Omega = 6.611 k$	e =	1.0	in		. 16	
	Shear O.K.						
Net section ruptur		Ω =		(Appendix A, Section	on E3.2 AISI)		
	$Pn/\Omega = 8.428 \text{ k}$	An =		in		•	
	N.S.R. O.K.			$F_u \le F_u = 55.250$		٠.,	····
Bolt Bearing Strer	$\underline{ngth:} P_n = Cm_f dt F_u$	Ω =		(Section E3.3.1 AIS	1)		
	$Pn/\Omega = 3.966 \text{ k}$	d/t =					
	Bearing O.K.	C =		mf = 1.00			
Shear and tension		(Appendix					
Tension		Fnt =		$A_b = 0.1963$	in ²		
	$Pnt/\Omega = 3.927 k$			$\Omega t = 2.25$			
Shear	$P_{nv} = A_b F_{nv}$		27.0 ksi				* 1.3
	$Pnv/\Omega = 2.209 k$	Bolt shear	0.K.	***(Table E3.4-1,	AISI)***	-	'
Combined Shear a			5.40				ψT
$F'_{nt} = 1$	$1.3F_{nt} - \frac{\Omega F_{nt}}{F_{nv}} f_v \le F_{nt}$	ft =	5.10		= 2.27	ksi	0.K.
	11.0		45.00	ksi Fnv/Ω		ksi 5 -4	
Connection of Con	$P'_{nt} = A_b F'_{nt}$	$P \text{ nt/}\Omega =$	3.927 K	Combined Not Appli	cable -> F nt	= Fnt	
Roof Loading	b to Supporting Struct SEISMIC: (0.6-0.14S			WIND: 0.6D + V	V		
_			lhc			lhc	7
<u>Transverse:</u>	Uplift _{MAX} = 8380 lbs			Shear _{MAX}] :urb/21/
ompression _{SEISMIC} =				Hbase curb)+(1+0.149			
Tension _{SEISMIC} =	5951 lbs			Hbase curb)-(0.6-0.14			
Compression _{WIND} =	1150 lbs	=[Fh ASD trans	^(Hˈcm+H	base curb)+0.6*WGT _u	nit+upper+base*W	curb/2-F _{ver}	_{t ASD} *wcurb

Roof Loading	SEISMIC: (0.6-0.14S	_{DS})D + 0.7E	WIND: 0.6D + W		
<u>Transverse:</u>	Uplift _{MAX} =	5951 lbs	Shear _{MAX} =	5451 lbs	
Compression _{SEISMIC} =	8380 lbs	=[FpmaxASD*(H'cm+F	Hbase curb)+ $(1+0.14S_{DS})*V$	NGT _{unit+upper+base} *wc	urb/2]/wcurb
Tension _{SEISMIC} =	5951 lbs	=[FpmaxASD*(H'cm+H	Hbase curb)- $(0.6-0.14S_{DS})$	*WGT _{unit+upper+base} *w	curb/2]/wcurb
Compression _{WIND} =	1150 lbs	=[Fh ASD trans*(H'cm+Hb	oase curb)+0.6*WGT _{unit+upp}	_{er+base} *wcurb/2-F _{vert}	ASD*wcurb/2]/wcurb
Tension _{WIND} =	1469 lbs	=[F _{h ASD trans} *(H'cm+Hb	oase curb)-0.6*WGT _{unit+upp}	_{er+base} *wcurb/2+F _{ver}	_{tASD} *wcurb/2]/wcurb
<u>Longitudinal:</u>	Uplift _{MAX} =		Shear _{MAX} =	5451 lbs	
Compression _{SEISMIC} =	6273 lbs	=[FpmaxASD*(H'cm+F	Hbase curb)+(1+0.14S _{DS})*\	NGT _{unit+upper+base} *Lct	urb/2]/Lcurb
$Tension_{SEISMIC} =$	3845 lbs	=[FpmaxASD*(H'cm+H	Hbase curb)-(0.6-0.14S _{DS})	*WGT _{unit+upper+base} *L	curb/2]/Lcurb
$Compression_{WIND} =$	440 lbs	=[F _{h ASD long} *(H'cm+Hba	ase curb)+0.6*WGT _{unit+uppe}	er+base*Lcurb/2-F _{vert}	_{ASD} *Lcurb/2]/Lcurb
Tension _{WIND} =	760 lbs	$=[F_{h ASD long}*(H'cm+Hb$	ase curb)-0.6*WGT _{unit+uppe}	er+base*Lcurb/2+F _{vert/}	_{ASD} *Lcurb/2]/Lcurb
Wood Attachment	: 1/4"φ x 4.5	" Simpson SDS screws	w/ 2.75" threaded emt [S	Gmin = 0.43)	

Wood Attachment:	1/4"φ x 4.5	" Simpson S	SDS s	screw: w/ 2.75" thr	<u>eaded emt</u>	(SGmi	n = 0.43J	
	Tall _{metal} =	1397	lbs	Vall _{metal} =	1230	lbs		
<u>Transverse:</u>	$Tall_{wood} =$	760	lbs	$Vall_{wood} =$	672	lbs		
# of Screws R	eq'd for Uplift =	7.83		COMBINED	LOADING:	C).971 O.K.	
# of Screws Ro	eq'd for Shear =	8.11		Req'd Min	Spacing =		9.68 in o.c.	
Total # of sc	rews required =	13			-			

Use 13 - 1/4"φ x 4.5" Simpson SDS screws @ 9.7 in o.c. along long side of curb w/ 2.75" threaded embed

Longitudinal: # of Screws Req'd for Uplift = 5.06 COMBINED LOADING: 0.931 O.K.

9.39 in o.c. # of Screws Reg'd for Shear = Screw Spacing = 8.11 Total # of screws required = 9 Use 9 - 1/4"φ x 4.5" Simpson SDS screws @ 9.4 in o.c. along short side of curb w/ 2.75" threaded embed Steel Deck Attachment: 1/2" ϕ A307 Bolts to steel angle below deck 3927 lbs 2209 lbs Tall_{bolt} = Vallbolt = Transverse: 2975 lbs 3072 lbs $Tall_{metal} =$ Vall_{metal} = # of Bolts Req'd for Uplift = 2.00 COMBINED LOADING: 0.853 O.K. # of Bolts Req'd for Shear = 37.38 in o.c. Bolt Spacing = 2.47 Total # of bolts required = 4 Use 4 - 1/2" φ A307 Bolts to steel angle below deck @ 37.4 in o.c. along long side of curb Longitudinal: # of Bolts Reg'd for Uplift = 1.29 COMBINED LOADING: 0.676 O.K. # of Bolts Reg'd for Shear = 2.47 Bolt Spacing = 35.56 in o.c. Total # of bolts required = 3 Use 3 - 1/2" φ A307 Bolts to steel angle below deck @ 35.6 in o.c. along short side of curb **For Concrete anchorage:** SEISMIC $(0.6-0.14S_{DS})D + 0.7\Omega_{o}E$ Concrete Attachment: 3/4" ϕ thrd'd rods in Hilti Hit-HY 200 epoxy w/ 4" embed $Tall_{LRFD} =$ 1957 lbs $Vall_{LRFD} =$ 4540 lbs $\propto = (1 + 0.2SDS)D + 2.5E = 1.708$ $Vall_{ASD} = Vall_{LRFD}/\alpha =$ $Tall_{ASD} = Tall_{LRFD}/\alpha =$ 1146 lbs 2658 lbs (D = 0.758, E = 0.242) $\overline{\mathsf{Up}}\mathsf{lift}_{\mathsf{MAX}} =$ 12329 lbs Shear_{MAX} = 10902 lbs **Transverse:** $= [\Omega o*FpmaxASD*(H'cm+Hbase\ curb) + (1+0.14S_{DS})*WGT_{unit+curb+base}*wcurb/2]/wcurb$ Compression_{SEISMIC} = 14757 lbs =[Ωo*FpmaxASD*(H'cm+Hbase curb)-(0.6-0.14S_{DS})*WGT_{unit+curb+base}*wcurb/2]/wcurb Tension_{SEISMIC} = 12329 lbs 10902 lbs =Ωo*FpmaxASD/2 $Shear_{SEISMIC} =$ Tapplied = Min Bolts Req'd Uplift = 10.76 spacing = 11.21 in o.c. 1027.4 lbs Vapplied = Min Bolts Req'd Shear = 4.10 spacing = 28.03 in o.c. 605.7 lbs $\frac{V_{apllied}}{2} \le 1.2$ Try using 12 bolts $T_{applied}$ COMBINED LOADING = = 1.1210.19 $\overline{V_{allow,ASD}}$ spaced at in o.c. $T_{allow,ASD}$ Use 12 - 3/4" ϕ thrd'd rods in Hilti Hit-HY 200 epoxy @ 10.2 in o.c. max. along long side of curb w/ 4" embed Shear_{MAX} = Longitudinal: $Uplift_{MAX} =$ 8116 lbs 10902 lbs = $[\Omega o*FpmaxASD*(H'cm+Hbase curb)+(1+0.14S_{DS})*WGT_{unit+curb+base}*Lcurb/2]/Lcurb$ 10544 lbs 8116 lbs = $[\Omega o*FpmaxASD*(H'cm+Hbase curb)-(0.6-0.14S_{DS})*WGT_{unit+curb+base}*Lcurb/2]/Lcurb$ Tension_{SEISMIC} =

 $Compression_{SEISMIC} =$

10902 lbs =Ωo*FpmaxASD/2 $Shear_{SEISMIC} =$

Min Bolts Req'd Uplift = 7.08 spacing = 10.16 in o.c. Tapplied = 1014.4 lbs Min Bolts Req'd Shear = 4.10 spacing = 17.78 in o.c. Vapplied = 605.7 lbs bolts Try using

 $T_{applied}$ $V_{apllied}$ COMBINED LOADING $\overline{V_{allow,ASD}}$ spaced at 14.23 $T_{allow,ASD}$ in o.c.

Use 6 - 3/4" ϕ thrd'd rods in Hilti Hit-HY 200 epoxy @ 14.2 in o.c. max. along short side of curb w/ 4" embed

CURB DESIGN SU	MMARY:	<u>:</u> CBISC-12 CBISCSAV1518 U I		Unit:	Sunchoice 15-18				
UPPER CURB RAIL	THICKNESS:	0.1017 in	12 Gauge						
UNIT CLIP	THICKNESS:	0.1017 in	12 Gauge						
# OF CLIPS (LONG SIDE) - 3 clips with 4 - #10 SMS screws each clip									
WEB STIFFENER: 16Ga x 1-3/16in x 7in (C-channel) stiffener at each clip									
# OF CLIPS (SHORT SIDE) - 2 clips with 4 - #10 SMS screws each clip									
WEB STIFFENER: 16Ga x 1-3/16in x 7in (C-channel) stiffener at each clip									
VIBRATION ISO	LATOR TYPE:	CQA	Top stud	diameter:	3/8	(3) - CQA Isolators long side			
Anchor bolt diameter: 1/2 Anchor hole diamter: 9/16 (2) - CQA Isolators short side									
BASE CURB	BASE CURB THICKNESS: 0.1017 in 12 Gauge *** Must weld top of CQA***								
WEB STIFFENER: NOT REQUIRED									
CORNER CONNECTION: Use minimum 4 - 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts									
CURB		WOOD		STE	<u>EL</u>	<u>CONCRETE</u>			
ANCHORAGE 1/4" ϕ x 4.5"		Simpson SE	OS screws w/	/ 1/2" φ A307 Bolts t		3/4" φ thrd'd rods in Hilti Hit-HY			
ANCHORAGE	2.75" thre	aded embed	d (SGmin =	steel angle	below deck	200 epoxy w/ 4" embed			
LONG DIRECTION	13	@ 9.68 in o	.c.	4 @ 37.38 in o.c.		12 @ 10.19 in o.c.			
SHORT DIRECTION	9	@ 9.39 in o.	.c.	3 @ 35.5	6 in o.c.	6 @ 14.23 in o.c.			