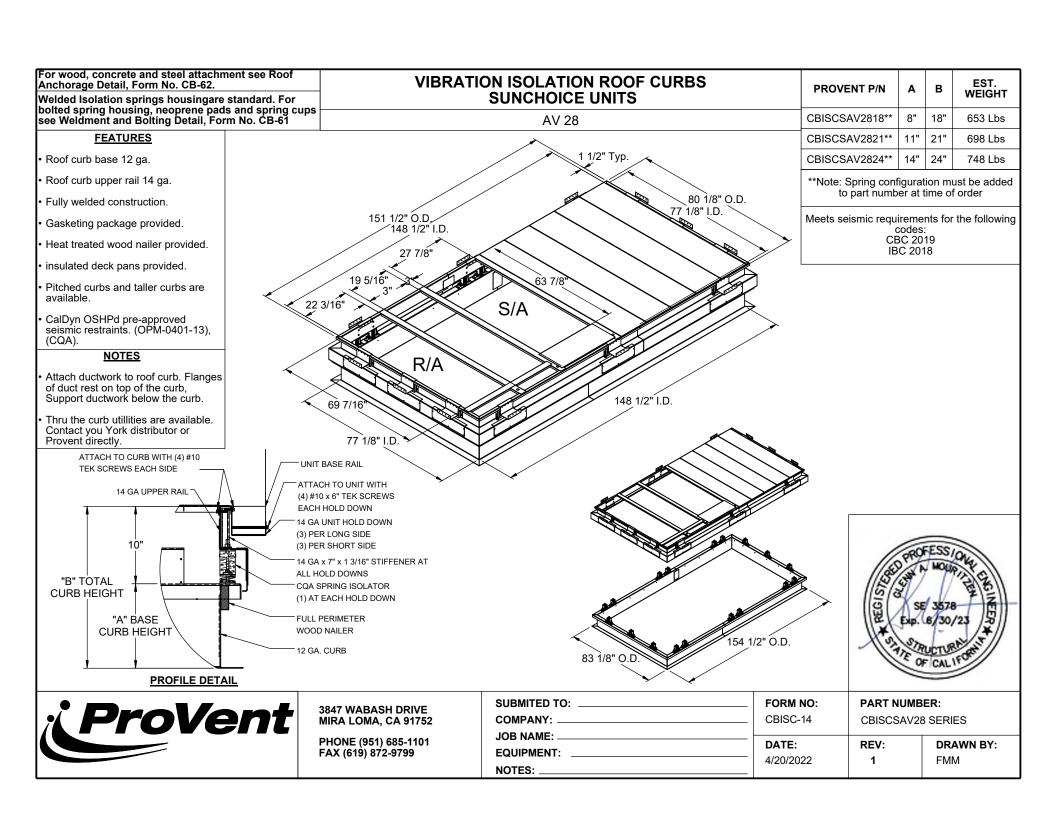
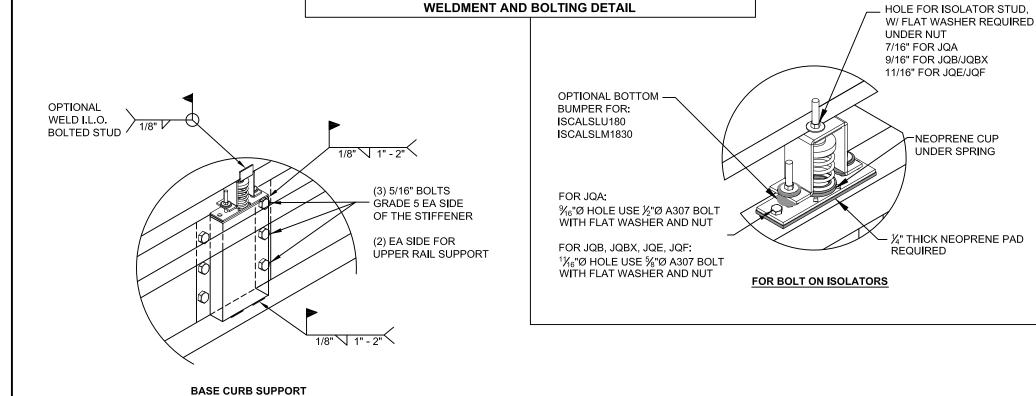


Structural Calculations for CBISC-14 Series

CBISCSAV28** SERIES


Prepared for:

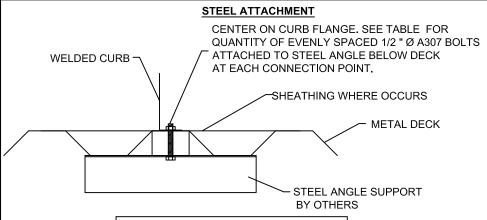

PROVENT / RRS

3847 Wabash Drive Mira Loma, CA 91725

Date: July 13, 2022

Project Number: PV2203

3847 WABASH DRIVE MIRA LOMA, CA 91725


PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITTED TO:	F
COMPANY:	(
JOB NAME:	H
EQUIPMENT:	[
NOTES:	(

FORM NO: CB-61

 DATE:
 REV:
 DRAWN BY:

 02/08/18
 1
 ALL

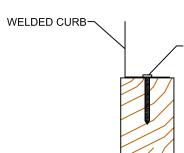
	NO. OF ANCHORAGE BOLTS REQUIRED				
CURB	LONG SIDE	SHORT SIDE			
LXS	3 @ 19.25" O.C.	2 @ 23" O.C.			
LXL	3 @ 19.25" O.C.	2 @ 33" O.C.			
SUN3672	4 @ 21" O.C.	2 @ 27.25" O.C.			
PRD3715	6 @ 14.28" O.C.	3 @ 20.75" O.C.			
PRS PRL	4 @ 20.46" O.C.	2 @ 31.13" O.C.			
	3 @ 36.13" O.C.	2 @ 44" O.C.			
SLU180	4 @ 35.08" O.C.	3 @ 37" O.C.			
SLM1830	5 @ 29.06" O.C	4 @ 24.67" O.C.			
SAV1518	4 @ 37.38" O.C	3 @ 35.56" O.C.			
SAV2025	4 @ 42.04" O.C	3 @ 35.56" O.C.			
SAV28	5 @ 35.63" O.C	3 @ 35.56" O.C.			

ASSUMES:

CONC SLAB fc= 4000PSI MINIMUM 6" MIN THICKNESS NORMAL WEIGHT CONCRETE OR SAND LIGHT WEIGHT Meets seismic requirements for the following codes: CBC 2019 IBC 2018 ROOF ANCHORAGE DETAIL
CBISC Series
LXS
LXL
SUN3672
PRD3715
PRS
PRL
SLU180
SLM1830
SAV1518
SAV2025
SAV28

CONCRETE ATTACHMENT

WELDED CURB


CENTER ON CURB FLANGE.
SEE TABLE FOR QUANTITY OF EVENLY
SPACED 3/4" Ø THREADED ROD IN HILTI
HIT-HY 200 EPOXY WITH 4" EMBED

NO.	OF	ANCHOR.	AGE BO	LTS I	REQUIRED

CURB	LONG SIDE	SHORT SIDE
LXS	7 @ 6.42" O.C.	4 @ 7.67" O.C.
LXL	7 @ 6.42" O.C.	5 @ 8.25" O.C.
SUN3672	9 @ 7.88" O.C.	4 @ 9.08" O.C.
PRD3715	14 @ 5.49" O.C.	9 @ 5.19" O.C.
PRS	10 @ 6.82" O.C.	5 @ 7.78" O.C.
PRL	11 @ 7.23" O.C.	6 @ 8.8" O.C.
SLU180	12 @ 9.57" O.C.	8 @ 10.57" O.C.
SLM1830	18 @ 6.84" O.C.	11 @7.4" O.C.
SAV1518	12 @ 10.19" O.C.	6 @ 14.23" O.C.
SAV2025	14 @ 14.97" O.C.	6 @ 14.23" O.C.
SAV28	14 @ 10.96" O.C.	6 @ 14.23" O.C.

* SIX INCHES FROM EACH CORNER EVENLY SPACED.
** CENTERED.

WOOD ATTACHMENT

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED

'4" Ø x 4.5" SIMPSON SDS SCREWS W/ 2.75"
THREADED EMBED (SGMIN=0.50)

FOUR INCHES FROM EACH CORNER EVENLY SPACED

	NO. OF ANCHORAGE SCREWS REQUIRED				
CURB	LONG SIDE	SHORT SIDE			
LXS	7 @ 7.08" O.C.	5 @ 6.75" O.C.			
LXL	7 @ 7.08" O.C.	7 @ 6.17" O.C.			
SUN3672	9 @ 8.38" O.C.	5 @ 7.81" O.C.			
PRD3715	15 @ 5.38" O.C.	10 @ 5.06" O.C.			
PRS	10 @ 7.26" O.C.	6 @ 7.03" O.C.			
PRL	12 @ 6.93" O.C.	8 @ 6.86" O.C.			
SLU180	14 @ 8.4" O.C.	10 @ 8.67" O.C.			
SLM1830	19 @ 6.68" O.C.	13 @ 6.5" O.C.			
SAV1518	13 @ 9.68" O.C.	9 @ 9.39" O.C.			
SAV2025	15 @ 9.29" O.C.	9 @ 9.39" O.C.			
SAV28	16 @ 9.77" O.C.	9 @ 9.39" O.C.			

SE 3578
EMP. 6/30/23

STRUCTURE

OF CALIFORN

ProVent

3847 WABASH DRIVE MIRA LOMA, CA 91752

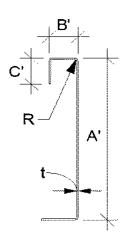
PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITTED TO:	F
COMPANY:	C
JOB NAME:	
EQUIPMENT:	D.
NOTES:	6,

FORM NO:
CB-62
DATE: REV: DRAWN BY:

6/30/2022 2 FMM

01: 1	D 1/ 1 D1/0000		a	
	ProVent PV2203 CBISC-14 Iso Curb	Upper curb rai CBISCSAV28	<u>u</u>	
	Sunchoice 28	CBISCSAVZ8	-	
Offit:	Sufficionce 26		<u> </u>	•
Upper Curb Inform	mation		F _V	•
Hcurb upper =		(Height of upper curb rail)	EO	EO
Lcurb =		(Length of upper curb)	VVu (×Li	
wcurb =		(Width of upper curb)		
WGTupper =		(Weight of upper curb)	i	i I
# Clips long side =	3 # Clips	s short side = 2	FPWAX	55
Unit Information	<u> </u>	Tanana Ta		[]
WGTunit =	2720 lbs	(Oper. Weight of Unit)	Wtms	WGTunit Wilmax Fa
Wtmax =	762 lbs	(Maximum corner weight)	` '	'
Wtmin =	578 lbs	(Minimum corner weight)	-t <i>y</i>	
Hunit =	57.22 in	(Height of unit above curb)	<u>.</u>	***************************************
Hcm =	28.61 in	(Height to center of mass)	§ 7	7
Lunit =	160.0625 in	(Length of unit)]	WGTcurs
Wunit =	88.75 in	(Width of unit)	-	<u> </u>
			◄ ∨	-
_	- 2018 IBC/2019 CBC		T _{max}	Conex
Ss =		(Worst case for majority of Califo		
Fa =	1.20	(Default Site Class D - Table 11.4		
lp =		(Importance Factor Category III E	·	
Sms =		(Fa*Ss) ap		
Sds =		(2/3*Sms) Rp =		
Fpmax =		(0.4*ap*Sds*Ip)*Wp*3/Rp <=1.6*5		N II
FpmaxASD =	9768 lbs (unit only)	(0.7*Fpmax) F	pmaxASD = 10170	
Wind Loading - 20	018 IBC/2019 CBC		(unit + upp	er rait)
Kz =		(For 60 ft roof height, Exposure C	- Table 26 10-1 ACSE	7_16]
Kzt =		(Max. assumed topographic factor		7-10)
Kd =		(Directionality factor Table 26.6-		
Ke =	1.00	(Ground Elevation Factor Table 2		
V =	110	(Wind velocity, mph for Occupance		Cat C. Fig 26 5-1D - ASCE7-16
GCr _(horiz) =		(Refer Sect 29.4.1 ASCE 7-16)	,	,g
GCr _(vert) =		(Refer Sect 29.4.1 ASCE 7-16)		
QZ		= $0.00256*Kz*Kzt*Kd*Ke*V^2$ (Eq.	26 10-1 ΔSCF 7-16)	
F _{h ASD trans} =		= 0.6*qz*GCr*Lunit*(Hunit+Hcurl		
F _{h ASD long} =		= 0.6*qz*GCr*Wunit*(Hunit+Hcur		
F _{vert ASD} =		= 0.6*qz*GCr*Lunit*Wunit (Eq.		
VEITAGE				
Upper Curb Loadi	ng			
<u>Transverse:</u>	_			
Compression _{SEISMIC} =	5497 lbs	= $[FpmaxASD*Hcm+2*(1+0.14S_{DS})]$	*Wtmax*wcurb]/wcurb)
$Tension_{SEISMIC} =$	3163 lbs	= $[FpmaxASD*Hcm-2*(0.6-0.14S_D)]$		
$Compression_{WIND} =$	437 lbs	= $[F_{h ASD trans}*Hcm+2*0.6*Wtmax*v]$		
Tension _{WIND} =		=[F _{h ASD trans} *Hcm-2*0.6*Wtmin*v	vcurb+F _{vertASD} *wcurb/2]]/wcurb
	> Negative values	indicate opposite load.		
<u>Longitudinal:</u>			Aug. 24 . 34	
Compression _{SEISMIC} =		= $[FpmaxASD*Hcm+2*(1+0.14*S_D)]$		
Tension _{SEISMIC} =		=[FpmaxASD*Hcm-2*(0.6-0.14S _D		
Compression _{WIND} =		$=[F_{h \text{ ASD long}}^* + Hcm + 2*0.6*Wtmax*L$		
Tension _{WIND} =		=[F _{h ASD long} *Hcm-2*0.6*Wtmin*Lo	.ui p+r _{vertASD} "LCurb/2]/	LCUI D
Governing Pagetis		indicate opposite load.		
Governing Reaction Transverse:	Comp _{MAX} = 5497	lbs> Along long edge of	curb.	
(on long edge)	Tens _{MAX} = 3477	lbs> Along long edge of		
Longitudinal:	$Comp_{MAX} = 3854$	lbs> Along short edge of		
(on short edge)		lbs> Along short edge o		
(on short edge)	1-10-01	indicate opposite load.	i cuib.	
	- Negative values	marcate opposite toau.		



Curb Design

$$Fy = 50 \text{ ksi}$$
 $Fu = 65 \text{ ksi}$ $E = 29500 \text{ ksi}$ $t = 0.0713 14 \text{ Gauge}$

Calculate Section Properties of Curb

A'=	5.500	in	a =	5.144 in = A'-(2r+t)
B'=	1.500	in	a'=	5.429 in = A'-t
C'=	0.500	in (0 if no lips)	b =	1.233 in = B'-[r+t/2+a(r+t/2)]
a =	0.500	(0 - no Lip; 1 w/ lip)	b'=	1.447 in = B'-(t/2+at/2)
R =	0.1069	(Inside bend radius)	c =	0.161 in = $a[C'-(r+t/2)]$
t =	0.0713	in	c'=	0.232 in = $a(C'-t/2)$
r'=	0.143	in = R+t/2	u =	$0.224 \text{ in } = \pi r/2$
x =	0.292	in (Distance between ce	ntroid and wel	b centerline)
lx =	2.515	in ⁴	rx =	2.04 in
ly =	0.133	in ⁴	ry =	0.470 in
A =	0.60	in ²	rmin =	0.470 in

Axial Compression 4.884 k (Max Axial Comp) 1.80 Pa = $Pn/\Omega c =$ 4.957 k If $\lambda_c \le 1.5$; $F_n = \left(0.658^{\lambda_c^2}\right) F_y$ If $\lambda_c > 1.5$; $F_n = \frac{0.877}{\lambda_c^2} F_y$ $\lambda_c = \sqrt{\frac{F_y}{F_e}}$ Fe = 16.90 ksi λc = 1.72 Fn = 14.82 ksi 77.13 in Lateral unbraced length Ly = 131 (assume k=0.8) $k_y L_y / r_y =$

Compression Check = 0.K.

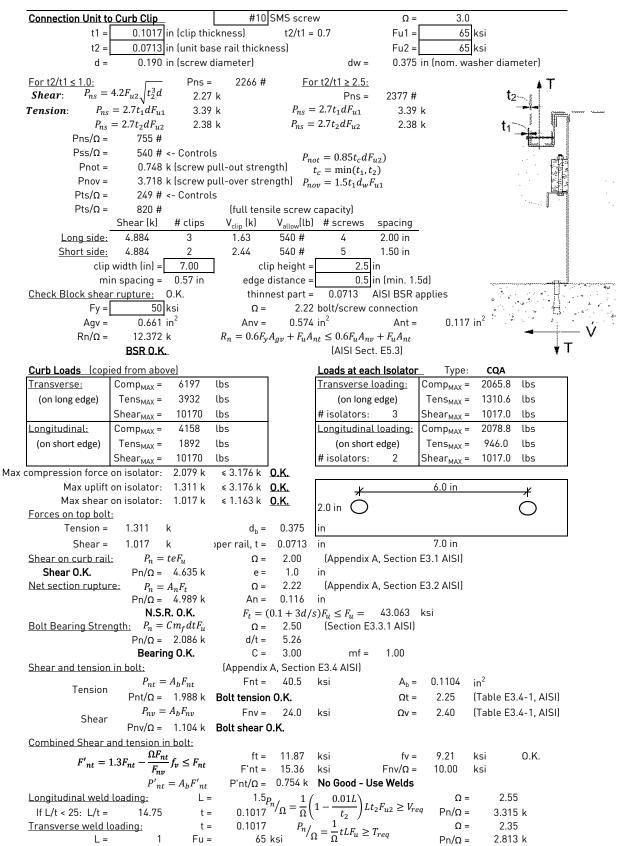
Check Web Crippling

h = t = N =	5.5 in 0.0713 in 7.00	Check li h/t = N/t =	mits: 77.14 ≤ 200 98.18 ≤ 210	$C = 7.50$ $C_R = 0.08$ $C_N = 0.12$	(See table C3.4.1-2, fastened to support, two flange, end
$\Omega_{\rm w}$ =	1.75	N/h =	$1.273 \le 2.0$	$C_h = 0.048$	loading)
$P_n =$	1.947 k	R/t =	$1.50 \le 12.0$	/ [P]	$\left(\begin{array}{c} \overline{N} \end{array}\right) \left(\begin{array}{c} \overline{b} \end{array}\right)$
$P_n/\Omega_w =$	1.112 k		$P_n =$	$Ct^2F_y\sin(90)\left(1-C_R\left \frac{K}{t}\right \right)$	$\left(1+C_N\sqrt{\frac{N}{t}}\right)\left(1-C_h\sqrt{\frac{h}{t}}\right)$
Long side: $Pu_{Trans} =$	1.832 k <u>web sti</u>	ffener REQ'D	# clips = 3	(1')	\ \\'\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Short side: $Pu_{Long} =$	1.927 k web sti	ffener REQ'D	# clips = 2		

Check Web Stiffener 16Ga x 1-3/16in x 7in (C-channel) $P_n = 0.7(P_{wc} + A_e F_y) \ge P_{wc}$ 7.000 in 0.0566 16 Gauge width of stiffener = Pwc = 1.947 k ts = web of stiff. w = 6.717 in Rs= 0.0849 in Pn = 14.669 k ***Check w/ts ≤ 1.28√E/Fys $\Omega_c =$ 1.70 Ae = 0.380 in^2

w/ts = 118.675

1.28v(E/Fys) = 31.091 --> w/ts over limit Use C3.7.2 Pn/ Ω_c = 8.629 k <u>Q.K.</u>


Corner Connections 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts

Tcrnmax = 2542 lbs Max(F_{pmaxASD}/4 -OR- Fh_{ASDtrans}/4 corner connections) 2749 lbs Max(Tens/2 -OR- Comp/2 corner connections per side) Vcrnmax = 2480 lbs 1208 lbs Bolt: Tall = Vall = Threaded Insert: Tall = 2860 lbs Vall = 1536 lbs # of Bolts required for Tension = 1.0

of Bolts required for Shear = 2.3# of Bolts Used = 4.0

Check Combined Stress in Bolts & Inserts: 0.825 O.K.

Client:	ProVent	PV2203		Base curb
Project:	CBISC-14	Iso Curb	CBISCSAV28	
Unit:	Sunchoice	28		

Offit:	Sufficificite 2	.0					
					*		
Base Curb Inform				EO	Fv	EQ	
Hbase curb =	14		(Height of base curb)	ļ	VVunit		1
Lcurb =	154.5		(Length of base curb)		(×Lunk)		1
wcurb =	83.125		(Width of base curb)	1		1.1	
WGTbase =	636		(Weight of base curb)				1
# Springs long side =	3	# Springs	short side = 2	Fry	AX ***		188
Unit Information			51101 C 51dC =	1.40	14/07	144	
WGTunit =	2720		(Oper. Weight of Unit + 5%)	Wtmm	↓ WGTι	JNIJT Wilman	·¦ Fa
Wt'max =	790		(Wtmax+1/4*WGTupper)		•	Ť	
Wt'min =	606		(Wtmin+1/4*WGTupper))		······································	h	1 1
Hunit =	57.22		(Height of unit above curb)	and the second s			
H'cm =	38.61	in	(Hcm+10"(upper+spring))	[B 7		ן ד	
Lunit =	160.0625	in	(Length of unit)		⊥ wgτ₀	CURB	
Wunit =	88.75	in	(Width of unit)	<u>i</u>			
WGTunit+upper+base =	3468	lbs	(Total weight)	⊸ ∨			_v
Seismic Loading -	2018 IBC/20	19 CBC		▼ Tmex		(Ontex.
Ss =	2.85		(Worst case for majority of Calif	fornia)			
Fa =	1.20		(Default Site Class D - Table 11.	.4-1 ASCE 7-16)			
lp =	1.50		(Importance Factor Category III	Building)			
Sms =	3.420		(Fa*Ss) ap	2.5			
Sds =	2.280		(2/3*Sms) Rp) = 2			
Fpmax =	5.130	Wp	(0.4*ap*Sds*Ip)*Wp*3/Rp <=1.6	*Sds*Ip*Wp			
FpmaxASD =	10170	lbs	(0.7*Fpmax)	FpmaxASD =	12454 lbs		
	(unit + uppe	r rail)		(unit + uppe	r rail + base cu	ırb)	
Wind Loading - 20	18 IBC/2019	CBC					
Kz =	1.13		(For 60 ft roof height, Exposure	C - Table 26.10-	1 ACSE 7-16)		
Kzt =	1.00		(Max. assumed topographic fact	tor)			
Kd =	0.85		(Directionality factor Table 26.6	-1 ASCE 7-16)			
Ke =	1.00		(Ground Elevation Factor Table	26.9-1 ASCE 7-1	6)		
V =	110		(Wind velocity, mph for Occupar	ncy Cat III-IV bld	gs Exp. Cat C, I	Fig 26.5-1D - A	ASCE7-16)
$GCr_{(horiz)} =$	1.9		(Refer Sect 29.4.1 ASCE 7-16)				
$GCr_{(vert)} =$	1.5		(Refer Sect 29.4.1 ASCE 7-16)				
qz	29.8	psf	$= 0.00256*Kz*Kzt*Kd*Ke*V^2$ (E)	q. 26.10-1 ASCE	7-16)		
F _{h ASD trans} =	3062	lbs	= 0.6*qz*GCr*Lunit*(Hunit+Hba	se curb+10") (E	(q. 29.4-2)		
F _{h ASD long} =	1698	lbs	= 0.6*qz*GCr*Wunit*(Hunit+Hba		•		
F _{vert ASD} =	2642	lbs	= 0.6*qz*GCr*Lunit*Wunit (Eq	. 29.4-3]			
Base Curh Loadin	n						

Base Curb Loading

_						
- 1	ra	ns	VΔ	rc	Δ	
	ı a	113	٧C	<u> </u>	C	•

Compression _{SEISMIC} =	6807 lbs	=[FpmaxASD*H'cm+2*[1+0.14S _{DS} J*Wt'max*wcurb]/wcurb
Tension _{SEISMIC} =	4383 lbs	=[FpmaxASD*H'cm-2*(0.6-0.14S _{DS})*Wt'min*wcurb)]/wcurb
Compression _{WIND} =	1049 lbs	=[F _{h ASD trans} *H'cm+2*0.6*Wt'max*wcurb-F _{vert ASD} *wcurb/2]/wcurb
Tension _{WIND} =	2016 lbs	=[F _{h ASD trans} *H'cm-2*0.6*Wt'min*wcurb+F _{vertASD} *wcurb/2]/wcurb
	-> Negative value	es indicate opposite load

Longitudinal:

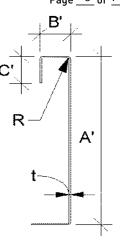
Compression _{SEISMIC} =	4625 lbs	=[FpmaxASD*H'cm+2*(1+0.14*S _{DS})*Wt'max*Lcurb]/Lcurb
Tension _{SEISMIC} =	2201 lbs	=[FpmaxASD*H'cm-2*(0.6-0.14S _{DS})*Wt'min*Lcurb)]/Lcurb
Compression _{WIND} =	51 lbs	= $[F_{h ASD long}*H'cm+2*0.6*Wt'max*Lcurb-F_{vertASD}*Lcurb/2]/Lcurb$
Tension _{WIND} =	1018 lbs	=[F _{h ASD long} *H'cm-2*0.6*Wt'min*Lcurb+F _{vertASD} *Lcurb/2]/Lcurb

---> Negative values indicate opposite load.

Governing Reactions:

<u>Transverse:</u>	Comp _{MAX} =	6807	lbs	> Along long edge of curb.
(on long edge)	Tens _{MAX} =	4383	lbs	> Along long edge of curb.
Longitudinal:	Comp _{MAX} =	4625	lbs	> Along short edge of curb.
(on short edge)	Tens _{MAX} =	2201	lbs	> Along short edge of curb.

^{---&}gt; Negative values indicate opposite load.


6593 Riverdale St. San Diego, CA 92120 (619)727-4800 Page <u>5</u> of <u>7</u>

Calculate Section Properties of Curb

ction	Properties o	of Curb			
Α'=	14.000	in	a =	13.492 in	= A'-(2r+t)
B'=	1.750	in	a'=	13.898 in	= A'-t
C'=	1.000	in (0 if no lips)	b =	1.242 in	= B'-[r+t/2+a(r+t/2)]
a =	1.000	(0 - no Lip; 1 w/ lip)	b'=	1.648 in	= B'-(t/2+at/2)
R=	0.1525	(Inside bend radius)	c =	0.746 in	= a[C'-(r+t/2)]
t =	0.1017	in	c'=	0.949 in	$= \alpha(C'-t/2)$
r'=	0.203	in = R+t/2	u =	0.319 in	$=\pi r/2$
x =	0.297	in (Distance between	n centroid and we	b centerli	ne)
lx =	45.336	in	rx =	4.88 in	
ly =	0.610	in	ry =	0.566 in	
A =	1.91	in ²	rmin =	0.566 in	

(assume k=0.8)

Axial Compression

Pu =	5.085 k	(Max Axial Comp)	$\Omega_c =$	1.80
$Pn/\Omega c =$	6.135 k	$(E_{\lambda}) < 1E_{\lambda} = (0.050\lambda^2)E_{\lambda}$	_	
Fe =	6.61 ksi	$P_n = F_n A$ If $\lambda_c \le 1.5$; $F_n = (0.658^{\lambda_c^2}) F_y$	$_{\lambda}$ $_{-}$ $ F_{y} $	$_{E}$ $_{-}$ $\pi^{2}E$
λc =	2.75	$\frac{\overline{\Omega}_c}{\Omega_c} = \frac{R}{\Omega_c}$ If $\lambda_c > 1.5$; $F_n = \frac{0.877}{\lambda^2} F_y$	$\kappa_c - \sqrt{\overline{F_e}}$	$r_e = \frac{1}{(kl/1)^2}$
Fn =	5.79 ksi	$\lambda_c > 1.3, \lambda_n = \lambda_c^2 + \lambda_s$	•	(7r)
Ly =	148.50 in	Lateral unbraced length		

Compression Check = 0.K.

210

Check Web Crippling

 $k_v L_v / r_v =$

h =	14 in	Check lir	mits:	C = 4.00	7 (6) 11 00 (4 0 ()
t =	0.1017 in	h/t =	$137.66 \le 200$	$C_R = 0.14$	(See table C3.4.1-2, fastened
N =	7.00	N/t =	68.83 ≤ 210	$C_N = 0.35$	to support, one flange, end
$\Omega_{\rm w}$ =	1.75	N/h =	$0.5 \le 2.0$	$C_h = 0.02$	loading)
P _n =	4.578 k	R/t =	$1.50 \le 9.0$	/	$\lceil p \rceil / \lceil p \rceil / \lceil p \rceil$
$P_n/\Omega_w =$	2.616 k		$P_n =$	$Ct^2F_v\sin(90)$ $1 - C_R$	$\left(\frac{R}{t}\right)\left(1+C_N\right)\frac{N}{t}\left(1-C_h\right)\frac{h}{t}$
Long side: $Pu_{Trans} =$	2.269 k	<u>0.K.</u>	# clips = 3	(\sqrt{t}
Short side: $Pu_{Long} =$	2.312 k	<u>0.K.</u>	# clips = 2		

Check Web Stiffener N/A

width of stiffener = 7.000 in ts = 0.0566 16 Gauge web of stiff. w = 6.717 in Rs = 0.0849 in ***Check w/ts
$$\leq$$
 1.28VE/Fys Ω_c = 1.70 w/ts = 118.675 1.28V[E/Fys] = 31.091 --> w/ts over limit Use C3.7.2 $P_n = 0.7(P_{wc} + A_e F_y) \geq P_{wc}$ Pwc = 4.578 k Ae = 0.380 in Pn = 16.511 k Pn/ Ω_c = 9.712 k Not Req'd.

Corner Connections 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts

Tcrnmax =	3113 lbs		Max(F _{pmaxA}	_{SD} /4 -OR-	Fh _{ASDtrans} /4 c	orner coni	nections)
Vcrnmax =	3403 lbs		Max(Tens/2	2 -OR- Co	omp/2 corner	connection	ns per side)
	Bolt:	Tall =	2480	lbs	Vall =	1208	lbs
Threaded	Insert:	Tall =	2860	lbs	Vall =	1536	lbs
# c	f Bolts req	uired fo	r Tension =	1.3	3		•
					•		

of Bolts required for Shear =

5.0 # of Bolts Used =

Check Combined Stress in Bolts & Inserts: 0.815 **0.K.**

<--- USE WELD Check 1/8" welded connection

Assume L/t > 25: 25*t =
$$2.543$$
 in $P_n/\Omega = \frac{1}{\Omega} 0.75t L F_u \ge V_{req}$ $L_{req'd} = \frac{V_{req}\Omega}{0.75t F_u}$

 $Compression_{SEISMIC} =$

 $\mathsf{Tension}_{\mathsf{SEISMIC}} =$

 $Compression_{WIND} =$

6528 lbs

3754 lbs

298 lbs

Curb Loads (copi	ed from upper rail cal	<u>cs)</u>		Loads at each Isolato	r _ Type:	CQA	_
<u>Transverse:</u>	$Comp_{MAX} = 6197$	lbs		Transverse loading:	Comp _{MAX} =	= 2065.8 lbs	
(on long edge)	$Tens_{MAX} = 3932$	lbs		(on long edge)	Tens _{MAX} =	= 1310.6 lbs	
	Shear _{MAX} = 10170	lbs		# isolators: 3	Shear _{MAX} =		
Longitudinal:	$Comp_{MAX} = 4158$	lbs	İ	Longitudinal loading:	Comp _{MAX} =		
(on short edge)	Tens _{MAX} = 1892	lbs		(on short edge)	Tens _{MAX} =		
	Shear _{MAX} = 10170	lbs		# isolators: 2	Shear _{MAX} =	= 1017.0 lbs	
Max compression force		≤ 3.176 k	0.K.				_
Max uplift	on isolator: 1.311 k	≤ 3.176 k	<u>0.K.</u>	<u> </u>	6.0 in	<u>.</u>	
Max shear	on isolator: 1.017 k	≤ 1.163 k	0.K.	2.0 in		^1	
Forces on bottom	bolts:			2.0 III		\cup	
d _b =	0.5 in						
base curb, t =	0.1017 in				7.0 in	≜ T	_
Tension =	0.655 k/bolt					t ₂	
Shear =	0.508 k/bolt						· - <u></u>
Shear on base cur		Ω =	2.00	(Appendix A, Section	E3.1 AISI)	t ₁	
	$Pn/\Omega = 6.611 \text{ k}$	e =	1.0	in			
	Shear O.K.						
Net section ruptur	$\underline{re:} \qquad P_n = A_n F_t$	Ω =	2.22	(Appendix A, Section	E3.2 AISI)		
	$Pn/\Omega = 8.428 \text{ k}$	An =		in			
	N.S.R. O.K.			$(s)F_u \le F_u = 55.250$		*****	٠.
Bolt Bearing Strer	$\underline{\text{ngth:}} P_n = Cm_f dt F_u$	Ω =		(Section E3.3.1 AISI)			
	$Pn/\Omega = 3.966 \text{ k}$	d/t =					
	Bearing O.K.	C =		mf = 1.00			
Shear and tension				n E3.4 AISI)	0		
Tension	$P_{nt} = A_b F_{nt}$		45.0 ksi	$A_b = 0.1963$	in²		Church Street
	$Pnt/\Omega = 3.927 \text{ k}$			$\Omega t = 2.25$			1
Shear	$P_{nv} = A_b F_{nv}$		27.0 ksi	$\Omega v = 2.40$	LO I Valenteste		di .
C	$Pnv/\Omega = 2.209 \text{ k}$	Bolt shear	U.K.	***(Table E3.4-1, A	AISIJ***	-	V
Combined Shear a	and tension in bolt:	f+ _	4 47	ksi fv =	2.59	∳ T ksi Ο.K.	
$F'_{nt} =$	$1.3F_{nt} - \frac{\Omega F_{nt}}{F_{nv}} f_v \le F_{nt}$		6.67 45.00	ksi $Fnv/\Omega =$		ksi O.N.	
	$P'_{nt} = A_b F'_{nt}$	P'nt/0 -	3 927 k	Combined Not Applica			
Connection of Cur	b to Supporting Struct		0.727 K	Combined Not Applied	2010 7 1 111	- 1 110	
Roof Loading	SEISMIC: (0.6-0.149			WIND: 0.6D + W			
<u>Transverse:</u>	Uplift _{MAX} =		lbs	Shear _{MAX} =	6227	lbs 7	
Compression _{SEISMIC} =	10169 lbs	=[FpmaxAS	D*(H'cm+	Hbase curb)+(1+0.14S _D	S)*WGT _{unit+11}	pper+base*wcurb/2]/wcu	ırb
Tension _{SEISMIC} =	7395 lbs			Hbase curb)-(0.6-0.149			
Compression _{WIND} =	1658 lbs			base curb)+0.6*WGT _{unit}			
Tension _{WIND} =	2218 lbs			base curb)-0.6*WGT _{unit}			
Longitudinal:	Uplift _{MAX} =			Shear _{MAX} =			
Compression	6528 lhe			Hhase curhlallan 145		*I curh/2]/I cu	rh

0b. 000.0WIND	270 100	. II ASD long V		· · · · · unit+upp	per+pase == a. b, = . v	ert ASD
Tension _{WIND} =	859 lbs =	[Fh ASD long*(H'cm+Hbase curb)-0.6	6*WGT _{unit+upp}	_{per+base} *Lcurb/2+F	rertASD*Lcurb/2]/Lcurb
Wood Attachment:	1/4"φ x 4.5 <u>"</u>	Simpson Sl	OS screw: w/ 2.75" thr	eaded emt (S	SGmin = 0.43)	
	Tall _{metal} =	1397 l	bs $Vall_{metal} =$	1230 lb	os	
<u>Transverse:</u>	Tall _{wood} =	760 l	bs $Vall_{wood} =$	672 lk	os	
# of Screws	Req'd for Uplift =	9.73	COMBINED	LOADING:	0.979 O.K.	
# of Screws	Req'd for Shear =	9.27	Req'd Min	Spacing =	9.77 in o.c.	
Total # of s	screws required =	16				

=[FpmaxASD*(H'cm+Hbase curb)+(1+0.14S_{DS})*WGT_{unit+upper+base}*Lcurb/2]/Lcurb

 $= [FpmaxASD*(H'cm+Hbase\ curb)-(0.6-0.14S_{DS})*WGT_{unit+upper+base}*Lcurb/2]/Lcurb$

 $= [F_{h \, ASD \, long} * (H'cm + Hbase \, curb) + 0.6 * WGT_{unit+upper+base} * Lcurb/2 - F_{vert \, ASD} * Lcurb/2] / Lcurb + (Lcurb) +$

Use 16 - 1/4"φ x 4.5" Simpson SDS screws @ 9.8 in o.c. along long side of curb w/ 2.75" threaded embed

Longitudinal:
of Screws Req'd for Uplift = 4.94 COMBINED LOADING: 0.919 0.K.

" (1 Sciews iteq c	i ioi optiit -	7.77		CONIDIIALE	LOADING.	0.717	0.11.		
# o	f Screws Req'd	for Shear =	9.27	_	Screw	Spacing =	9.39	in o.c.		
T	otal # of screws	s required =	9			_		_		
<u>Use 9 - 1/4"</u>	φ x 4.5" Simpsor	n SDS screws	@ 9.4 in o.c.	along short	side of curb	w/ 2.75" thre	eaded emb	<u>ed</u>		
Steel Dec	k Attachment:	1/2" φ A30			oelow deck					
		$Tall_{bolt} =$	3927	lbs	$Vall_{bolt} =$	2209	lbs			
<u>Transverse</u>	<u>:</u>	$Tall_{metal} =$	2975	lbs	$Vall_{metal} =$	3072	lbs			
i	of Bolts Req'o	I for Uplift =	2.49		COMBINED	LOADING:	0.850	0.K.		
#	of Bolts Req'd	for Shear =		-	Bolt	Spacing =	35.63	in o.c.		
	Total # of bolts	s required =	5							
<u>Use 5 - 1/2"</u>	φ A307 Bolts to	steel angle b	elow deck @	35.6 in o.c.	along long si	de of curb				
<u>Longitudin</u>										
	of Bolts Req'o	•				LOADING:		0.K.		
#	of Bolts Req'd			-	Bolt	Spacing =	35.56	in o.c.		
	Total # of bolts			1						
	φ A307 Bolts to									
	te anchorage:		(0.6-0.14S _D			Ωο =				
Concre	e Attachment:			itti Hit-Hi						4 700
T	Tall _{LRFD} =				Vall _{LRFD} =				S(D) + 2.5E = 0.242	
-	$_{SD} = Tall_{LRFD}/\alpha =$				$Vall_{LRFD}/\alpha =$			`	58, E = 0.242)
Transve		Uplift _{MAX} =				Shear _{MAX} =	12454			
Compression _{SEISN}									*wcurb/2]/w	
Tension _{SEISN}					m+Hbase cu	rbJ-(0.6-0.1	14S _{DS} J*WG	unit+curb+ba	_{se} *wcurb/2]/v	wcurb
Shear _{SEISN}			=Ωo*Fpmax							
	s Req'd Uplift =		spacing =		in o.c.		Tapplied =			
	Req'd Shear =		spacing =		in o.c.		Vapplied =	622.	7 lbs	
Try us	9	bolts	COMBINED	LOADING =	T applied	$+ \frac{V_{apllied}}{V_{allow,ASI}}$	- ≤ 1.2	= 1.19		
space	d at 10.96 " φ thrd'd rods i	in o.c.] / 200 anova 6	0 11 in a c r	allow,ASD	Vallow,ASI) rb.u/ 4" on	hod		
<u>Use 14 - 3/2</u> <u>Longitudi</u>		Uplift _{MAX} =				Shear _{MAX} =			7	
Compression _{SEISN}									_ <u> </u> *Lcurb/2]/Lc	urb
Tension	·· ·	ibs Ibs							se*Lcurb/2]/L	
					III+HDase cu	I DJ-(U.O-U.	143 _{DS}) WG	unit+curb+ba	se LCui b/2]/L	.curb
Shear _{SEISN}			=Ωo*Fpmax				Tannlind	000	2 16-5	
	s Req'd Uplift = s Req'd Shear =		spacing = spacing =		in o.c. in o.c.		Tapplied = Vapplied =		3 lbs 7 lbs	
Try us		= 4.67 bolts	7						/ LUS	
space	•		COMBINED	LOADING =	T_11	$+ \frac{V_{apllied}}{V_{allow,ASI}}$	- ≤ 1.2	= 1.11		
	d thrd'd rods in		200 anovy @	1/1 2 in o c	allow,ASD may along ch	allow,ASI ort side of c) urh w / 4" a	mhad		

Use 6 - 3/4" ϕ thrd'd rods in Hilti Hit-HY 200 epoxy @ 14.2 in o.c. max. along short side of curb w/ 4" embed

CURB DESIGN SU	MMARY:	CBISC-14	CBISCSAV28		Unit:	Sunchoice 28
UPPER CURB RAIL	THICKNESS:	0.0713 in	14 Gauge			
UNIT CLIP	THICKNESS:	0.1017 in	12 Gauge			
# OF CLIPS (I	ONG SIDE) -	3 clips with	4 - #10 SMS	screws each o	clip	
WEE	STIFFENER:	16Ga x 1-3/	[/] 16in x 7in (C-	channel) stiff	fener at eac	h clip
# OF CLIPS (SI	HORT SIDE) -	2 clips with	5 - #10 SMS	screws each o	clip	
WEE	STIFFENER:	16Ga x 1-3/	[/] 16in x 7in (C-	channel) stiff	fener at eac	h clip
VIBRATION ISOI	LATOR TYPE:	CQA	Top stud	diameter:	3/8	(3) - CQA Isolators long side
Anchor bo	olt diameter:	1/2	Anchor ho	le diamter:	9/16	(2) - CQA Isolators short side
BASE CURB	THICKNESS:	0.1017 in	12 Gauge			***Must weld top of CQA***
WEE	STIFFENER:	NOT REQUI	RED			
CORNER CO	ONNECTION:	Use minimu	um 5 - 1/4" φ	SAE Grade 8	bolts w/ 1/4	4-20-UNC Threaded inserts
CURB		WOOD		STE	EL	<u>CONCRETE</u>
ANCHORAGE	1/4"φ x 4.5'	' Simpson SI	OS screws w/	1/2" ф A30	7 Bolts to	3/4" φ thrd'd rods in Hilti Hit-HY
ANCHORAGE	2.75" thre	aded embed	d (SGmin =	steel angle b	oelow deck	200 epoxy w/ 4" embed
LONG DIRECTION	16	6 @ 9.77 in c).C.	5 @ 35.6	3 in o.c.	14 @ 10.96 in o.c.
SHORT DIRECTION	9	@ 9.39 in o	.c.	3 @ 35.5	6 in o.c.	6 @ 14.23 in o.c.