

Structural Calculations for CBKD-79 Series

KDKITSUN3672

Prepared for:

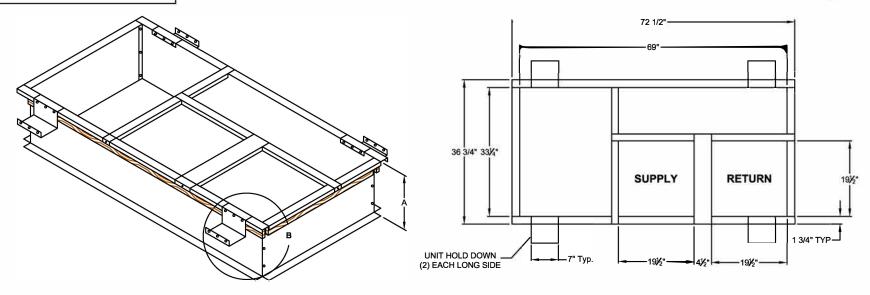
PROVENT / RRS

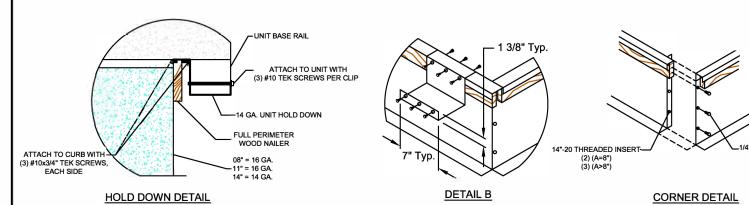
3847 Wabash Drive Mira Loma, CA 91725

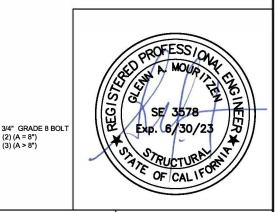
Date: October 1, 2021

Project Number: PV2101

For wood, concrete and steel attachments see Roof Anchorage Detail, Form No. CB-60.


Will conform to seismic code requirements for knock-down or pre-assembled application. (Contact factory for assembled version.)

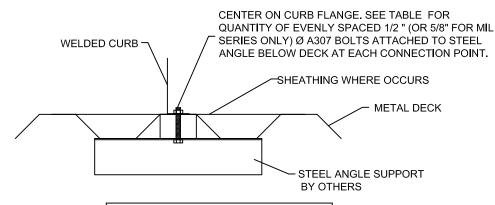

STRUCTURALLY CALCULATED HOLD DOWN CLIPS FOR **KNOCK-DOWN ROOF CURBS FOR YORK UNITS**


ZR, XN, XP 036-060 ZE, ZF 036-072

ProVent P/N	Α	WEIGHT	SEISMIC KIT P/N	WEIGHT
CBKDSUN367208	8"	67 Lbs		
CBKDSUN367211	11"	79 Lbs	KDKITSUN3672	6 Lbs
CBKDSI IN367214	14"	91 l bs		

Meets seismic requirements for the following codes: CBC 2019 IBC 2018

3847 WABASH DRIVE MIRA LOMA, CA 91725


PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITTED TO:	
COMPANY:	
JOB NAME:	_
EQUIPMENT:	24
NOTES:	
NO120.	

FORM NO: CBKD-79		PART NUMBER: KDKITSUN3672
DATE : 9/9/2021	REV :	DRAWN BY: ALL

(2) (A = 8") (3) (A > 8")

STEEL ATTACHMENT

NO O	FANCHO	RAGE	BOLTS	REQUIRED
.40.0				I VE GOIL VED

CURB	LONG SIDE	SHORT SIDE
LXS	2 @ 34.5" O.C.	2 @ 19" O.C.
LXL	2 @ 34.5" O.C.	2 @ 29" O.C.
SUN3672	2 @ 60.5" O.C.	2 @ 39" O.C.
PRD3715	2 @ 68.88" O.C.	2 @ 39" O.C.
PRS	2 @ 58.88" O.C.	2 @ 28.69" O.C.
PRL	2 @ 72" O.C.	2 @ 41.5" O.C.
SLU180	3 @ 51.38" O.C.	2 @ 71.5" O.C.
SLM1830	3 @ 56.88" O.C	3 @ 35.75" O.C.

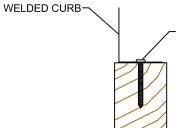
ASSUMES:

CONC SLAB fc= 4000PSI MINIMUM 6" MIN THICKNESS NORMAL WEIGHT CONCRETE OR SAND LIGHT WEIGHT

CONCRETE ATTACHMENT

WELDED CURB-

Meets seismic requirements for the following codes: CBC 2019 IBC 2018


ROOF ANCHORAGE DETAIL		
CBKD Series	CBWC Series	
LXS	LXS	
LXL	LXL	
SUN3672	SUN3672	
PRD3715	PRD3715	
PRS	PRS	
PRL	PRL	
SLU180	SLU180	
SLM1830	SLM1830	

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 3/4" Ø THREADED ROD IN HILTI HIT-HY 200 EPOXY WITH 4" EMBED

	NO. OF ANCHORAGE BOLTS REQUIRED		
CURB	LONG SIDE	SHORT SIDE	
LXS	4 @ 11.5" O.C.	3 @ 9.5" O.C.	
LXL	4 @ 11.5" O.C.	3 @ 14.5" O.C.	
SUN3672	4 @ 20.17" O.C.	3 @ 12.38" O.C.	
PRD3715	9 @ 8.61" O.C.	7 @ 6.5" O.C.	
PRS	5 @ 14.72" O.C.	4 @ 9.56" O.C.	
PRL	6 @ 14.4" O.C.	5 @ 10.38" O.C.	
SLU180	8 @ 14.68" O.C.	7 @ 11.92" O.C.	
SLM1830	12 @ 10.34" O.C.	10 @ 7.94" O.C.	

* SIX INCHES FROM EACH CORNER EVENLY SPACED.
** CENTERED.

WOOD ATTACHMENT

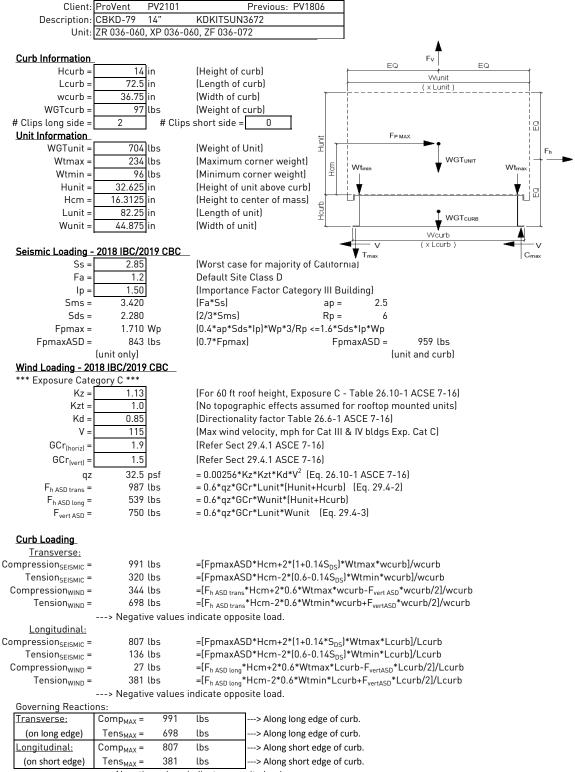
CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 1/2" Ø SIMPSON SDS OR EQUIVALENT SCREWS (3 1/2 " MIN. EMBED. INTO WOOD FRAMING)

5/8" Ø LAG SCREW W/MIN. 3.5" EMBED (SGMIN=0.43) (FOR MIL SERIES ONLY)

	REQUIRED		
CURB	LONG SIDE	SHORT SIDE	
LXS	4 @ 12.83" O.C.	3 @ 11.5" O.C.	
LXL	4 @ 12.83" O.C.	3 @ 16.5" O.C.	
SUN3672	4 @ 21.5" O.C.	3 @ 14.38" O.C.	
PRD3715	9 @ 9.11" O.C.	8 @ 6.14" O.C.	
PRS	4 @ 20.96" O.C.	3 @ 16.34" O.C.	
PRL	5 @ 19" O.C.	4 @ 15.17" O.C.	
SLU180	9 @ 13.34" O.C.	7 @ 12.58" O.C.	
SLM1830	13 @ 9.81" O.C.	12 @ 6.86" O.C.	

FOUR INCHES FROM EACH CORNER EVENLY SPACED

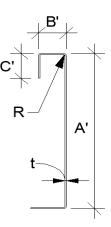
NO. OF ANCHORAGE SCREWS



3847 WABASH DRIVE MIRA LOMA, CA 91725

PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITTED TO:	CB-60		
JOB NAME:			
EQUIPMENT:	DATE:	REV:	DRAWN BY:
NOTES:	10/07/2021	7	FMM


---> Negative values indicate opposite load.

Fy =	50 ksi	Fu =	65 ksi
E =	29500 ksi	t =	0.0713 14 Gauge

Calculate Section Properties of Curb

Α'=	14.000	in	a =	13.644 in = A'-(2r+t)
B'=	1.750	in	a'=	13.929 in = A'-t
C'=	0.000	in (0 if no lips)	b =	1.572 in = $B'-[r+t/2+a(r+t/2)]$
a =	0.000	(0 - no Lip; 1 w/ lip)	b'=	1.714 in = B'-(t/2+at/2)
R=	0.1069	(Inside bend radius)	C =	0.000 in = $a[C'-(r+t/2)]$
t =	0.0713	in	c'=	$0.000 \text{ in } = \alpha(C'-t/2)$
r'=	0.143	in = R+t/2	u =	$0.224 \text{ in } = \pi r/2$
x =	0.171	in (Distance between	centroid and we	b centerline)
lx =	27.499	in ⁴	rx =	4.73 in
ly =	0.204	in ⁴	ry =	0.407 in
A =	1.23	in ²	rmin =	0.407 in

Axial Compression

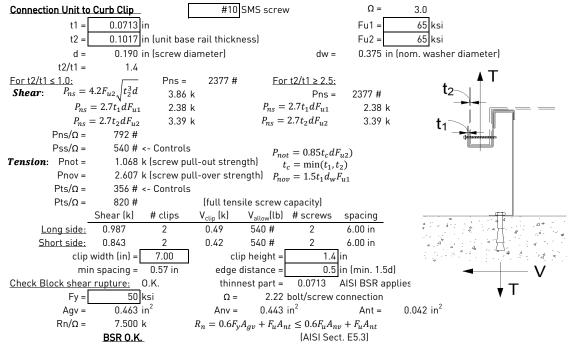
Pu =	0.494 k	(Max Axial Comp)	$\Omega c = 1.80$	
Pn/Ωc =	17.057 k	163 -15 5 (0.650)	- ²) r —	
Fe =	30.16 ksi	$P_n - F_n A \qquad If \ \lambda_c \le 1.5; \ F_n = \left(0.658^{\lambda_c}\right)$		
λc =	1.29	$\frac{\frac{n}{\Omega_c} = \frac{n}{\Omega_c}}{\frac{1}{\Omega_c}} \qquad If \ \lambda_c > 1.5; F_n = \frac{0.877}{\lambda_c^2} F_n$	$\lambda_c = \sqrt{\frac{r_y}{F_e}}$ $F_e = \frac{\kappa L}{(kl/)}$	2
Fn =	24.98 ksi	$\lambda_c > 1.5, \lambda_n = \lambda_c^2$	$V \qquad V \qquad (7r)$	
Ly =	50 in	Lateral unbraced length		
$k_v L_v / r_v =$	98	(assume k=0.8)		

Compression Check = 0.K.

Check Web Crippling

h =	14 in	Check li	mits:	C = 4.00	7 (6) 11 00 (10 ()
t =	0.0713 in	h/t =	196.35 ≤ 200	$C_R = 0.14$	(See table C3.4.1-2, fastened
N =	7.00	N/t =	98.18 ≤ 210	$C_N = 0.35$	to support, one flange, end
$\Omega_{\rm w}$ =	1.75	N/h =	$0.5 \le 2.0$	$C_h = 0.02$	loading)
P _n =	2.422 k	R/t =	1.50 ≤ 9.0	/	
$P_n/\Omega_w =$	1.384 k		$P_n =$	$Ct^2F_y\sin(90)\left(1-C_R\right)$	$\left(\frac{R}{L}\right)\left(1+C_N\right)\left(\frac{N}{L}\right)\left(1-C_h\right)\left(\frac{n}{L}\right)$
Long side: $Pu_{Trans} =$	0.496 k	<u>0.K.</u>	# clips = 2	, , , (\sqrt{t}
Short side: Pulsas =	0.403 k	0.K.	# clips = 2	,	, , , , , , , , , , , , , , , , , , , ,

Check Web Stiffener 16Ga x 3/4" x 7" (C-channel)


width of stiffener =	7.000 in		ts =	0.0566 16 Gauge
web of stiff. w =	6.717 in		Rs =	0.0849 in
***Check w/ts ≤ 1.	28√E/Fys		Ωc =	1.70
w/ts =	118.675			
1.28√(E/Fys) =	31.091	> w/ts over limit	Use C3.7.2	
$P_n = 0.7(P_{wc} + 1)$				
Pwc =	2.422 k	Ae =	0.380 in ²	
Pn =	15.002 k	Pn/Ω =	8.825 k	
			Not Reg'd	

1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts **Corner Connections**

Tcrnmax =	247 lbs		Max(F _{pmaxASD} /4 -OR- Fh _{ASDtrans} /4 corner connections)						
Vcrnmax =	496 lbs		Max(Tens/2 -OR- Comp/2 corner connections pe					ns per side	:)
	Bolt:	Tall =	2480	lbs		Vall =	1208	lbs	
Threaded	l Insert:	Tall =	2860	lbs		Vall =	1536	lbs	
# of Bolts required for Tension = 0.1							<u>.</u> '		
# of Bolts required for Shear = 0.4									
		# of B	olts Used =		2.0				

Check Combined Stress in Bolts & Inserts:

Check 1/8" welded connection	< U	SE WELD	Ω =	2.35
Assume $L/t > 25: 25*t =$	1.783 in	$P_{n}/ = \frac{1}{2}$	1541 E > 17	$L_{req'd} = \frac{V_{req}\Omega}{0.75tF_u}$
Lreq'd =	0.335 in	$n_{\Omega} = \frac{1}{\Omega} 0.7$	$5lLF_u \geq V_{req}$	$L_{req'd} - \frac{1}{0.75tF_u}$

Connection of Curb to Supporting Structure								
Roof Loading	SEISMIC: (0.6-0.14S	_{DS})D + 0.7E	WIND: 0.6D + W					
<u>Transverse:</u>	Uplift _{MAX} =	949 lbs	Shear _{MAX} =	494 lbs				
Compression _{SEISMIC} =	1319 lbs	=[FpmaxASD*(Hcm+F	lcurb)+(1+0.14S _{DS})*WGT _{uni}	*wcurb/2]/wcurb				
Tension _{SEISMIC} =	678 lbs	=[FpmaxASD*(Hcm+F	lcurb)-(0.6-0.14S _{DS})*WGT _u	_{nit+curb} *wcurb/2]/wcurb				
$Compression_{WIND} =$	680 lbs	$=[F_{h ASD trans}*(Hcm+Hc$	urb)+0.6*WGT _{unit+curb} *wcur	b/2-F _{vert ASD} *wcurb/2]/wcurb				
Tension _{WIND} =	949 lbs	=[F _{h ASD trans} *(Hcm+Hc	urb)-0.6*WGT _{unit+curb} *wcur	b/2+F _{vertASD} *wcurb/2]/wcurb				
<u>Longitudinal:</u>	Uplift _{MAX} =		Shear _{MAX} =					
Compression _{SEISMIC} =	929 lbs	=[FpmaxASD*(Hcm+F	lcurb)+(1+0.14S _{DS})*WGT _{uni}	_{t+curb} *Lcurb/2]/Lcurb				
Tension _{SEISMIC} =	288 lbs	=[FpmaxASD*(Hcm+H	lcurb)-(0.6-0.14S _{DS})*WGT _u	_{nit+curb} *Lcurb/2]/Lcurb				
$Compression_{WIND} =$	90 lbs	=[F _{h ASD long} *(Hcm+Hct	urb)+0.6*WGT _{unit+curb} *Lcurb	o/2-F _{vert ASD} *Lcurb/2]/Lcurb				
Tension _{WIND} =	360 lbs	=[Fh ASD long*(Hcm+Hci	urb)-0.6*WGT _{unit+curb} *Lcurb	o/2+F _{vertASD} *Lcurb/2]/Lcurb				
Wood Attachmen	t: 1/4"φ x 3.5	" Simpson SDS screw	w/ 2.25" thr<u>eaded emt</u> (S 0	Gmin = 0.43)				
	Tall _{metal} =	997 lbs	Vall _{metal} = 1097 lbs	;				
<u>Transverse:</u>	Tall _{wood} =	616 lbs	Vall _{wood} = 672 lbs	;				
# of Scr	ews Req'd for Uplift =	1.54	COMBINED LOADING:	0.569 O.K.				
# of Scr	ews Req'd for Shear =	0.73	Screw Spacing =	21.5 in o.c.				
Total # of screws Required = 4								

1/4" \(x 3.5" \) Simpson SDS screws @ 21.5 in o.c. along long side of curb w/ 2.25" threaded embed

Longitudinal:

of Screws Req'd for Uplift = 0.6 COMBINED LOADING: 0.433 O.K. # of Screws Req'd for Shear = 14.4 in o.c. 0.7 Screw Spacing = 3 Total # of screws Required =

1/2" φ A307 Bolts to steel angle below deck @ 24.8 in o.c. along short side of curb

1/4" ϕ x 3.5" Simpson SDS screws @ 14.4 in o.c. along short side of curb w/ 2.25" threaded embed								
Steel Deck Attachment: 1/2" \(\phi \) A307 Bolts to steel angle below deck								
	Tall _{bolt} =	3927	lbs	Vall _{bolt} =	2209	lbs		
<u>Transverse:</u>	Tall _{metal} =	2086	lbs	$Vall_{metal} =$	2192	lbs		
# of Bolts Red	'd for Uplift =	0.45		COMBINED I	OADING:		0.111 O.K.	
# of Bolts Req	'd for Shear =	0.23		Bolt	Spacing =		60.5 in o.c.	
Total # of Bol	ts Required =	2						
1/2" φ A307 Bolts to steel	angle below deck (@ 60.5 in	o.c. a	along long side of cu	<u>ırb</u>			
Longitudinal:								
# of Bolts Red	'd for Uplift =	0.17		COMBINED I	OADING:		0.042 O.K.	
# of Bolts Req	'd for Shear =	0.22		Req'd Min	Spacing =		24.8 in o.c.	
Total # of Bol	ts Required =	2						

For Concrete anchorage: SEISMIC $(0.6-0.14S_{DS})D + 0.7\Omega_o E$ $\Omega o = 2.0$ Concrete Attachment: 3/4" ϕ thrd'd rods in Hilti Hit-HY 200 epoxy w/ 4" embed $\mathsf{Tall}_{\mathsf{LRFD}} =$ 1957 lbs $Vall_{LRFD} =$ 4540 lbs $\propto = (1 + 0.2SDS)D + 2.5E = 1.708$ (D = 0.758, E = 0.242) $Vall_{ASD} = Vall_{LRFD}/\alpha =$ 2658 lbs $Tall_{ASD} = Tall_{LRFD}/\alpha =$ 1146 lbs Uplift_{MAX} = 1469 lbs Shear_{MAX} = 959 lbs Transverse: $= \! [\Omega o * FpmaxASD * (Hcm + Hcurb) + (1 + 0.14S_{DS}) * WGT_{unit+curb} * wcurb/2] / wcurb$ $Compression_{SEISMIC} =$ 2110 lbs $= [\Omega o * FpmaxASD* (Hcm + Hcurb) - (0.6 - 0.14S_{DS}) * WGT_{unit+curb}* wcurb/2]/wcurb$ 1469 lbs $\mathsf{Tension}_{\mathsf{SEISMIC}} =$ $Shear_{SEISMIC} =$ 959 lbs $=\Omega o*FpmaxASD/2$ Min Bolts Req'd Uplift = 1.28 spacing = 60.50 in o.c. Tapplied = 489.7 lbs Min Bolts Req'd Shear = 2.00 spacing = 60.50 in o.c. Vapplied = 159.8 lbs $\frac{V_{apllied}}{2} \le 1.2 = 0.49$ Try using 3 bolts $T_{applied}$ COMBINED LOADING = spaced at 30.25 $\overline{T_{allow,ASD}} + \overline{V_{allow,ASD}}$ in o.c max. along long side of curb w/ 4" embed Use 3 - 3/4" ϕ thrd'd rods in Hilti Hit-HY 200 epoxy @ 30.3 in o. $Uplift_{MAX} =$ 689 lbs Shear_{MAX} = Longitudinal: Compression_{SFISMIC} = 1330 lbs $= [\Omega o*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*WGT_{unit+curb}*Lcurb/2]/Lcurb$ $Tension_{SEISMIC} =$ 689 lbs $= [\Omega o * FpmaxASD*(Hcm+Hcurb) - (0.6-0.14S_{DS})*WGT_{unit+curb}*Lcurb/2]/Lcurb$ Shear_{SEISMIC} = 959 lbs =Ωo*FpmaxASD/2 Tapplied = 12.38 in o.c. Min Bolts Req'd Uplift = 0.60 spacing = 229.8 lbs 24.75 in o.c. Vapplied = 159.8 lbs Min Bolts Req'd Shear = 2.00 spacing = $\frac{V_{apllied}}{1.2}$ $T_{applied}$ Try using bolts COMBINED LOADING = spaced at $T_{allow.ASD}$ $\overline{V_{allow.ASD}}$ 12.38 in o.c. Use 3 - 3/4" ϕ thrd'd rods in Hilti Hit-HY 200 epoxy @ 12.4 in o.c. max. along short side of curb w/ 4" embed

CURB DESIGN SU	JRB DESIGN SUMMARY: CBKD-79 KDKITSUN		KDKITSUN36	72	Unit:	ZR 036-060, XP 036-060, ZF 036-	
CURB RAIL	CURB RAIL THICKNESS: 0.0713 in 14 Gauge					072	
UNIT CLIP THICKNESS: 0.0713 in 14 Gauge							
# OF CLIPS (LONG SIDE) - 2 clips with 2 - #10 SMS screws each clip							
WEB STIFFENER: NOT REQUIRED							
# OF CLIPS (SHORT SIDE) - 2 clips with 2 - #10 SMS screws each clip							
WEB STIFFENER: NOT REQUIRED							
CORNER CONNECTION: Use 2 - 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts							
CURB		WOOD		STEEL		<u>CONCRETE</u>	
CURD	1//" 0 5	" C'	200	1/0" - A007 D-I		0/// 0 00 10 10 1000000	

steel angle below deck

2 @ 60.5 in o.c.

2 @ 24.75 in o.c.

1/2" φ A307 Bolts to 3/4" φ thrd'd rod in Hilti HIT-HY

200 epoxy, min. 4" embed

3 @ 30.25 in o.c.

3 @ 12.38 in o.c.

1/4" ϕ x 3.5" Simpson SDS screws

w/ 2.25" threaded embed

4 @ 21.5 in o.c.

3 @ 14.38 in o.c.

ANCHORAGE

LONG DIRECTION

SHORT DIRECTION