

Structural Calculations for

CBKD Series Roof Curbs

CBKD-163A (80-265-46) 2020 Florida Building Code requirements

Prepared for:

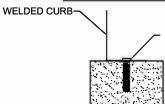
PROVENT

3847 Wabash Drive Mira Loma, CA 91725

Date: May 19, 2021 Project Number: PV2101

STEEL ATTACHMENT CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 5/8" Ø A307 BOLTS ATTACHED TO STEEL ANGLE BELOW DECK AT EACH CONNECTION POINT. SHEATHING WHERE OCCURS METAL DECK NO. OF ANCHORAGE BOLTS REQUIRED

WIND LOAD ROOF ANCHORAGE DETAIL


Meets wind requirements for the following codes:

FBC <u>2020</u> based on ASCE 7-16.

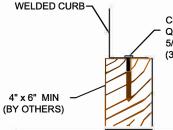
Wind:

190 mph exposure D category III or IV building, max BLDG height: 60 ft Kzt=1.00 max

CONCRETE ATTACHMENT

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 3/4" Ø THRD'D ROD IN HILTI HIT-HY 200 EPOXY, 4" MIN. EMBED INTO CONCRETE.

- NORMAL WEIGHT CONC SLAB
- fc=4000 PSI MIN
- 6" MIN THICK CONC.
- SPECIAL INSPECTION REQUIRED (ESR-3187)


NO. OF ANCHORAGE BOLTS REQUIRED

CURB KIT	LONG SIDE *	SHORT SIDE **	UNIT
80-265-49	5 @ 8.63" o.c.	3 @ 9.5" o.c.	LXS
80-265-50	5 @ 8.63" o.c.	4 @ 9.67" o.c.	LXL
80-265-13	5 @ 15.25" o.c.	3 @ 12.63" o.c.	SUNLINE 3-6 TON
80-265-45	5 @ 14.59" o.c.	3 @ 14.09" o.c.	PRESTIGE SMALL
80-265-46	5 @ 18" o.c.	4 @ 13.67" o.c.	PRESTIGE LARGE
80-265-29	9 @ 8.67" o.c.	5 @ 9.88" o.c.	PREDATOR
80-265-19	8 @ 14.75" o.c.	6 @ 14.4" o.c.	SUNLINE ULTRA
80-265-18	12 @ 10.39" o.c.	8 @ 10.29" o.c.	SUNLINE MAGNA

LONG SIDE * SHORT SIDE * **CURB KIT** UNIT 2 @ 34.5" o.c. 2 @ 19" o.c. 80-265-49 LXS 2 @ 29" o.c. LXL 80-265-50 2 @ 34.5" o.c. 80-265-13 2 @ 61" o.c. 2 @ 25.25" o.c. SUNLINE 3-6 TON 80-265-45 2 @ 58.38" o.c. PRESTIGE SMALL 2 @ 28.19" o.c. PRESTIGE LARGE 80-265-46 2 @ 72" o.c. 2 @ 41" o.c. 80-265-29 3 @ 34.69" o.c. 2 @ 39.5" o.c. PREDATOR 2 @ 72" o.c. SUNLINE ULTRA 80-265-19 3 @ 51.63" o.c. 80-265-18 2 @ 72" o.c. SUNLINE MAGNA 3 @ 57.13" o.c.

WOOD ATTACHMENT

STEEL AND CONCRETE ANCHORS ARE 6"
FROM EACH CORNER EVENLY SPACED

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 5/8" Ø WOOD LAG SCREWS (3.5" MIN. EMBED. INTO WOOD FRAMING)

(SPECIFIC GRAVITY OF WOOD= 0.43 MIN)

	NO. OF ANCHORAGE		
CURB KIT	LONG SIDE	SHORT SIDE	UNIT
80-265-49	6 @ 7.7" o.c.	3 @ 11.5" o.c.	LXS
80-265-50	5 @ 9.63" o.c.	5 @ 8.25" o.c.	LXL
80-265-13	6 @ 13" o.c.	3 @ 14.63" o.c.	SUNLINE 3-6 TON
80-265-45	6 @ 12.48" o.c.	3 @ 16.09" o.c.	PRESTIGE SMALL
80-265-46	6 @ 15.2" o.c.	4 @ 15" o.c.	PRESTIGE LARGE
80-265-29	10 @ 8.15" o.c.	6 @ 8.7" o.c.	PREDATOR
80-265-19	8 @ 15.32" o.c.	6 @ 15.2" o.c.	SUNLINE ULTRA
80-265-18	14 @ 9.1" o.c.	8 @ 10.86" o.c.	SUNLINE MAGNA
****	FOUR INCHES FROM EACH CORNER EVENLY SPACED.		

CONCRETE OVER METAL DECK

WELDED CURB

CONC OVER METAL DECK

STEEL ANGLE/FRAMING
BY OTHERS

NOTE: FOR CONC OVER METAL
DECK OVER STEEL FRAMING
USE STEEL ATTACHMENT

RRS ROOFTOP

1625 DIPLOMAT DRIVE CARROLTON, TX 75006

PHONE (972) 247-7447 FAX (972) 243-0940

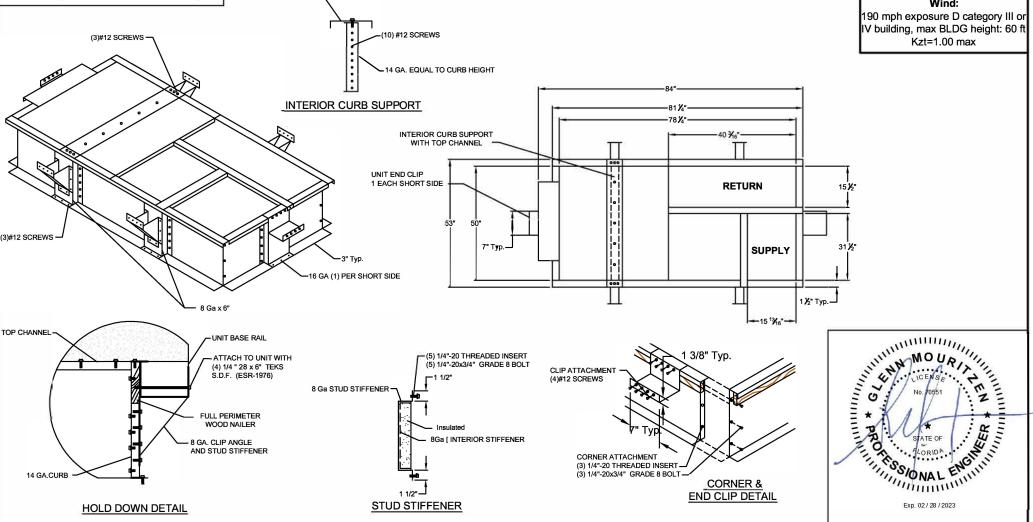
| FORM NO: | CB-25A | DATE: | REV: | DRAWN BY: | 3/29/2021 | 2 | ALL

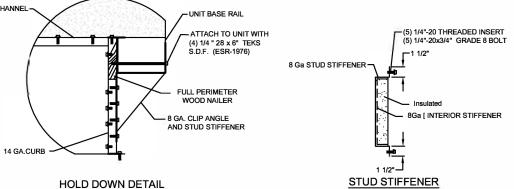
For wood, concrete and steel attachments see Roof Anchorage Detail, Form No. CB-25A.

Will conform to wind load code requirements for knock-down or pre-assembled application. (Contact factory for assembled version.)

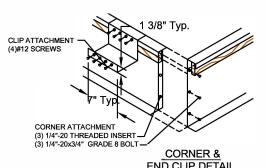
CALCULATED WIND ROOF CURBS FOR YORK UNITS

ZX 08-14; XX 08-12; XY A7; ZY A7 ZY 07-12; XY 07-09; ZL 08-14


ProVent P/N WEIGHT 14" 136 Lbs 80-265-4614 80-265-4618 18" | 160 Lbs


Meets wind requirements for the following codes: FBC 2020

based on ASCE 7-16.


Wind:

190 mph exposure D category III or IV building, max BLDG height: 60 ft Kzt=1.00 max

14 GA. TOP CHANNEL

END CLIP DETAIL

1625 DIPLOMAT DRIVE CARROLTON, TX 75006

PHONE (972) 247-7447 FAX (972) 243-0940

SUBMITTED TO: ___ COMPANY: _ JOB NAME: EQUIPMENT: ___ NOTES:_

FORM NO: CBKD-163A **PART NUMBER:** 80-265-46

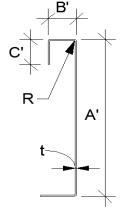
DATE: 3/29/2021 **REV**: 3

DRAWN BY: ALL

Client: ProVent PV2101

Description:	CBKD-163	80-265-46**				
Unit:	ZX 08-14; XX 08-12; 2	ZY 07-12; XY 07-09				
			A			
Curb Information	=		Fv			
Hcurb =	18 in	(Height of curb)	EQ EQ			
Lcurb =	84 in	(Length of curb)	Wunit (x Lunit)			
wcurb =	53 in	(Width of curb)				
WGTcurb =	160 lbs	(Weight of curb)				
# Clips long side =		s short side = 1				
Unit Information	2 # Otips	s short side –				
WGTunit =	1008 lbs	(Weight of Unit)	 			
		3	WGT _{UNIT} F _h			
Wtmax =		(Maximum corner weight)	Wt _{min} Wt _{max}			
Wtmin =		(· ······				
Hunit =		(Height of unit above curb)	+r+			
Hcm =	20.28 in	(Height to center of mass)				
Lunit =	87.1875 in	(Length of unit)	Ŭ WGT _{CURB}			
Wunit =	61.69 in	(Width of unit)	- 			
	•		V (xLcurb) ∨			
Seismic Loading -	- 2020 FBC/2018 IBC	_	T _{max} (X Ecuil b)			
Ss =		(Worst Case for state of Florida)	Y Tillax			
Fa =	2.4	(Worst case Site class E from Tabl	e 11.4-1 ASCE 7-16)			
Sms =		(Fa*Ss)	•			
Sds =		(2/3*Sms)				
Ip =		(Importance Factor Category III or	IV Building)			
Fpmax =		(1.6*Sds*Ip)*WGTunit (Eq 13.3-2)				
FpmaxASD =		(0.7*Fpmax) Fp	maxASD = 471 lbs			
	(unit only)		(unit and curb)			
-	020 FBC/2018 IBC	*** Exposure Category D ***				
Kz =	1.31	(For 60 ft roof height, Exposure D				
Kzt =	1.00	(Max. assumed topographic factor				
Kd =	0.85	(Directionality factor Table 26.6-1)	ASCE 7-16)			
Ke =	1.00	(Ground Elevation Factor Table 26.	(Ground Elevation Factor Table 26.9-1 ASCE 7-16)			
V =	190	(Wind velocity, mph for Occupancy	Cat III-IV bldgs Exp. Cat C, Fig 26.5-1D - ASCE7-16)			
GCr _(horiz) =	1.9	(Refer Sect 29.4.1 ASCE 7-16)				
GCr _(vert) =		(Refer Sect 29.4.1 ASCE 7-16)				
)/ 40 4 400F F 40)			
qz		= $0.00256*Kz*Kzt*Kd*Ke*V^2$ (Eq. 2				
F _{h ASD trans} =		= 0.6*qz*GCr*Lunit*(Hunit+Hcurb)				
F _{h ASD long} =		= 0.6*qz*GCr*Wunit*(Hunit+Hcurb				
F _{vert ASD} =	3459 lbs	= 0.6*qz*GCr*Lunit*Wunit (Eq. 2	9.4-3)			
Curb Loading						
<u>Transverse:</u>						
Compression _{SEISMIC} =	596 lbs	$=[FpmaxASD*Hcm+2*(1+0.14S_{DS})*$	Wtmax*wcurb]/wcurb			
Tension _{SEISMIC} =		= Comp _{SEISMIC} -(0.6-0.14S _{DS})*WGTu				
Compression _{WIND} =		$= [F_{h \text{ transASD}} * Hcm + 2*0.6*Wtmax*wc$				
Tension _{WIND} =		= Comp _{WIND} +Fvert-0.6*WGTunit	Vertasu Wertasu Walis 2, 2, Walis			
TOTISTOTIWIND		indicate opposite load.				
Longitudinal	> Negative values	mulcate opposite toau.				
<u>Longitudinal:</u>	F00 II	[F ACD*II 0*(4 0 4 /*C)	*\A() * 1/			
Compression _{SEISMIC} =		=[FpmaxASD*Hcm+2*(1+0.14*S _{DS})				
Tension _{SEISMIC} =		= Comp _{SEISMIC} -(0.6-0.14S _{DS})*WGTu				
Compression _{WIND} =		=[F _{h transASD} *Hcm+2*0.6*Wtmax*Lc	urb-F _{vertASD} *Lcurb/2]/Lcurb			
Tension _{WIND} =	2091 lbs	= Comp _{WIND} +Fvert-0.6*WGTunit				
	> Negative values	indicate opposite load.				
Governing Reaction	ons:					
Transverse:	$Comp_{MAX} = 596$	lbs> Along long edge o	f curb.			
(on long edge)	$Tens_{MAX} = 2972$	lbs> Along long edge o				
Longitudinal:		lbs> Along short edge				
•	1 1.000	•				
(on short edge)	Tens _{MAX} = 2091	lbs> Along short edge	OT CUFD.			
	> Nenative values	indicate opposite load				

Previous: PV1807


^{---&}gt; Negative values indicate opposite load.

Fy = 50 ksi Fu = 65 ksi $t = 0.0713 \boxed{14 \text{ Gauge}}$ E = 29500 ksi

Calculate Section Properties of Curb

LIUII	<u>riopei des c</u>	JI Cui b		
Α'=	18.000	in	a =	17.644 in = A'-(2r+t)
B'=	1.500	in	a'=	17.929 in = A'-t
C'=	0.000	in (0 if no lips)	b =	1.322 in = B'-[r+t/2+a(r+t/2)]
a =	0.000	(0 - no Lip; 1 w/ lip)	b'=	1.464 in = B'-(t/2+at/2)
R=	0.1069	(Inside bend radius)	c =	0.000 in = $a[C'-(r+t/2)]$
t =	0.0713	in	c'=	0.000 in = $a(C'-t/2)$
r'=	0.143	in = R+t/2	u =	$0.224 \text{ in } = \pi r/2$
x =	0.104	in (Distance between	centroid and w	eb centerline)
lx =	50.343	in (Moment of Inertia	about X-Axis)	
ly =	0.133	in (Moment of Inertia	about Y-Axis)	
A =	1.48	in ²		
rx =	5.84	in		

Axial Compression

ry =

rmin =

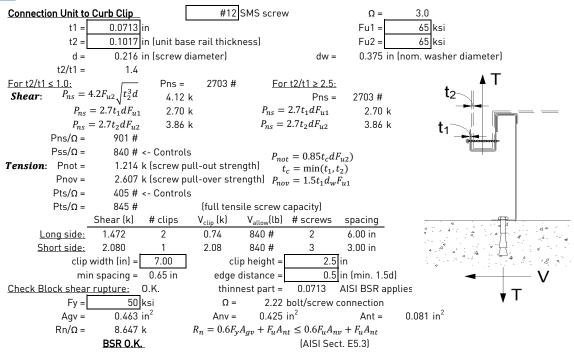
Pu =	2.080 k	(Max Axial Comp)		Ωc =	1.80
$Pn/\Omega c =$	6.999 k	IF 2 - 1	$E = \left(0.6 \operatorname{Folc}^2 \right) E$	_	
Fe =	9.72 ksi		$F_n = \left(0.658^{\lambda_c^2}\right) F_y$	F_y	$_{E}$ $_{-}$ $\pi^{2}E$
λc =	2.27	$\frac{\overline{\Omega_c}}{\Omega_c} = \frac{1}{\Omega_c}$ If $\lambda_c > 1$.	5; $F_n = \frac{0.877}{\lambda_c^2} F_y$	$\kappa_c - \sqrt{\overline{F_e}}$	$F_e = \frac{\pi E}{\left(kl/r\right)^2}$
Fn =	8.52 ksi	1) 10, 11	λ_c^2	•	(/r)
Ly =	65 in	Lateral unbraced length			
$k_v L_v / r_v =$	173	(assume k=0.8)			

Compression Check = 0.K.

0.300 in

0.300 in

Check Web Crippling


h =	18 in	Check limits:	C = 4.00
t =	0.0713 in	$h/t = 252.45 \le 200$	$C_R = 0.14$ (See table C3.4.1-2, fastened
N =	7.00	$N/t = 98.18 \le 210$	$C_N = 0.35$ to support, one flange, end loading)
$\Omega_{\rm w}$ =	1.75	$N/h = 0.388889 \le 2.0$	$C_h = 0.02$
$P_n =$	2.296 k	$R/t = 1.50 \le 9.0$	([]) ([])
$P_n/\Omega_w =$	1.312 k	$P_n = 0$	$Ct^2F_y\sin(90)\left(1-C_R\left \frac{R}{t}\right)\left(1+C_N\left \frac{N}{t}\right)\left(1-C_h\left \frac{h}{t}\right)\right \right)$
Long side: $Pu_{Trans} =$	0.298 k	<u>O.K.</u> # clips = 2	\downarrow
Short side: Pu _{Long} =	0.538 k	O.K. # clips = 1	

***h/t > 200; use web stiffeners

<u>Check Web Stiffener</u> 16Ga x 3/4" x 7" (C-channel)

width of stiffener =	7.000 in		ts =	0.0566 16 Gauge
web of stiff. w =	6.717 in		Rs =	0.0849 in
***Check w/ts ≤ 1.2	28√E/Fys		Ωc =	1.70
w/ts =	118.675			
1.28 √ (E/Fys) =	31.091 -	> w/ts over limit	Use C3.7.2	
$P_n = 0.7(P_{wc} + 1$	$A_e F_v \ge P_{wc}$			
Pwc =	2.296 k	Ae =	0.380 in ²	
Pn =	14.913 k	Pn/Ω =	8.773 k	
			ΩK	

Corner Connections 1/4" ϕ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts 1040 lbs Max(F_{pmaxASD}/4 -OR- Fh_{ASDtrans}/4 corner connections) Tcrnmax = (Max Ten/2 corner connections per side) 1486 lbs Vcrnmax = 2480 lbs 1096 lbs Bolt: Tall = Vall = Threaded Insert: Tall = 1714 lbs # of Bolts required for Tension = 0.4 ***If combined fails: # of Bolts required for Shear = 1.4 # of Bolts Used = 2.0 USE --> 3.0 Check Combined Stress in Bolts & Inserts: 0.888 <u>0.K.</u> StressComb = 0.592 **0.K.**

Connection of Curb to Supporting Structure

Connection of Car	o to supporting struct	ui e		
Roof Loading	SEISMIC: (0.6-0.14S	DS)D + 0.7E	WIND: 0.6D + W	
<u>Transverse:</u>	Uplift _{MAX} =		Shear _{MAX} =	2080 lbs
Compression _{SEISMIC} =	944 lbs	=[FpmaxASD*(Hcm+F	lcurb)+(1+0.14S _{DS})*(WGT _u	_{nit+curb} /2)*wcurb]/wcurb
$Tension_{SEISMIC} =$	282 lbs	=Comp _{SEISMIC} -(0.6-0.1	4S _{DS})*(WGTunit+curb)	
$Compression_{WIND} =$	1625 lbs	=[F _{h transASD} *(Hcm+Hct	urb)+0.6*(WGT _{unit+curb} /2)*w	curb-F _{vertASD} *wcurb/2]/wcurb
Tension _{WIND} =	4383 lbs	=[F _{h transASD} *(Hcm+Hct	urb)-0.6*(WGT _{unit+curb} /2)*w	curb+F _{vertASD} *wcurb/2]/wcurb
Longitudinal:	Uplift _{MAX} =	2720 lbs	Shear _{MAX} =	1472 lbs
Compression _{SEISMIC} =	818 lbs	=[FpmaxASD*(Hcm+F	curb)+(1+0.14S _{DS})*(WGT _u	_{nit+curb} /2)*Lcurb]/Lcurb
$Tension_{SEISMIC} =$	157 lbs	=Comp _{SEISMIC} -(0.6-0.1	50	
$Compression_{WIND} =$	-38 lbs	=[F _{h transASD} *(Hcm+Hct	urb)+0.6*(WGT _{unit+curb} /2)*L	.curb-F _{vertASD} *Lcurb/2]/Lcurb
Tension _{WIND} =	2720 lbs	=[F _{h transASD} *(Hcm+Hct	urb)-0.6*(WGT _{unit+curb} /2)*L	curb+F _{vertASD} *Lcurb/2]/Lcurb
Wood Attachmen		p wood lag screws	w/ 3.5" Min. Embed	
	Tall _{metal} =		$Vall_{metal} = 1043.33$ lb	
<u>Transverse:</u>	Tall _{wood} =	1195.95 lbs	$Vall_{wood} = 1024 lb$	S
# of Scr	ews Req'd for Uplift =	4.63	COMBINED LOADING:	0.975 O.K.
# of Scr	ews Req'd for Shear =	2.03	Screw Spacing =	15.2 in o.c.
Total #	of screws Required =	6		
<u>Use 5/8" φ wood</u>	l lag screws @ 15.2 in o.	c. along long side of curt	<u>)</u>	
<u>Longitudinal:</u>				
	rews Req'd for Uplift =		COMBINED LOADING:	0.862 O.K.
	ews Req'd for Shear =		Screw Spacing =	15.0 in o.c.
	of screws Required =			
Steel Deck Attachr		along short side of curb	- to steel angle below deck	
Steet Deck Attachi	Tall _{bolt} =		Vall _{bolt} = 3682 lb	
<u>Transverse:</u>	ratt _{bolt} –	6903 lbs	3682 lb	
	Bolts Reg'd for Uplift =	 !	COMBINED LOADING:	0.269 O.K.
	olts Req'd for Shear =		Bolt Spacing =	72.0 in o.c.
	# of Bolts Required =			
	Boits attached to steel	angle below deck @ 72 i	n o.c. along long side of curl	<u>o</u>
Longitudinal:	Palta Dagid fan Halift	0.20	COMPINED LOADING	0.12E.0.K
	Bolts Req'd for Uplift = olts Req'd for Shear =		COMBINED LOADING: Reg'd Min Spacing =	0.135 O.K. 41.0 in o.c.
	# of Bolts Required =		ney a Mill Spacing =	41.0 111 0.0.
			n o.c. along short side of cu	rh
<u> </u>	25.15 ditacrica to steer		c.c. diong short side of edi	<u>~</u>

For Concrete anchorage: SEISMIC $[0.6-0.14SDS]D + 0.7\Omega_oE$ $(\Omega_o = 2.5)$ Concrete Attachment: 3/4" ϕ Hilti Hit-HY 200 adhesive anchors w/ 4" embed 1722 lbs $Vall_{LRFD} =$ 2032 lbs $\alpha = (1 + 0.2SDS)D + 2.5E = 1.87$ $Tall_{LRFD} =$ 920.9 lbs $Vall_{ASD} = Vall_{LRFD}/\alpha =$ 1086.6 lbs $Tall_{ASD} = Tall_{LRFD}/\alpha =$ (D = 0.465, E = 0.535)Shear_{MAX} = 2080 lbs Uplift_{MAX} = 4383 lbs Transverse: = $[2.5*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*(WGT_{unit+curb}/2)*wcurb]/wcurb$ Compression_{SEISMIC} = 1454 lbs Tension_{SEISMIC} = 792 lbs =Comp_{SEISMIC}-(0.6-0.14S_{DS})*(WGTunit+curb) $Shear_{SEISMIC} =$ 589 lbs =2.5*FpmaxASD/2 Min Bolts Req'd Uplift = 4.76 spacing = 15.00 in o.c. Tapplied = 876.7 lbs 231.1 lbs Min Bolts Req'd Shear = 2.00 spacing = 60 in o.c. Vapplied = $V_{apllied} \le 1.2$ $\frac{T_{applied}}{T_{allow,ASD}} + \frac{V_{apllied}}{V_{allow,ASD}}$ Try using 5 bolts COMBINED LOADING = spaced at 18.00 in o.c. Use 5 - 3/4" φ Hilti Hit-HY 200 adhesive anchors @ 18 in o.c. max. along long side of curb w/ 4" embed Shear_{MAX} = 2080 lbs Longitudinal: Uplift_{MAX} = 2720 lbs $= [2.5*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*(WGT_{unit+curb}/2)*Lcurb]/Lcurb$ $Compression_{SEISMIC} =$ 1140 lbs 479 lbs =Comp_{SEISMIC}-(0.6-0.14S_{DS})*(WGTunit+curb) Tension_{SEISMIC} = Shear_{SEISMIC} = 589 lbs =2.5*FpmaxASD/2 2.95 spacing = Min Bolts Reg'd Uplift = 14.5 in o.c. Tapplied = 680.1 lbs Min Bolts Req'd Shear = 2.00 spacing = 29 in o.c. Vapplied = 231.1 lbs $V_{apllied} \le 1.2$ $\frac{T_{applied}}{T_{allow,ASD}} + \frac{V_{apllied}}{V_{allow,ASD}}$ Try using 4 bolts COMBINED LOADING = spaced at 13.67 in o.c.

CURB DESIGN SU	MMARY:	CBKD-163	80-265-46**	:	Unit:	ZX 08-14; XX 08-12; ZY 07-12; XY
CURB RAIL	THICKNESS:	0.0713 in	14 Gauge			07-09
UNIT CLIP	THICKNESS:	0.0713 in	14 Gauge			
# OF CLIPS (I	LONG SIDE) -	2 clips with	h 2 - #12 SMS	screws each clip		
WEE	STIFFENER:	16Ga x 3/4	l" x 7" (C-char	nnel) stiffener at	each clip)
# OF CLIPS (SI	# OF CLIPS (SHORT SIDE) - 1 clips with 3 - #12 SMS screws each clip					
WEB STIFFENER: 16Ga x 3/4" x 7" (C-channel) stiffener at each clip						
CORNER CONNECTION: Use 3 - 1/4"						
CURB		WOOD		STEEL		CONCRETE
ANCHORAGE	5/8" φ la	g screw w/	min. 3.5"	5/8" φ A307 b	olts to	3/4" φ thrd'd rod in Hilti HIT-HY
ANCHORAGE	emb	ed (SGmin=	0.43)	steel angle b	elow	200 epoxy, min. 4" embed
LONG DIRECTION	6	@ 15.2 in o).C.	2 @ 72 in c	o.c.	5 @ 18 in o.c.
SHORT DIRECTION	4	@ 15 in o.	c.	2 @ 41 in c	o.c.	4 @ 13.67 in o.c.

Use 4 - 3/4" \$\phi\$ Hilti Hit-HY 200 adhesive anchors @ 13.7 in o.c. max. along short side of curb w/ 4" embed