

619-727-4800

Structural Calculations for CBKDSAV1518 Curb

Prepared for:

PROVENT

3847 Wabash Drive

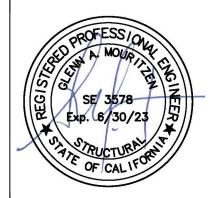
Mira Loma, CA 91725

Date: December 19, 2022

Project Number: PV2206

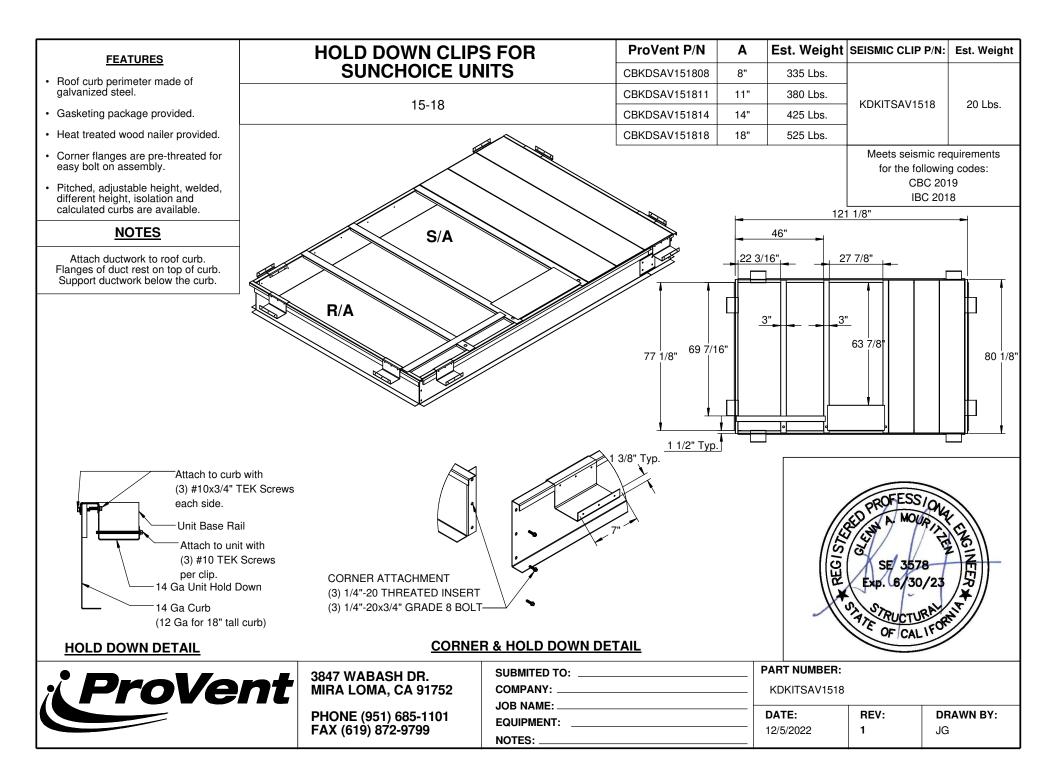
	STEEL ATTACHME	NT	ASSUMES:		Meets sei	smic	ROOF ANCHORAGE DETAIL		
				CONC SLAB		requirements	s for the	CBKD Series	CBWC Series
		CENTER ON CURB FLAN	NGE. SEE TABLE FOR	f'c= 4000PSI MIN	IMUM	following o	odes:	LXS	LXS
		QUANTITY OF EVENLY	SPACED 1/2 " (OR 5/8" FOR MIL	6" MIN THICKNE		CBC 20		LXL	LXL
WELDED	_		BOLTS ATTACHED TO STEEL	NORMAL WEIGH	IT CONCRETE	IBC 201	18	SUN3672	SUN3672
		ANGLE BELOW DECK A	T EACH CONNECTION POINT.					PRD3715	PRD3715
							Í	PRS	PRS
		SHEATHING	WHERE OCCURS				ľ	PRL	PRL
							Ī	SLU180	SLU180
			METAL DECK	CONCRETE ATTAC	HMENT			SLM1830	SLM1830
							Ī	SAV1518	SAV1518
· >		<u> </u>	`	. \∧/⊏⊢Г	DED CURB		Ī	SAV2025	SAV2025
							Ī	SAV28	SAV28
			ANGLE SUPPORT		CENTER ON CUP	RB FLANGE. SEE	E TABLE F	OR QUANTITY C	FEVENLY
		BY OTH			SPACED 3/4" Ø T	HREADED ROD	IN HILTI	HIT-HY 200 EPOX	Y WITH 4" EMBED
					5/8" Ø HAS ROD MIN. 9-1/8" EDG		200 V3 EI	POXY WITH 4-1/2	EMBED
	NO. OF ANCHORAG	E BOLTS REQUIRED			(FOR SAV SERIE		NO. OF	ANCHORAGE BO	LTS REQUIRED
CURB	LONG SIDE	SHORT SIDE				CURB	LON	G SIDE	SHORT SIDE
LXS	2 @ 34.5" O.C.	2 @ 19" O.C.				LXS	4 @ 1	1.5" O.C.	3 @ 9.5" O.C.
LXL	2 @ 34.5" O.C.	2 @ 29" O.C.				LXL	4 @ 1		3 @ 14.5" O.C.
SUN3672	2 @ 60.5" O.C.	2 @ 39" O.C.				SUN3672			3 @ 12.38" O.C.
PRD3715	2 @ 68.88" O.C.	2 @ 39" O.C.				PRD3715			7 @ 6.5" O.C.
PRS	2 @ 58.88" O.C.	2 @ 28.69" O.C.				PRS			4 @ 9.56" O.C.
PRL	2 @ 72" O.C.	2 @ 41.5" O.C.				PRL			5 @ 10.38" O.C.
SLU180	3 @ 51.38" O.C.	2 @ 71.5" O.C.				SLU180	8 @ 14	1.68" O.C.	' @ 11.92" O.C.
SLM1830	3 @ 56.88" O.C	3 @ 35.75" O.C.				SLM1830	12 @ 1		0 @ 7.94" O.C.
SAV1518	3 @ 54.56" O.C	2 @ 68.13" O.C.				SAV1518			2 @ 68.13" O.C.
SAV2025	3 @ 61.56" O.C	2 @ 68.13" O.C.	* SIX INCHES FROM EACH C			SAV2025	3@6		2 @ 68.13" O.C.
SAV28	3 @ 69.75" O.C	2 @ 68.13" O.C.	** CENTERED.			SAV28	3@69	9.75" O.C. 2	2 @ 68.13" O.C.
			·		•		_		

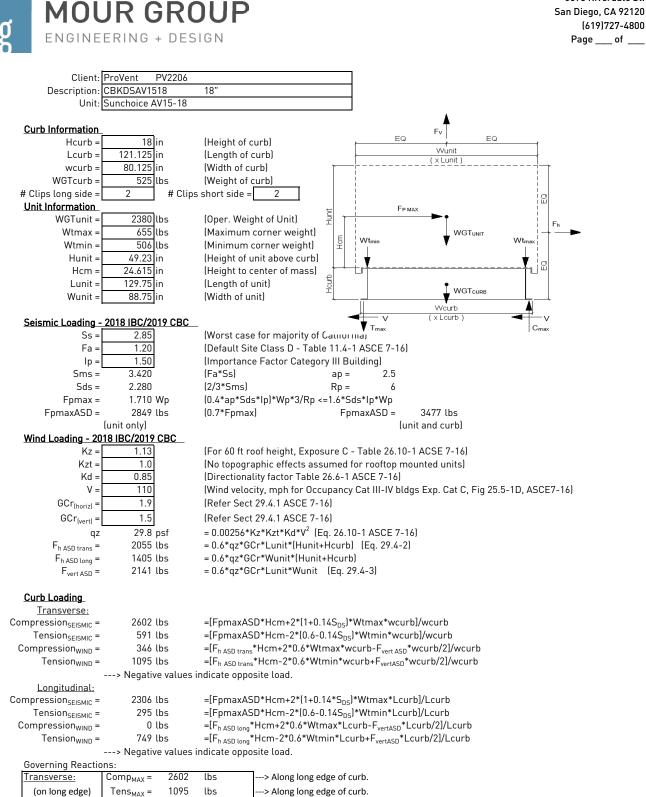
WOOD ATTACHMENT


WELDED CURB-

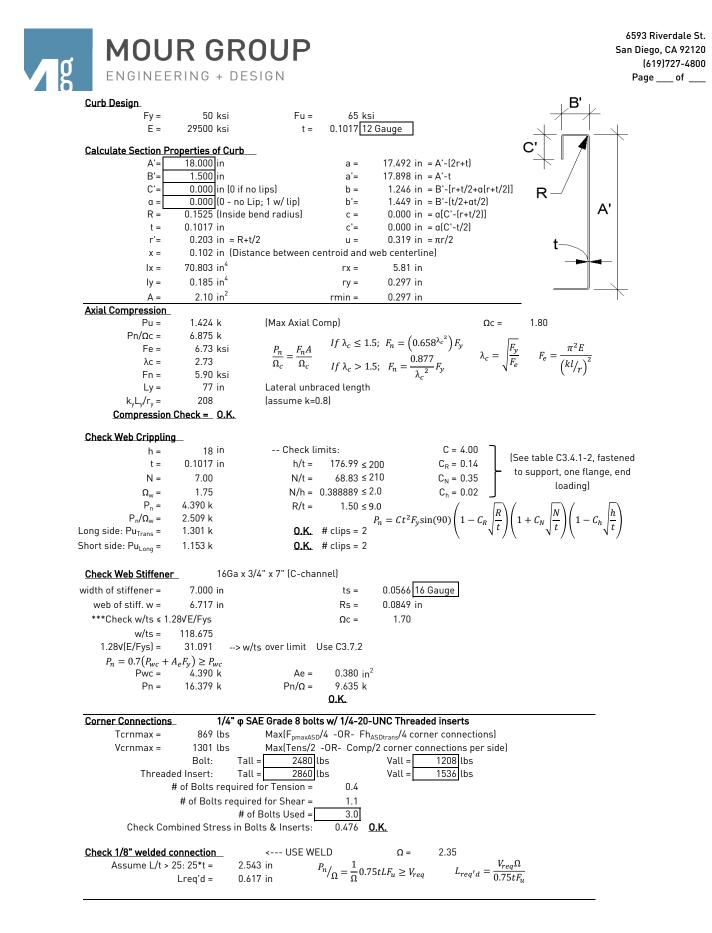
CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED ¼" Ø SIMPSON SDS OR EQUIVALENT SCREWS (3 ½ " MIN. EMBED. INTO WOOD FRAMING)

1/4" Ø x 3.5" SIMPSON SDS SCREWS W/2.25" THREADED EMBED (FOR SAV SERIES ONLY)


FOUR INCHES FROM EACH CORNER EVENLY SPACED


	NO. OF ANCHORAGE SCREWS REQUIRED						
CURB	LONG SIDE	SHORT SIDE					
LXS	4 @ 12.83" O.C.	3 @ 11.5" O.C.					
LXL	4 @ 12.83" O.C.	3 @ 16.5" O.C.					
SUN3672	4 @ 21.5" O.C.	3 @ 14.38" O.C.					
PRD3715	9@911"O.C.	8@6.14"O.C.					
PRS	4 @ 20.96" O.C.	3 @ 16.34" O.C.					
PRL	5 @ 19" O.C.	4 @ 15.17" O.C.					
SLU180	9 @ 13.34" O.C.	7 @ 12.58" O.C.					
SLM1830	13 @ 9.81" O.C.	12 @ 6.86" O.C.					
SAV1518	5 @ 28 28" O.C.	4 @ 24.04" O.C.					
SAV2025	6 @ 25.43" O.C.	5 @ 18.03" O.C.					
SAV28	7 @ 23.92" O.C.	5 @ 18.03" O.C.					

3847 WABASH DRIVE MIRA LOMA, CA 91725 PHONE (951) 685-1101 FAX (619) 872-9799


SUBMITTED TO: COMPANY: JOB NAME:	FORM NO: CB-60				
EQUIPMENT:	DATE: 11/05/2022	REV : 8	:	DRAWN BY: FMM	

6593 Riverdale St.

--> Negative values indicate opposite load.

MOUR GROUP ENGINEERING + DESIGN

		DLJIUI	N					Fay
Connection Unit to	Curb Clip		#10 SM	S screv	v	Ω =	3.0	
t1 =	0.1017 in	<u> </u>				Fu1 =	65 ksi	
t2 =		lunit base r	ail thickness	5]		Fu2 =	65 ksi	
d =		(screw diam		,	dw =		nom. washer dia	meterl
t2/t1 =	1.0							_
For t2/t1 ≤ 1.0:		Pns =	3391 #	For	t2/t1 ≥ 2.5:			↓ T
Shear: $P_{ns} = $	$4.2F_{u2} t_2^3 d$	3.86 k			Pns =		t ₂	
P_{ns}	$= 2.7t_1 dF_{u1}$	3.39 k		$P_{ns} =$	$2.7t_1 dF_{u1}$	3.39 k		
P _{ns}	$= 2.7t_2 dF_{u2}$	3.39 k		$P_{ns} =$	$2.7t_2 dF_{u2}$	3.39 k	t ₁	
Pns/Ω =	1130 #							
Pss/Ω =	540 # <-			P_{no}	$t = 0.85 t_c d$	F_{u2})	Ľ	
Tension: Pnot =			out strength	l t	$c = \min(t_1)$	t_2)		
Pnov =			over strengt	h) P _{no}	$v = 1.5t_1d_w$	F_{u1}		
Pts/Ω =		Controls	(C. 11.)					
Pts/Ω =	820 #		(full tensile			oncoina		(TT)
Long cido.		# clips \ 2		allow(LD) 540 #	# screws 3	spacing 3.00 in	a	A 4
<u>Long side:</u> <u>Short side:</u>	2.849 2.849	2		540 # 540 #	3	3.00 in 3.00 in		
	width (in) =	7.00		eight =	1.4	-	4.7 4	4
		0.57 in	edge dist			in (min. 1.5d)	· • .	
Check Block shear			5	L		AISI BSR appl	ies	· v
Fy =	50 ks		Ω =	•	bolt/screw			¥ I
Agv =	0.661 in ²		Anv =	0.613		Ant =	0.060 in ²	
$Rn/\Omega =$	10.697 k	R_1	$n = 0.6F_y A_{gv}$	$+F_uA_n$	$t \leq 0.6F_uA_n$	$F_{uv} + F_u A_{nt}$		
	<u>BSR 0.K.</u>		, y 9.		(AISI Sec			
Connection of Cur								
Roof Loading	SEISMIC: (0.					0.6D + W		-
Transverse:		olift _{MAX} =	1442 lbs				1739 lbs	<u>]</u>
Compression _{SEISMIC} =	3766 lbs						+curb [*] wcurb/2]/wc	
Tension _{SEISMIC} =	1442 lbs 894 lbs						_{it+curb} *wcurb/2]/v	
Compression _{WIND} =	1292 lbs						o/2-F _{vert ASD} *wcur	
Tension _{WIND} = Longitudinal:		olift _{MAX} =	h ASD trans (III) 816 lbs			Shear _{MAX} =	o/2+F _{vertASD} *wcur 1739 lbs	
Compression _{SEISMIC} =	3140 lbs						+curb/2]/Lc	_ urb
Tension _{SEISMIC} =	816 lbs						_{it+curb} *Lcurb/2]/L	
Compression _{WIND} =	295 lbs						/2-F _{vert ASD} *Lcurb	
Tension _{WIND} =	694 lbs		-				/2+F _{vertASD} *Lcurb	
Wood Attachmen	nt: 1/4					readed emt (SG		· · ·
	Т	all _{metal} =	997 lbs		Vall _{metal} =	1097 lbs		
Transverse:	Т	all _{wood} =	616 lbs		Vall _{wood} =	672 lbs		
# of Sc	rews Req'd for	· Uplift =	2.34		COMBINED I	OADING:	0.985 O.K.	
	rews Req'd for		2.59		Screw	Spacing =	28.3 in o.c.	
	# of screws Red	•	5					
<u>1/4"φ x 3.5" Sim</u>	pson SDS screws	s @ 28.3 in o	.c. along long	side of	curb w/ 2.25	" threaded emb	ed	
Longitudinal:	D'-l (11-1:0	1.0				0.070 0.1/	
	rews Req'd for	•	1.3 2.6		COMBINED I		0.978 O.K.	
	rews Req'd for # of screws Red		2.0		Screw	Spacing =	24.0 in o.c.	
<u>1/4"φ x 3.5" Sim</u>				side of c	urb w/ 2 25'	threaded embe	d	
Steel Deck Attach			olts to steel			threaded embe	<u>.u</u>	
		Tall _{bolt} =	3927 lbs	-	Vall _{bolt} =	2209 lbs		
Transverse:		all _{metal} =	2086 lbs		Vall _{metal} =			
# of I	Bolts Req'd for	· Uplift =	0.69		COMBINED I	OADING:	0.195 O.K.	
	Bolts Req'd for		0.79		Bolt	: Spacing =	54.6 in o.c.	
	l # of Bolts Red		3			· · ·	<u> </u>	
<u>1/2" ф А307 Bolt</u>	s to steel angle	below deck	@ 54.6 in o.c.	along lo	ong side of cu	<u>urb</u>		
Longitudinal:								
	Bolts Req'd for		0.39		COMBINED I		0.280 O.K.	
	Bolts Req'd for		0.79		Req'd Min	Spacing =	68.1 in o.c.	
l ota <u>1/2" φ A307 Bolt</u>	l # of Bolts Red		2 @ 68 1 in o c	along d	hort side of a	urh		
<u>1/2 ΨΑ307 ΒΟΙΙ</u>	S TO SICEI ALIGIE	JEIOW UELK		aiong Si				

MOUR GROUP ENGINEERING + DESIGN

WEB STIFFENER: NOT REQUIRED

CURB

ANCHORAGE

LONG DIRECTION

SHORT DIRECTION

WOOD

1/4"φ x 3.5" Simpson SDS screws

w/ 2.25" threaded embed

5 @ 28.28 in o.c.

4 @ 24.04 in o.c.

CORNER CONNECTION: Use 3 - 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts

<u>STEEL</u>

1/2" φ A307 Bolts to

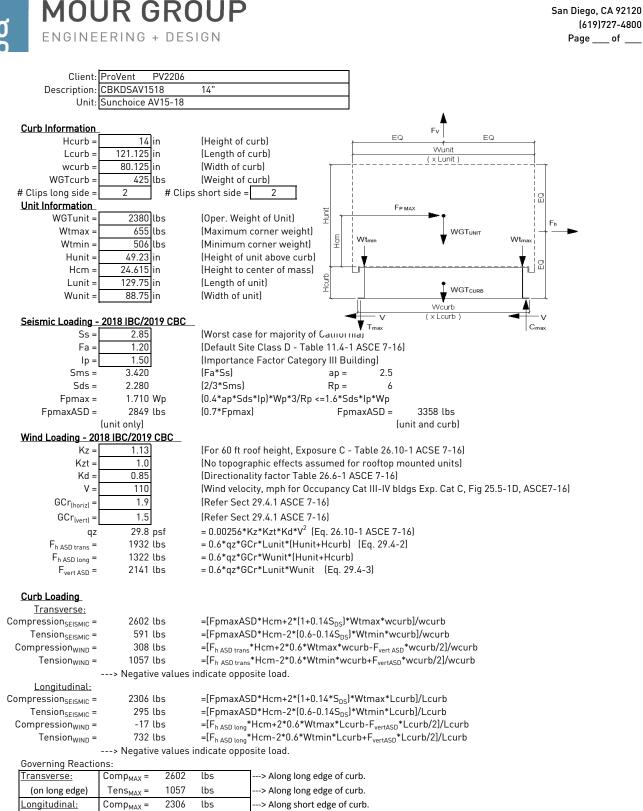
steel angle below deck

3 @ 54.56 in o.c.

2 @ 68.13 in o.c.

CONCRETE

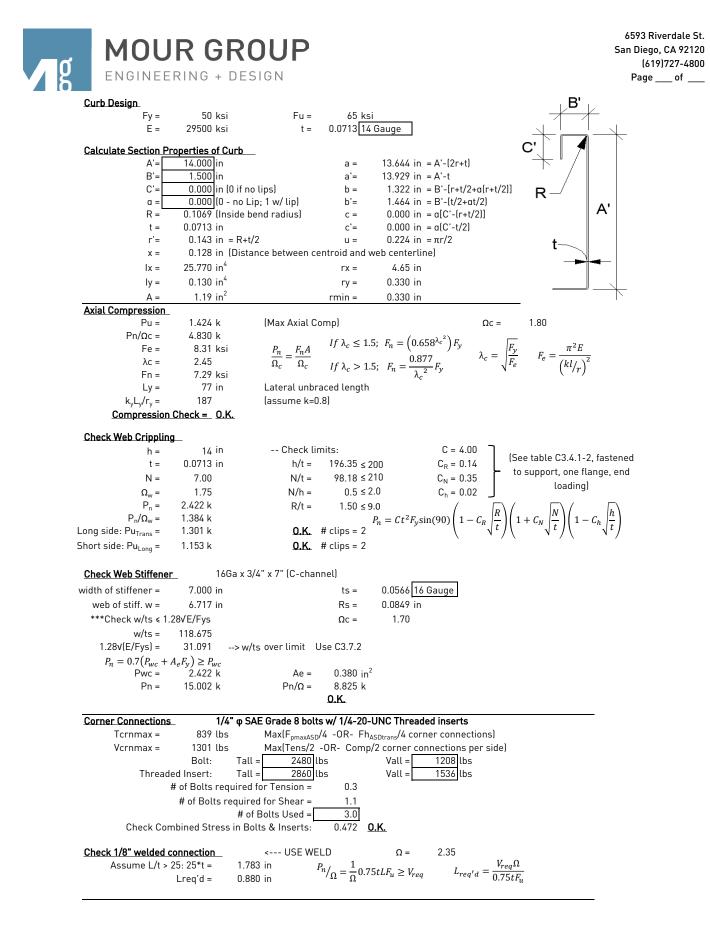
5/8"φ HAS rods in Hilti HIT-HY


200 V3 epoxy w/ 4.5in embed

3 @ 54.56 in o.c.

2 @ 68.13 in o.c.

ĮØ


		DLOIOI	•					
For Concrete a	anchorage: S	SEISMIC (0.6	-0.14S _{DS})D + 0.7Ω	₽₀E	Ωo = 2.0			
			s in Hilti HIT-HY 2		w/ 4.5in embe	ed	· /	– A _{Na}
	: Hilti HIT-HY 20	•					K_	
f'c =	= 4000 ps	si						CNa
h =		(concrete thi	ickness, t_min = h	n_ef + 2do)	0.K.		•	
h_ef =		(effective em					1	·
da =		(anchor dian			in (hole diame		1	S
n =			mmy anchors to c	heck capacity	y with spacing e	effect)	•	\rightarrow
S =		(initial spaci	-	T T	D)			ទ
τk,cr / uncr =			(from ESR 4868, 7				•	
τk,cr / uncr =			If $f'_c > 2500$,	multiply b	$y (f'_c/2500)^{0.1}$	τ_{uncr}		
c _N a=		-	istance for full ca	ipacity);	$c_{Na} = 10d_a$	1100		J
Tension:	$N_{ag} = \frac{A_N}{A}$	$\frac{ a }{ao} \varphi_{ec,Na} \varphi_{ed,k}$	$_{Na}\varphi_{cp,Na}N_{ba}$	(ACI318-14,	174516)		•	
Bond strength	$(0 \rightarrow N_{R})$	$ao_{ed,Na}\varphi_{cp,Na} =$: 1.0	(ACI318-14,	17.4.3.10)			s
***Bond strength			110				• -	\rightarrow
will govern over	A _{Na} =						<u> </u>	CNa
concrete breakout	A _{Nao} =						-	
	N _{ba} =	10727 lbs	$N_{ba} = \lambda_a \tau_{cr} \pi$	$d_a h_{ef} \alpha_{n,seism}$	$\alpha_{n,seismic}$	= 0.99		
	N _{ag} =	32181 lbs ((group)		λ_a :	=1.0 /	CNa ┽ CNa ┤	
	øN _{ag} =	15688 lbs (group)	CONTROLS	$\lambda_a =$	=1.0 for normal	weight conc; 0.6 fo	r lightwei
Breakout	. A	Nc						
strength	$N_{cbg} = \overline{A_l}$	$\frac{1}{M}\varphi_{ec,N}\varphi_{ed,N}$	$_{N}\varphi_{cp,N}N_{b}$ N	$V_b = \lambda_a k_c \sqrt{f'_c}$	$h_{ef}^{1.5}$			
	A _{Nc} =	722.25 in ²		= 10264		conc = ().75	
	A _{Nco} =	182.25 in ²		= 17			0.65	
	N _{cba} =	40674 lbs ().75	
	ØN _{cbg} =	22879 lbs (0.65	
Shear:	Vsa,eq =		om ESR4868, Tabl	le 11)	α _{v,sei}	smic =	0.6	
Steel strength	øVsa,eq =	3067						
	Tall _{LRFD} =	5229 lbs		Vall _{LRFD} =			(SDS)D + 2.5E =	
	$= \text{Tall}_{LRFD} / \alpha =$	3062 lbs		$= Vall_{LRFD} / \alpha =$			0.758, E = 0.242)	
Transverse		plift _{MAX} =	3291 lbs		Shear _{MAX} =	3477 lbs	. (2) /	
Compression _{SEISMIC} =			o*FpmaxASD*(Ho					
Tension _{SEISMIC} =			o*FpmaxASD*(Ho	:m+HcurbJ-(0).6-0.14S _{DS} J*WG	ST _{unit+curb} *wcu	irb/2]/wcurb	
Shear _{SEISMIC} =			*FpmaxASD/2	, ·	-	1. 1 100		
	leq'd Uplift =	1.07 spa	•	6 in o.c. 2 in o.c			97.0 lbs 95.5 lbs	
Try using	eq'd Shear = 1 3 bo	2.00 spa					0.K.	
spaced at	,	0.C.	MBINED LOADING	$= \frac{T_{applied}}{T_{applied}}$	$+\frac{Vapillea}{Vapillea} \leq$	1.2 = 0.75	0.11.	
		UT-HY 200 V3	epoxy @ 54.6 in o	.c. max. along	long side of curb	w/ 4.5in emb	bed	
Longitudinal		plift _{MAX} =	2039 lbs		Shear _{MAX} =	3477 lbs		
Compression _{SEISMIC} =			o*FpmaxASD*(Ho				b/21/Lcurb	
Tension _{SEISMIC} =		s =[0	o*FpmaxASD*(Ho	m+Hcurb)-(0	0.6-0.14Spc]*W0	T	rb/21/Lcurb	
Shear _{SEISMIC} =			*FpmaxASD/2			· unit+curb 200	. 5/ 2]/ 2001 5	
	leg'd Uplift =	0.67 spa		6 in o.c.	Tapr	olied = 101	9.5 lbs	
	eq'd Shear =	2.00 spa	0	3 in o.c.			95.5 lbs	
Try using	j 2 bo	ltc.	•	$T_{applied}$			0.K.	
spaced at	t 68.13 in	o.c.	MBINED LOADING	$\overline{T_{allow,ASD}}$	$+ \frac{V_{apllied}}{V_{allow,ASD}} \le$	1.2 = 0.72		
<u>Use 2 - 5/8"ф Н</u>	AS rods in Hilti H	IIT-HY 200 V3	epoxy @ 68.1 in o				bed	
CURB DESIGN SU	JMMARY: CB	KDSAV1518		Unit:	Sunchoice AV15	5-18		
	L THICKNESS: 0.2		0					
	P THICKNESS: 0.1		•					
			10 SMS screws eac	ch clip				
	B STIFFENER: NO		10 CN 10 -	la alta				
	SHORT SIDE) - 2 (B STIFFFNFR: NO		10 SMS screws eac	ch clip				
	B SUFFENER NC	TERFOURFD						

6593 Riverdale St.

(on long edge)	Tens _{MAX} =	1057	lbs	> Along long edge of curb.
<u>ongitudinal:</u>	Comp _{MAX} =	2306	lbs	> Along short edge of curb.
(on short edge)	Tens _{MAX} =	732	lbs	> Along short edge of curb.

---> Negative values indicate opposite load.

g MOUR GROUP ENGINEERING + DESIGN

						i age
Connection Unit to		#10 SMS scr	0.11	Ω =	3.0	
Connection Unit to t1 =	0.0713 in	#10 3143 50	ew		65 ksi	
t1 = t2 =	0.1017 in (unit bas	o rail thicknose)		Fu1 = Fu2 =	65 ksi	
d =	0.190 in (screw d		dw =		om. washer diameter)	
t2/t1 =	1.4	lameter)	uw -	0.575 11 (11	onn. washer ulameter)	
For t2/t1 ≤ 1.0:	Pns =	2377 # F	or t2/t1 ≥ 2.5:		, ↓ T	
	$2F_{u2} t_2^3 d$ 3.86		Pns =	2377 #	t ₂	
	$= 2.7t_1 dF_{u1}$ 2.38	k P _{ns}	$= 2.7t_1 dF_{u1}$	2.38 k		
$P_{ns} =$	$= 2.7t_2 dF_{u2}$ 3.39	k P _{ns}	$= 2.7t_2 dF_{u2}$	3.39 k		
Pns/Ω =	792 #					
Pss/Ω =	540 # <- Controls	r.	$v_{not} = 0.85 t_c dF$	u2)		
Tension: Pnot =	1.068 k (screw p	ull-out strength)	$t_c = \min(t_1, t_2)$	2)		
Pnov =		ull-over strength)	$P_{nov} = 1.5t_1 d_w H$	- u1		
Pts/Ω = Pts/Ω =	356 # <- Controls 820 #	; (full tensile screv	w conscitul			
	Shear (k) # clips		b) #screws	spacing		
Long side:	2.849 2	1.42 540 #	3	3.00 in		
<u>Short side:</u>	2.849 2	1.42 540 #	3	3.00 in		e de la composición d La composición de la c
	vidth (in) = 7.00	clip height	= 1.4	in	4	1 1 4
min	spacing = 0.57 in	edge distance	= 0.5	in (min. 1.5d)		$-\mathbf{V}$
<u>Check Block shear</u>	<u>rupture:</u> 0.K.	thinnest part	= 0.0713	AISI BSR applie	•• 🖌 T	. •
Fy =	50 ksi		2 bolt/screw c			
Agv =	0.463 in ²		0 in ²		0.042 in ²	
Rn/Ω =	7.500 k	$R_n = 0.6F_y A_{gv} + F_u$				
	<u>BSR 0.K.</u>		(AISI Sec	t. E5.3J		
Connection of Comb	to Composition Character					
Roof Loading	to Supporting Structu SEISMIC: (0.6-0.14Sr		WIND.	0.6D + W		
Transverse:	Uplift _{MAX} =	1224 lbs			1679 lbs	
Compression _{SEISMIC} =	3468 lbs	=[FpmaxASD*(Hcm+				
Tension _{SEISMIC} =	1224 lbs				_{+curb} *wcurb/2]/wcurb	
Compression _{WIND} =					/2-F _{vert ASD} *wcurb/2]/wcurl	0
Tension _{WIND} =	1160 lbs				/2+F _{vertASD} *wcurb/2]/wcurb	
Longitudinal:	Uplift _{MAX} =	677 lbs			1679 lbs	
Compression _{SEISMIC} =	2921 lbs	=[FpmaxASD*(Hcm+				
Tension _{SEISMIC} =	677 lbs	=[FpmaxASD*(Hcm+	Hcurb)-(0.6-0	.14S _{DS})*WGT _{unit}	_{+curb} *Lcurb/2]/Lcurb	
Compression _{WIND} =	192 lbs	=[F _{h ASD long} *(Hcm+He	curb)+0.6*WG1	unit+curb*Lcurb/2	2-F _{vert ASD} *Lcurb/2]/Lcurb	
Tension _{WIND} =	651 lbs				2+F _{vertASD} *Lcurb/2]/Lcurb	_
Wood Attachment	:: 1/4"φ x 3.5	<u>" Simpson S</u> DS screv		eaded emt (SGn	nin = 0.43)	_
	Tall _{metal} =	997 lbs	Vall _{metal} =	1097 lbs		
Transverse:	Tall _{wood} =	616 lbs	Vall _{wood} =	672 lbs		
	ews Req'd for Uplift =	1.99	COMBINED L		0.897 O.K.	
	ews Req'd for Shear =	2.50	Screw	Spacing =	28.3 in o.c.	
	of screws Required =	5	- f / 2 25		.1	
<u>Longitudinal:</u>	son SDS screws @ 28.3	in o.c. along long side	01 CUID W/ 2.25	threaded embe	<u>a</u>	
5	ews Req'd for Uplift =	1.1	COMBINED L		0.899 O.K.	
	ews Reg'd for Shear =	2.5		Spacing =	24.0 in o.c.	
	of screws Required =	4	Screw	Spacing -	24.0 11 0.0.	
		4				
		o c along short side o	f curb w/ 2 25"	threaded ember	1	
<u>1/4"φ x 3.5" Simp</u>	son SDS screws @ 24 in			threaded embed	1	-
	<u>son SDS screws @ 24 in</u> nent: 1/2" φ A30	o.c. along short side o 7 Bolts to steel angle 3927 lbs	e below deck	threaded embed	<u>1</u>	-
<u>1/4"φ x 3.5" Simp</u>	son SDS screws @ 24 in	7 Bolts to steel angle		a	<u>l</u>	-
<u>1/4"ф x 3.5" Simp</u> Steel Deck Attachn <u>Transverse:</u>	ison SDS screws @ 24 in ment: 1/2" φ A30 Tall _{bolt} =	7 Bolts to steel angle 3927 lbs	e below deck Vall _{bolt} =	2209 lbs 2192 lbs	<u>і</u> 0.169_0.К.	-
<u>1/4"ф x 3.5" Simp</u> Steel Deck Attachn <u>Transverse:</u> # of B	<u>son SDS screws @ 24 in</u> hent: 1/2" φ A30 Tall _{bolt} = Tall _{metal} =	7 Bolts to steel angle 3927 lbs 2086 lbs	e below deck Vall _{bolt} = Vall _{metal} = COMBINED L	2209 lbs 2192 lbs		-
<u>1/4"φ x 3.5" Simp</u> Steel Deck Attachn <u>Transverse:</u> # of B # of B	<u>son SDS screws @ 24 in</u> nent: 1/2" φ A30 Tall _{bolt} = Tall _{metal} = olts Req'd for Uplift =	7 Bolts to steel angle 3927 lbs 2086 lbs 0.59	e below deck Vall _{bolt} = Vall _{metal} = COMBINED L	2209 lbs 2192 lbs OADING:	0.169 0.K.	-
<u>1/4"φ x 3.5" Simp</u> Steel Deck Attachn <u>Transverse:</u> # of B # of B Total	<u>son SDS screws @ 24 in</u> nent: 1/2" φ A30 Tall _{bolt} = Tall _{metal} = olts Req'd for Uplift = olts Req'd for Shear =	7 Bolts to steel angle 3927 Lbs 2086 Lbs 0.59 0.77 3	e below deck Vall _{bolt} = Vall _{metal} = COMBINED La Bolt	2209 lbs 2192 lbs OADING: Spacing =	0.169 0.K.	-
<u>1/4"φ x 3.5" Simp</u> Steel Deck Attachn <u>Transverse:</u> # of B # of B Total	son SDS screws @ 24 in hent: 1/2" φ A30 Tall _{bolt} = Tall _{metal} = olts Req'd for Uplift = olts Req'd for Shear = # of Bolts Required =	7 Bolts to steel angle 3927 Lbs 2086 Lbs 0.59 0.77 3	e below deck Vall _{bolt} = Vall _{metal} = COMBINED La Bolt	2209 lbs 2192 lbs OADING: Spacing =	0.169 0.K.	-
<u>1/4"φ x 3.5" Simp</u> Steel Deck Attachn <u>Transverse:</u> # of B # of B Total <u>1/2" φ A307 Bolts</u> Longitudinal: # of B	son SDS screws @ 24 in hent: 1/2" φ A30 Tall _{bolt} = Tall _{metal} = lolts Req'd for Uplift = olts Req'd for Shear = # of Bolts Required = to steel angle below de olts Req'd for Uplift =	7 Bolts to steel angle 3927 Lbs 0.59 0.77 3 ck @ 54.6 in o.c. along 0.32	e below deck Vall _{bolt} = Vall _{metal} = COMBINED L Bolt g long side of cu	2209 lbs 2192 lbs OADING: Spacing = r <u>b</u> OADING:	0.169 O.K. 54.6 in o.c. 0.250 O.K.	-
<u>1/4"φ x 3.5" Simp</u> Steel Deck Attachn <u>Transverse:</u> # of B # of B <u>Total</u> <u>1/2" φ A307 Bolts</u> Longitudinal: # of B # of B	<u>son SDS screws @ 24 in</u> nent: 1/2" φ A30 Tall _{bolt} = Tall _{metal} = iolts Req'd for Uplift = olts Req'd for Shear = # of Bolts Required = to steel angle below de olts Req'd for Uplift = olts Req'd for Shear =	7 Bolts to steel angle 3927 Lbs 0.59 0.77 3 ck @ 54.6 in o.c. along 0.32 0.77	e below deck Vall _{bolt} = Vall _{metal} = COMBINED L Bolt	2209 lbs 2192 lbs OADING: Spacing = r <u>b</u> OADING:	0.169 O.K. 54.6 in o.c.	-
<u>1/4"φ x 3.5" Simp</u> Steel Deck Attachn <u>Transverse:</u> # of B # of B <u>Total</u> <u>1/2" φ A307 Bolts</u> Longitudinal: # of B # of B Total	son SDS screws @ 24 in hent: 1/2" φ A30 Tall _{bolt} = Tall _{metal} = lolts Req'd for Uplift = olts Req'd for Shear = # of Bolts Required = to steel angle below de olts Req'd for Uplift =	7 Bolts to steel angle 3927 lbs 2086 lbs 0.59 0.77 3 ck @ 54.6 in o.c. along 0.32 0.77 2 2	e below deck Vall _{bolt} = Vall _{metal} = COMBINED L Bolt glong side of cu COMBINED L Req'd Min	2209 lbs 2192 lbs OADING: Spacing = rb OADING: Spacing =	0.169 O.K. 54.6 in o.c. 0.250 O.K.	_

MOUR GROUP ENGINEERING + DESIGN

Epoxy: Hitti HIT-HY 200 V3 (ICC ESR 4868) f'c = 4000 psi h = 6 in (concrete thickness, t_min = h_ef + 2do) 0.K. h_ef = 4.5 in (effective embedment) da = 0.625 in (anchor diameter) do = 0.75 in (hole diameter) n = 3 (number of dummy anchors to check capacity with spacing effect) s = 20 in (initial spacing estimate)	(Pag A _{Na} <i>cNa</i>
Concrete Attachment: 5/8" of HAS rods in Hilti HIT-HY 200 V3 epoxy w/ 4.5in embed Epoxy: Hilti HIT-HY 200 V3 (ICC ESR 4868) f'c = 4000 psi h = 6 in (concrete thickness, t_min = h_ef + 2d_o) 0.K. h_ef = 4.5 in (effective embedment) da = 0.625 in (anchor diameter) do = 0.75 in (hole diameter) n = 3 (number of dummy anchors to check capacity with spacing effect) s = 20 in (initial spacing estimate)	
Concrete Attachment: 5/8" of HAS rods in Hilti HIT-HY 200 V3 epoxy w/ 4.5in embed Epoxy: Hilti HIT-HY 200 V3 (ICC ESR 4868) f'c = 4000 psi h = 6 in (concrete thickness, t_min = h_ef + 2d_o) 0.K. h_ef = 4.5 in (effective embedment) da = 0.625 in (anchor diameter) do = 0.75 in (hole diameter) n = 3 (number of dummy anchors to check capacity with spacing effect) s = 20 in (initial spacing estimate)	
Epoxy: Hilti HIT-HY 200 V3 (ICC ESR 4868) f'c = 4000 psi h = 6 in (concrete thickness, t_min = h_ef + 2do) 0.K. h_ef = 4.5 in (effective embedment) da = 0.625 in (anchor diameter) do = 0.75 in (hole diameter) n = 3 (number of dummy anchors to check capacity with spacing effect) s = 20 in (initial spacing estimate)	
h = 6 in (concrete thickness, t_min = h_ef + 2do) 0.K. h_ef = 4.5 in (effective embedment) da = 0.625 in (anchor diameter) do = 0.75 in (hole diameter) n = 3 (number of dummy anchors to check capacity with spacing effect) • s = 20 in (initial spacing estimate)	CNa
h_ef =4.5in (effective embedment)da =0.625in (anchor diameter)do =0.75 in (hole diameter)n =3(number of dummy anchors to check capacity with spacing effect)•s =20in (initial spacing estimate)	
da = 0.625 in (anchor diameter) do = 0.75 in (hole diameter) n = 3 (number of dummy anchors to check capacity with spacing effect) s = 20 in (initial spacing estimate)	
n = 3 (number of dummy anchors to check capacity with spacing effect) s = 20 in (initial spacing estimate)	
s = 20 in (initial spacing estimate)	s
	\rightarrow
τκ,cr / uncr = 1170 2220 psi (from ESR 4868, Table 14, Temp range B)	J
$\tau k, cr / uncr = 1226$ 2327 psi If $f'_c > 2500$, multiply by $(f'_c / 2500)^{0.1}$	
$\begin{aligned} \tau k, cr / uncr &= 1226 2327 \text{ psi } \text{ If } f'_c > 2500, multiply \ by \ (f'_c / 2500)^{0.1} \\ c_N a &= 9.0625 \text{ in (min. edge distance for full capacity)}; \qquad c_{Na} &= 10d_a \sqrt{\frac{\tau_{uncr}}{1100}} \end{aligned}$	s
A_{Na}	\rightarrow
Tension: $N_{ag} = \frac{A_{Na}}{A_{Nao}} \varphi_{ec,Na} \varphi_{ed,Na} \varphi_{cp,Na} N_{ba} $ (ACI318-14, 17.4.5.1b)	
Bond strength $\varphi_{ec,Na}\varphi_{ed,Na}\varphi_{cp,Na} = 1.0$	
***Bond strength A_{Na} = 985.55 in ²	\rightarrow
will govern over $A = 200 \text{ fm}^2$	CNa
$N_{ba} = 10727 \text{ lbs} \qquad N_{ba} = \lambda_a \tau_{cr} \pi d_a h_{ef} \alpha_{n,seismic} \qquad \alpha_{n,seismic} = 0.99$	
$N_{ag} = 32181 \text{ lbs (group)}$ $\lambda_a = 1.0$ $4 \text{ cNa} + \text{ cNa}$	
	lightweig
Breakout $N_{\rm exact matrix} = \frac{A_{\rm Nc}}{2} a_{\rm exact matrix} a_{\rm exact matrix} N_{\rm exact matrix} a_{\rm exact matrix} a_{\rm$	
$\frac{Breakout}{strength} \qquad N_{cbg} = \frac{A_{Nc}}{A_{Nco}} \varphi_{ec,N} \varphi_{ed,N} \varphi_{cp,N} N_b \qquad N_b = \lambda_a k_c \sqrt{f'_c} h_{ef}^{1.5}$	
$A_{Nc} =$ 722.25 in ² $N_b = 10264$ lbs $\phi_{conc} =$ 0.75	
$A_{\rm Nco} =$ 182.25 in ² kc = 17 $\phi_{\rm bond} =$ 0.65	
$N_{cbg} = 40674 \text{ lbs (group)} \qquad \phi_{seis} = 0.75$	
$\phi_{\text{Sels}} = 22879 \text{ lbs (group)} \qquad \phi_{\text{steel}} = 0.65$	
Shear: Vsa,eq = 7865 (from ESR4868, Table 11) $\alpha_{v,seismic} = 0.6$	
Steel strength øVsa,eq = 3067	
Tall _{LRFD} = 5229 lbs (anchor) Vall _{LRFD} = 3067 lbs $\propto = (1 + 0.2SDS)D + 2.5E = 1$.708
$Tall_{ASD} = Tall_{LRFD}/\alpha = 3062 \text{ lbs} \qquad Vall_{ASD} = Vall_{LRFD}/\alpha = 1796 \text{ lbs} \qquad (D = 0.758, E = 0.242)$	
Transverse: Uplift _{MAX} = 2842 lbs Shear _{MAX} = 3358 lbs	
Compression _{SEISMIC} = 5086 lbs =[Ωo*FpmaxASD*(Hcm+Hcurb)+(1+0.14S _{DS})*WGT _{unit+curb} *wcurb/2]/wcurb	
Tension _{SEISMIC} = 2842 lbs =[Ωo*FpmaxASD*(Hcm+Hcurb)-(0.6-0.14S _{DS})*WGT _{unit+curb} *wcurb/2]/wcurb	
Shear _{SEISMIC} = 3358 lbs =Ωo*FpmaxASD/2	
Min Bolts Req'd Uplift = 0.93 spacing = 54.56 in o.c. Tapplied = 947.5 lbs	
Min Bolts Req'd Shear = 2.00 spacing = 109.13 in o.c. Vapplied = 671.5 lbs	
Try using3boltsspaced at54.56in o.c.COMBINED LOADING = $\frac{T_{applied}}{T_{allow,ASD}} + \frac{V_{apllied}}{V_{allow,ASD}} \le 1.2$ = 0.68	
Use 3 - 5/8" HAS rods in Hilti HIT-HY 200 V3 epoxy @ 54.6 in o.c. max. along long side of curb w/ 4.5in embed	
Longitudinal: Uplift _{MAX} = 1747 lbs Shear _{MAX} = 3358 lbs	
$Compression_{SEISMIC} = 3991 \text{ lbs} = [\Omega \circ FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*WGT_{unit+curb}*Lcurb/2]/Lcurb$	
Tension _{SEISMIC} = 1747 lbs =[Ωo*FpmaxASD*(Hcm+Hcurb)-(0.6-0.14S _{DS})*WGT _{unit+curb} *Lcurb/2]/Lcurb	
Shear _{SEISMIC} = 3358 lbs =Ωo*FpmaxASD/2	
Min Bolts Req'd Uplift = 0.57 spacing = 34.06 in o.c. Tapplied = 873.5 lbs	
Min Bolts Req'd Shear = 2.00 spacing = 68.13 in o.c. Vapplied = 671.5 lbs	
Try using 2 bolts spaced at 68.13 in o.c. COMBINED LOADING = $\frac{T_{applied}}{T_{allow,ASD}} + \frac{V_{apllied}}{V_{allow,ASD}} \le 1.2 = 0.66$ O.K.	
Use 2 - 5/8" ϕ HAS rods in Hilti HIT-HY 200 V3 epoxy @ 68.1 in o.c. max. along short side of curb w/ 4.5in embed	
CURB DESIGN SUMMARY: CBKDSAV1518 Unit: Sunchoice AV15-18	
CURB RAIL THICKNESS: 0.0713 in 14 Gauge	
UNIT CLIP THICKNESS: 0.0713 in 14 Gauge	
# OF CLIPS (LONG SIDE) - 2 clips with 3 - #10 SMS screws each clip	
WEB STIFFENER: NOT REQUIRED	

OF CLIPS (SHORT SIDE) - 2 clips with 3 - #10 SMS screws each clip WEB STIFFENER: NOT REQUIRED CORNER CONNECTION: Use 3 - 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts WOOD <u>STEEL</u> CONCRETE CURB 1/4"φ x 3.5" Simpson SDS screws 1/2" φ A307 Bolts to 5/8"φ HAS rods in Hilti HIT-HY ANCHORAGE w/ 2.25" threaded embed 200 V3 epoxy w/ 4.5in embed steel angle below deck LONG DIRECTION 3 @ 54.56 in o.c. 5 @ 28.28 in o.c. 3 @ 54.56 in o.c. SHORT DIRECTION 4 @ 24.04 in o.c. 2 @ 68.13 in o.c. 2 @ 68.13 in o.c.