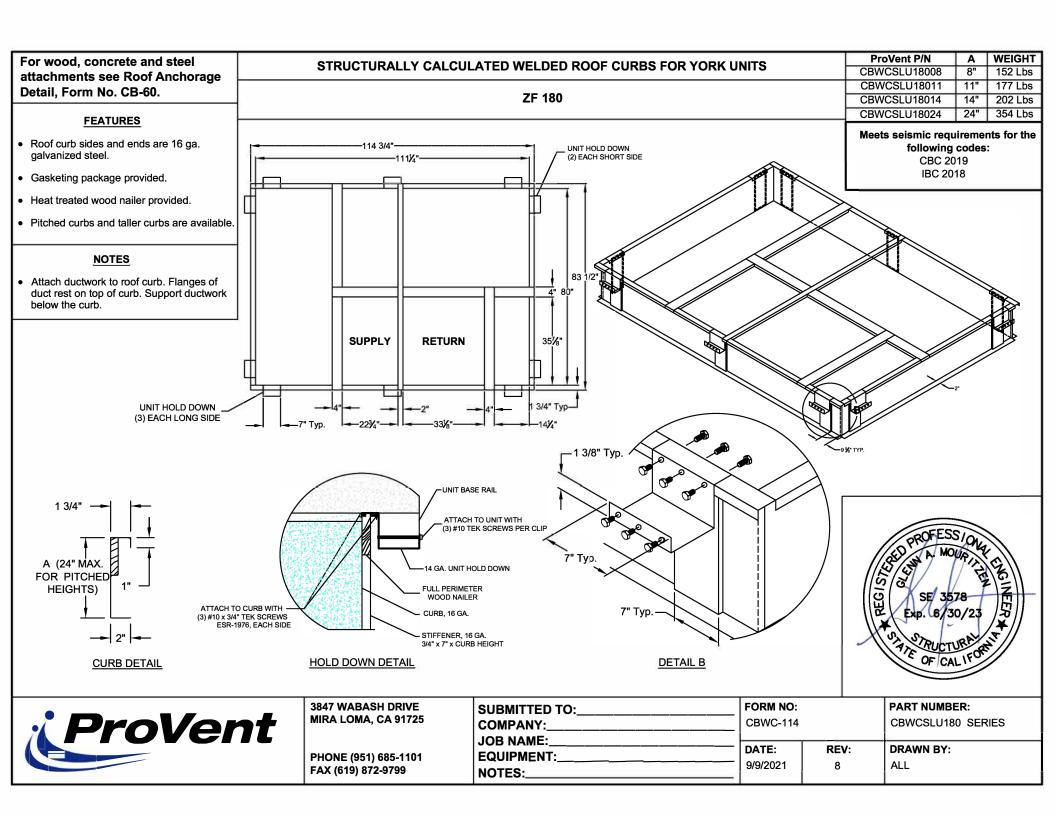
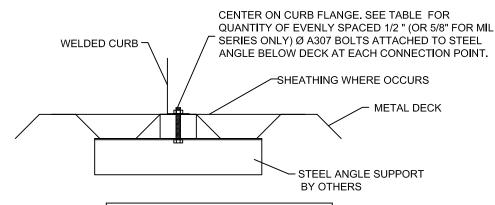


Structural Calculations for CBWC-114 Series

CBWCSLU180


Prepared for:

PROVENT / RRS


3847 Wabash Drive Mira Loma, CA 91725

Date: October 11, 2021

Project Number: PV2101

STEEL ATTACHMENT

NO O	FANCHO	RAGE	BOLTS	REQUIRED
.40.0				I VE GOIL VED

CURB	LONG SIDE	SHORT SIDE
LXS	2 @ 34.5" O.C.	2 @ 19" O.C.
LXL	2 @ 34.5" O.C.	2 @ 29" O.C.
SUN3672	2 @ 60.5" O.C.	2 @ 39" O.C.
PRD3715	2 @ 68.88" O.C.	2 @ 39" O.C.
PRS	2 @ 58.88" O.C.	2 @ 28.69" O.C.
PRL	2 @ 72" O.C.	2 @ 41.5" O.C.
SLU180	3 @ 51.38" O.C.	2 @ 71.5" O.C.
SLM1830	3 @ 56.88" O.C	3 @ 35.75" O.C.

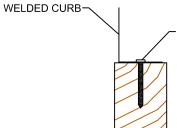
ASSUMES:

CONC SLAB fc= 4000PSI MINIMUM 6" MIN THICKNESS NORMAL WEIGHT CONCRETE OR SAND LIGHT WEIGHT

CONCRETE ATTACHMENT

WELDED CURB-

Meets seismic requirements for the following codes: CBC 2019 IBC 2018


ROOF ANCHORAGE DETAIL					
CBKD Series CBWC Series					
LXS	LXS				
LXL	LXL				
SUN3672	SUN3672				
PRD3715	PRD3715				
PRS	PRS				
PRL	PRL				
SLU180	SLU180				
SLM1830	SLM1830				

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 3/4" Ø THREADED ROD IN HILTI HIT-HY 200 EPOXY WITH 4" EMBED

	NO. OF ANCHORAGE BOLTS REQUIRED				
CURB	LONG SIDE	SHORT SIDE			
LXS	4 @ 11.5" O.C.	3 @ 9.5" O.C.			
LXL	4 @ 11.5" O.C.	3 @ 14.5" O.C.			
SUN3672	4 @ 20.17" O.C.	3 @ 12.38" O.C.			
PRD3715	9 @ 8.61" O.C.	7 @ 6.5" O.C.			
PRS	5 @ 14.72" O.C.	4 @ 9.56" O.C.			
PRL	6 @ 14.4" O.C.	5 @ 10.38" O.C.			
SLU180	8 @ 14.68" O.C.	7 @ 11.92" O.C.			
SLM1830	12 @ 10.34" O.C.	10 @ 7.94" O.C.			

* SIX INCHES FROM EACH CORNER EVENLY SPACED.
** CENTERED.

WOOD ATTACHMENT

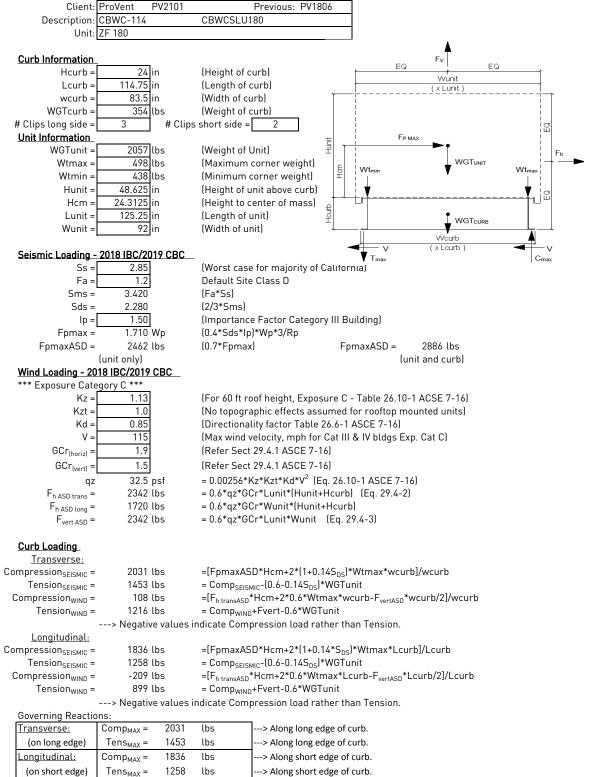
CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 1/2" Ø SIMPSON SDS OR EQUIVALENT SCREWS (3 1/2 " MIN. EMBED. INTO WOOD FRAMING)

5/8" Ø LAG SCREW W/MIN. 3.5" EMBED (SGMIN=0.43) (FOR MIL SERIES ONLY)

	REQUIRED			
CURB	LONG SIDE	SHORT SIDE		
LXS	4 @ 12.83" O.C.	3 @ 11.5" O.C.		
LXL	4 @ 12.83" O.C.	3 @ 16.5" O.C.		
SUN3672	4 @ 21.5" O.C.	3 @ 14.38" O.C.		
PRD3715	9 @ 9.11" O.C.	8 @ 6.14" O.C.		
PRS	4 @ 20.96" O.C.	3 @ 16.34" O.C.		
PRL	5 @ 19" O.C.	4 @ 15.17" O.C.		
SLU180	9 @ 13.34" O.C.	7 @ 12.58" O.C.		
SLM1830	13 @ 9.81" O.C.	12 @ 6.86" O.C.		

FOUR INCHES FROM EACH CORNER EVENLY SPACED

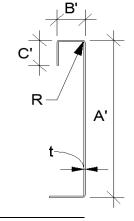
NO. OF ANCHORAGE SCREWS



3847 WABASH DRIVE MIRA LOMA, CA 91725

PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITTED TO:	CB-60		
JOB NAME:			
EQUIPMENT:	DATE:	REV:	DRAWN BY:
NOTES:	10/07/2021	7	FMM


^{---&}gt; Negative values indicate Compression load rather than Tension.

Fy = 50 ksi Fu = 65 ksi $t = 0.0566 \boxed{16 \text{ Gauge}}$ E = 29500 ksi

Calculate Section Properties of Curb

Α'=	24.000	in	a =	23.717 in = A'-(2r+t)
B'=	1.750	in	a'=	23.943 in = A'-t
C'=	0.000	in (0 if no lips)	b =	1.609 in = B'-[r+t/2+a(r+t/2
a =	0.000	(0 - no Lip; 1 w/ lip)	b'=	1.722 in = B'-(t/2+at/2)
R=	0.0849	(Inside bend radius)	c =	0.000 in = $a[C'-(r+t/2)]$
t =	0.0566	in	c'=	0.000 in = $a(C'-t/2)$
r'=	0.113	in = R+t/2	u =	$0.178 \text{ in } = \pi r/2$
x =	0.109	in (Distance between o	centroid and we	eb centerline)
lx =	91.935	in (Moment of Inertia a	about X-Axis)	
ly =	0.174	in (Moment of Inertia a	about Y-Axis)	
Δ =	1 54	in ²		

Axial Compression

rmin =

Pu =	1.231 k	(Max Axial Comp)	$\Omega c = 1.80$
$Pn/\Omega c =$	6.038 k	$P_{c} = F_{c}A \qquad If \ \lambda_{c} \le 1.5; \ F_{n} = \left(0.656\right)$	$o\lambda_c^2$ E
Fe =	8.02 ksi		
λc =	2.50	$\frac{n}{\Omega_c} = \frac{n}{\Omega_c}$ If $\lambda_c > 1.5$; $F_n = \frac{0.877}{\lambda_c^2}$	$\lambda_c = \sqrt{\frac{r_y}{F_e}} \qquad F_e = \frac{n E}{\left(\frac{kl}{r}\right)^2}$
Fn =	7.04 ksi	$\lambda_c > 1.5, \lambda_n = \lambda_c^2$	'y (/r)
Ly =	80 in	Lateral unbraced length	
$k_y L_y / r_y =$	191	(assume k=0.8)	

Compression Check = 0.K.

7.71 in 0.336 in 0.336 in

Check Web Crippling

h =	24 in	Check li	mits:	C = 4.00] (6
t =	0.0566 in	h/t =	$424.03 \le 200$	$C_R = 0.14$	(See table C3.4.1-2, fastened
N =	7.00	N/t =	123.67 ≤ 210	$C_N = 0.35$	to support, one flange, end
$\Omega_{\rm w}$ =	1.75	N/h =	$0.291667 \le 2.0$	$C_h = 0.02$	loading)
$P_n =$	1.366 k	R/t =	1.50 ≤ 9.0	/	
$P_n/\Omega_w =$	0.780 k		$P_n =$	$= Ct^2F_v\sin(90) \left(1 - C_R\right)$	$\left(\frac{R}{t}\right)\left(1+C_N\sqrt{\frac{N}{t}}\right)\left(1-C_h\sqrt{\frac{h}{t}}\right)$
Long side: $Pu_{Trans} =$	0.677 k	<u>0.K.</u>	# clips = 3	,	(t) ((t) (t) (t)
Short side: $Pu_{Long} =$	0.918 k we	b stiffener REQ'D	# clips = 2		

***h/t > 200; use web stiffeners

Check Web Stiffener 16Ga x 3/4" x 7" (C-channel)

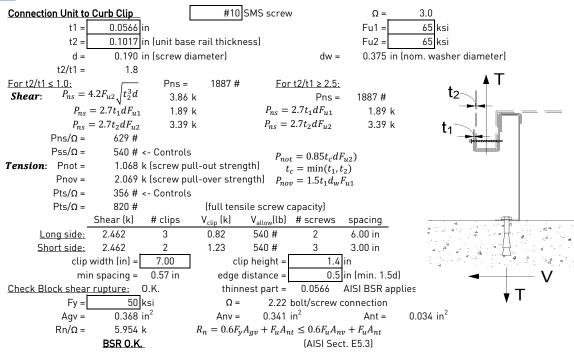
OHECK WED SUITERE			1111100)	
width of stiffener =	7.000 in		ts =	0.0566 16 Gauge
web of stiff. w =	6.717 in		Rs =	0.0849 in
***Check w/ts ≤ 1.2	28√E/Fys		Ωc =	1.70
w/ts =	118.675			
1.28√(E/Fys) =	31.091	> w/ts over limit	Use C3.7.2	
$P_n = 0.7(P_{wc} + 1$	$A_e F_y \ge P_{wc}$			
Pwc =	1.366 k	Ae =	0.380 in ²	
Pn =	14.262 k	Pn/Ω =	8.390 k	
			0.K.	

Corner Connections 1/4" φ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts

616 lbs Max(F_{pmaxASD}/4 -OR- Fh_{ASDtrans}/4 corner connections) Tcrnmax = 727 lbs (Max Ten/2 corner connections per side) Vcrnmax = 2480 lbs 1096 lbs Bolt: Tall = Vall = Threaded Insert: Tall = 2860 lbs 1714 lbs 0.2 # of Bolts required for Tension =

of Bolts Used = 1.0 USE --> 2.0 Check Combined Stress in Bolts & Inserts: 0.911 O.K. StressComb =

Check 1/8" welded connection \leftarrow C--- USE WELD $\Omega = 2.35$


of Bolts required for Shear =

Assume L/t > 25: 25*t = 1.415 in $P_n/_{\Omega} = \frac{1}{\Omega} 0.75 t L F_u \geq V_{req}$ $L_{req'd} = \frac{V_{req} \Omega}{0.75 t E_u}$

0.7

***If combined fails:

0.456 **0.K.**

WIND: 0.6D + W

Connection of Curb to Supporting Structure

SEISMIC: (0.6-0.14SDS)D + 0.7E

Roof Loading

<u>Transverse:</u>	Uplift _{MAX} =	2583 lbs	Shear _{MAX} =	1443 lbs		
Compression _{SEISMIC} =	3260 lbs =	[FpmaxASD*(Hcm+H	lcurb)+(1+0.14S _{DS})*(WGT _{uni}	_{t+curb} /2)*wcurb]/wcurb		
Tension _{SEISMIC} =	2583 lbs =	=Comp _{SEISMIC} -(0.6-0.14S _{DS})*(WGTunit+curb)				
Compression _{WIND} =	907 lbs =	[F _{h transASD} *(Hcm+Hcu	urb)+0.6*(WGT _{unit+curb} /2)*wo	curb-F _{vertASD} *wcurb/2]/wcurb		
Tension _{WIND} =	1803 lbs =	[F _{h transASD} *(Hcm+Hcu	urb)-0.6*(WGT _{unit+curb} /2)*wo	curb+F _{vertASD} *wcurb/2]/wcurb		
<u>Longitudinal:</u>	Uplift _{MAX} =	2128 lbs	Shear _{MAX} =	1443 lbs		
Compression _{SEISMIC} =			curb)+(1+0.14S _{DS})*(WGT _{uni}	_{t+curb} /2)*Lcurb]/Lcurb		
Tension _{SEISMIC} =		1 021011110	4S _{DS})*(WGTunit+curb)			
Compression _{WIND} =				urb-F _{vertASD} *Lcurb/2]/Lcurb		
Tension _{WIND} =				urb+F _{vertASD} *Lcurb/2]/Lcurb		
Wood Attachment:	1/4"φ x 3.5 <u>" :</u>		:w/ 2.25" threaded emt (SG			
	Tall _{metal} =	997 lbs	Vall _{metal} = 1097 lbs			
<u>Transverse:</u>	$Tall_{wood} =$	616 lbs	$Vall_{wood} = 400 lbs$			
# of Screws	s Req'd for Uplift =	4.19	COMBINED LOADING:	0.867 O.K.		
# of Screws	Req'd for Shear =	3.61	Screw Spacing =	13.3 in o.c.		
Total # of s	screws Required =	9				
1/4"φ x 3.5" Simpson	SDS screws @ 13.3 in	o.c. along long side of	<u>curb</u>			
Longitudinal:						
	Req'd for Uplift =	3.5	COMBINED LOADING:	0.995 O.K.		
	Req'd for Shear =	3.6	Screw Spacing =	12.4 in o.c.		
	Total # of screws Required = 7					
1/4"Φ x 3.5" Simpson Steel Deck Attachment		o.c. along short side of				
Steet Deck Attachment	.: 1/2 φ A30/1 Tall _{bolt} =	Bolts to steel angle b				
Transverse		1656 lbs	Dott			
<u>Transverse:</u>	Tall _{metal} =		metat			
	Req'd for Uplift =	1.56	COMBINED LOADING:	0.452 O.K.		
	Req'd for Shear =	0.82	Bolt Spacing =	51.4 in o.c.		
	f Bolts Required =	3				
	steel angle below deck	(@ 51.4 in o.c. along lo	ong side of curb			
Longitudinal:	5	4.00		0.707.077		
	Req'd for Uplift =	1.29	COMBINED LOADING:	0.706 O.K.		
	Req'd for Shear = f Bolts Required =	0.82	Req'd Min Spacing =	71.5 in o.c.		
			hort side of curh			
1/2" φ A307 Bolts to steel angle below deck @ 71.5 in o.c. along short side of curb						

For Concrete anchorage: SEISMIC $[0.6-0.14SDS]D + 0.7\Omega_o E$ $(\Omega_o = 2.5)$ w/ 4" embed Concrete Attachment: 3/4" ϕ Hilti Hit-HY 200 adhesive anchors 1722 lbs $Vall_{LRFD} =$ 2032 lbs $\propto = (1 + 0.2SDS)D + 2.5E = 1.87$ $Tall_{LRFD} =$ 920.9 lbs $Vall_{ASD} = Vall_{LRFD}/\alpha =$ 1086.6 lbs $Tall_{ASD} = Tall_{LRFD}/\alpha =$ (D = 0.465, E = 0.535)Uplift_{MAX} = Shear_{MAX} = 5088 lbs 3607 lbs Transverse: $= [2.5*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*(WGT_{unit+curb}/2)*wcurb]/wcurb$ Compression_{SEISMIC} = 5765 lbs Tension_{SEISMIC} = 5088 lbs =Comp_{SEISMIC}-(0.6-0.14S_{DS})*(WGTunit+curb) $Shear_{SEISMIC} =$ 3607 lbs =2.5*FpmaxASD/2 Min Bolts Req'd Uplift = 5.53 spacing = 18.15 in o.c. Tapplied = 636.0 lbs Vapplied = 450.9 lbs Min Bolts Req'd Shear = 3.32 spacing = 30.25 in o.c. $\frac{T_{applied}}{T_{allow,ASD}} + \frac{V_{apllied}}{V_{allow,ASD}}$ $\frac{V_{apllied}}{1.2} \le 1.2 = 1.11$ Try using 8 bolts COMBINED LOADING = spaced at 14.68 in o.c. Use 8 - 3/4" φ Hilti Hit-HY 200 adhesive anchors @ 14.7 in o.c. max. along long side of curb w/ 4" embed Shear_{MAX} = 3607 lbs Longitudinal: $Uplift_{MAX} =$ 3951 lbs = $[2.5*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*(WGT_{unit+curb}/2)*Lcurb]/Lcurb$ $Compression_{SEISMIC} =$ 4628 lbs 3951 lbs =Comp_{SEISMIC}-(0.6-0.14S_{DS})*(WGTunit+curb) Tension_{SEISMIC} = =2.5*FpmaxASD/2 Shear_{SEISMIC} = 3607 lbs Min Bolts Req'd Uplift = 4.29 spacing = 14.875 in o.c. Tapplied = 564.4 lbs 3.32 spacing = 19.83333 in o.c. Vapplied = 515.4 lbs Min Bolts Req'd Shear = $V_{apllied} \le 1.2$ $\frac{T_{applied}}{T_{allow,ASD}} + \frac{V_{apllied}}{V_{allow,ASD}}$ Try using bolts COMBINED LOADING = spaced at 11.92 in o.c. Use 7 - 3/4" φ Hilti Hit-HY 200 adhesive anchors @ 11.9 in o.c. max. along short side of curb w/ 4" embed

CURB DESIGN SU	MMARY:	CBWC-114				
CURB RAIL	. THICKNESS:	0.0566 in	16 Gauge			
UNIT CLIP	THICKNESS:	0.0566 in	16 Gauge			
# OF CLIPS (I	LONG SIDE) -	3 clips with	2 - #10 SMS s	crews each cl	ip	
WEE	STIFFENER:	16Ga x 3/4	' x 7" (C-chan	nel) stiffener a	at each clip	
# OF CLIPS (SI	HORT SIDE) -	2 clips with	3 - #10 SMS 9	crews each cl	ip	
WEE	STIFFENER:	16Ga x 3/4	' x 7" (C-chan	nel) stiffener a	at each clip	
CORNER CO	ONNECTION:	Use 2 - 1/4'	' φ SAE Grade	8 bolts w/ 1/	4-20-UNC T	Threaded inserts
CURB		WOOD		STE	L	CONCRETE
ANCHORAGE	1/4" φ Simp	pson SDS scr	crew w/ 2.25"		7 holts	3/4" φ thrd'd rod in Hilti HIT-HY
ANCHORAGE	threaded	l embed (SG	min=0.43)	1/2" φ A307 bolts		200 epoxy, min. 4" embed
LONG DIRECTION	9	@ 13.34 in c).C.	3 @ 51.38	3 in o.c.	8 @ 14.68 in o.c.
SHORT DIRECTION	7	@ 12.38 in c).C.	2 @ 71.5	in o.c.	7 @ 11.92 in o.c.