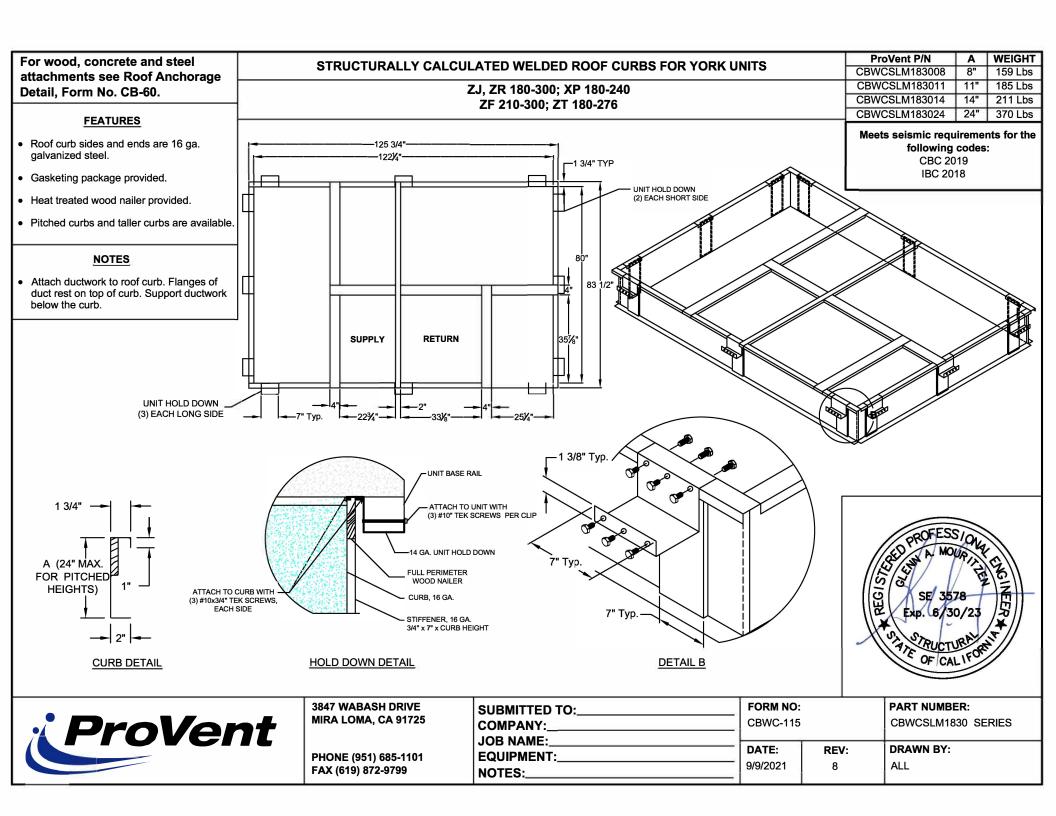
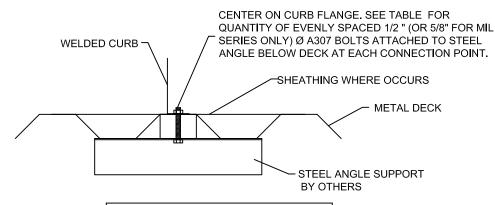


Structural Calculations for CBWC-115 Series

CBWCSLM1830


Prepared for:

PROVENT / RRS


3847 Wabash Drive Mira Loma, CA 91725

Date: October 11, 2021

Project Number: PV2101

STEEL ATTACHMENT

NO O	FANCHO	RAGE	BOLTS	REQUIRED
.40.0				I VE GOIL VED

CURB	LONG SIDE	SHORT SIDE
LXS	2 @ 34.5" O.C.	2 @ 19" O.C.
LXL	2 @ 34.5" O.C.	2 @ 29" O.C.
SUN3672	2 @ 60.5" O.C.	2 @ 39" O.C.
PRD3715	2 @ 68.88" O.C.	2 @ 39" O.C.
PRS	2 @ 58.88" O.C.	2 @ 28.69" O.C.
PRL	2 @ 72" O.C.	2 @ 41.5" O.C.
SLU180	3 @ 51.38" O.C.	2 @ 71.5" O.C.
SLM1830	3 @ 56.88" O.C	3 @ 35.75" O.C.

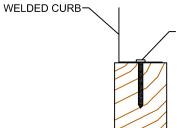
ASSUMES:

CONC SLAB fc= 4000PSI MINIMUM 6" MIN THICKNESS NORMAL WEIGHT CONCRETE OR SAND LIGHT WEIGHT

CONCRETE ATTACHMENT

WELDED CURB-

Meets seismic requirements for the following codes: CBC 2019 IBC 2018


ROOF ANCHORAGE DETAIL				
CBKD Series	CBWC Series			
LXS	LXS			
LXL	LXL			
SUN3672	SUN3672			
PRD3715	PRD3715			
PRS	PRS			
PRL	PRL			
SLU180	SLU180			
SLM1830	SLM1830			

CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 3/4" Ø THREADED ROD IN HILTI HIT-HY 200 EPOXY WITH 4" EMBED

	NO. OF ANCHORAGE BOLTS REQUIRED				
CURB	LONG SIDE	SHORT SIDE			
LXS	4 @ 11.5" O.C.	3 @ 9.5" O.C.			
LXL	4 @ 11.5" O.C.	3 @ 14.5" O.C.			
SUN3672	4 @ 20.17" O.C.	3 @ 12.38" O.C.			
PRD3715	9 @ 8.61" O.C.	7 @ 6.5" O.C.			
PRS	5 @ 14.72" O.C.	4 @ 9.56" O.C.			
PRL	6 @ 14.4" O.C.	5 @ 10.38" O.C.			
SLU180	8 @ 14.68" O.C.	7 @ 11.92" O.C.			
SLM1830	12 @ 10.34" O.C.	10 @ 7.94" O.C.			

* SIX INCHES FROM EACH CORNER EVENLY SPACED.
** CENTERED.

WOOD ATTACHMENT

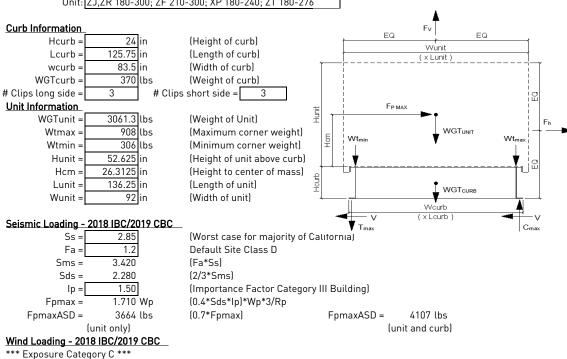
CENTER ON CURB FLANGE. SEE TABLE FOR QUANTITY OF EVENLY SPACED 1/2" Ø SIMPSON SDS OR EQUIVALENT SCREWS (3 1/2 " MIN. EMBED. INTO WOOD FRAMING)

5/8" Ø LAG SCREW W/MIN. 3.5" EMBED (SGMIN=0.43) (FOR MIL SERIES ONLY)

	REQUIRED		
CURB	LONG SIDE	SHORT SIDE	
LXS	4 @ 12.83" O.C.	3 @ 11.5" O.C.	
LXL	4 @ 12.83" O.C.	3 @ 16.5" O.C.	
SUN3672	4 @ 21.5" O.C.	3 @ 14.38" O.C.	
PRD3715	9 @ 9.11" O.C.	8 @ 6.14" O.C.	
PRS	4 @ 20.96" O.C.	3 @ 16.34" O.C.	
PRL	5 @ 19" O.C.	4 @ 15.17" O.C.	
SLU180	9 @ 13.34" O.C.	7 @ 12.58" O.C.	
SLM1830	13 @ 9.81" O.C.	12 @ 6.86" O.C.	

FOUR INCHES FROM EACH CORNER EVENLY SPACED

NO. OF ANCHORAGE SCREWS


3847 WABASH DRIVE MIRA LOMA, CA 91725

PHONE (951) 685-1101 FAX (619) 872-9799

SUBMITTED TO:	CB-60		
JOB NAME:			
EQUIPMENT:	DATE:	REV:	DRAWN BY:
NOTES:	10/07/2021	7	FMM

Client:	ProVent	PV2101	Previous: PV1806
Description:	CBWC-115		CBWCSLM1830
Unit:	ZJ,ZR 180-3	300; ZF 210-	-300; XP 180-240; ZT 180-276

** Exposure Cate	gory C ***	
Kz =	1.13	(For 60 ft roof height, Exposure C - Table 26.10-1 ACSE 7-16)
Kzt =	1.0	(No topographic effects assumed for rooftop mounted units)
Kd =	0.85	(Directionality factor Table 26.6-1 ASCE 7-16)
V =	115	(Max wind velocity, mph for Cat III & IV bldgs Exp. Cat C)
$GCr_{(horiz)} =$	1.9	(Refer Sect 29.4.1 ASCE 7-16)
$GCr_{(vert)} =$	1.5	(Refer Sect 29.4.1 ASCE 7-16)
qz	32.5 psf	= $0.00256*Kz*Kzt*Kd*V^2$ (Eq. 26.10-1 ASCE 7-16)
$F_{h ASD trans} =$	2688 lbs	= 0.6*qz*GCr*Lunit*(Hunit+Hcurb) (Eq. 29.4-2)
F _{h ASD long} =	1815 lbs	= 0.6*qz*GCr*Wunit*(Hunit+Hcurb)
F _{vert ASD} =	2548 lbs	= 0.6*qz*GCr*Lunit*Wunit (Eq. 29.4-3)

F _{vert} ASD =	2546 (05	= 0.6 q2 GC1 Lunit Wunit (Eq. 27.4-3)
Curb Loading		
<u>Transverse:</u>		
Compression _{SEISMIC} =	3550 lbs	=[FpmaxASD*Hcm+2*(1+0.14S _{DS})*Wtmax*wcurb]/wcurb
Tension _{SEISMIC} =	2691 lbs	= Comp _{SEISMIC} -(0.6-0.14S _{DS})*WGTunit
Compression _{WIND} =	663 lbs	=[F _{h transASD} *Hcm+2*0.6*Wtmax*wcurb-F _{vertASD} *wcurb/2]/wcurb
Tension _{WIND} =	1374 lbs	= Comp _{WIND} +Fvert-0.6*WGTunit
	> Negative value	s indicate Compression load rather than Tension.
Longitudinal:		
Compression _{SEISMIC} =	3162 lbs	=[FpmaxASD*Hcm+2*(1+0.14*S _{DS})*Wtmax*Lcurb]/Lcurb
Tension _{SEISMIC} =	2303 lbs	= Comp _{SEISMIC} -(0.6-0.14S _{DS})*WGTunit
Compression _{WIND} =	196 lbs	= $[F_{h transASD}*Hcm+2*0.6*Wtmax*Lcurb-F_{vertASD}*Lcurb/2]/Lcurb$
Tension _{WIND} =	906 lbs	= Comp _{WIND} +Fvert-0.6*WGTunit
	> Negative value	s indicate Compression load rather than Tension.
C	-	·

Governing Reactions:

<u>Transverse:</u>	Comp _{MAX} =	3550	lbs	> Along long edge of curb.
(on long edge)	Tens _{MAX} =	2691	lbs	> Along long edge of curb.
Longitudinal:	Comp _{MAX} =	3162	lbs	> Along short edge of curb.
(on short edge)	Tens _{MAX} =	2303	lbs	> Along short edge of curb.

^{---&}gt; Negative values indicate Compression load rather than Tension.

0.0566 16 Gauge 50 ksi Fu = 65 ksi E = 29500 ksi

Calculate Section Properties of Curb

Α'=	24.000	in	a =	23.717 in = A'-(2r+t)
B'=	1.750	in	a'=	23.943 in = A'-t
C'=	0.000	in (0 if no lips)	b =	1.609 in = B'-[r+t/2+a(r+t/2
a =	0.000	(0 - no Lip; 1 w/ lip)	b'=	1.722 in = B'-(t/2+at/2)
R=	0.0849	(Inside bend radius)	c =	0.000 in = $a[C'-(r+t/2)]$
t =	0.0566	in	c'=	0.000 in = $a(C'-t/2)$
r'=	0.113	in = R+t/2	u =	$0.178 \text{ in } = \pi r/2$
x =	0.109	in (Distance between o	entroid and we	eb centerline)
lx =	91.935	in (Moment of Inertia a	about X-Axis)	
ly =	0.174	in (Moment of Inertia a	about Y-Axis)	
Δ =	1 5/	in^2		

rmin = 0.336 in

Axial	Comp	oressi	on
-------	------	--------	----

$$Pu = 1.832 k$$

$$Pn/Ωc = 6.038 k$$

$$Fe = 8.02 ksi$$

$$λc = 2.50$$

$$Fn = 7.04 ksi$$

$$Ly = 80 in$$

(Max Axial Comp)

$$\frac{P_n}{\Omega_c} = \frac{F_n A}{\Omega_c} \qquad If \ \lambda_c \le 1.5; \ F_n = \left(0.658^{\lambda_c^2}\right) F_y \\ If \ \lambda_c > 1.5; \ F_n = \frac{0.877}{\lambda_c^2} F_y \qquad \lambda_c = \sqrt{\frac{F_y}{F_e}}$$

$$\lambda_c = \sqrt{\frac{F_y}{F_e}}$$
 $F_e = \frac{\pi^2 E}{\left(kl/r\right)^2}$

Lateral unbraced length (assume k=0.8)

Compression Check = 0.K.

191

Check Web Crippling

 $k_v L_v / r_v =$

***h/t > 200; use web stiffeners

Check Web Stiffener

16Ga x 3/4" x 7" (C-channel)

width of stiffener =
$$7.000$$
 in
web of stiff. w = 6.717 in
***Check w/ts ≤ 1.28 VE/Fys

0.0566 16 Gauge ts = 0.0849 in Rs= Ωc = 1.70

w/ts =118.675 1.28v(E/Fys) =

31.091 --> w/ts over limit Use C3.7.2

 $P_n = 0.7(P_{wc} + A_e F_y) \ge P_{wc}$

1.366 k Pwc = 14.262 k Pn =

 0.380 in^2 Ae = 8.390 k $Pn/\Omega =$

0.K.

Corner Connections 1/4" ϕ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts

916 lbs Max(F_{pmaxASD}/4 -OR- Fh_{ASDtrans}/4 corner connections) Tcrnmax = (Max Ten/2 corner connections per side) Vcrnmax = 1345 lbs 2480 lbs 1096 lbs Bolt: Tall = Vall = Threaded Insert:

Tall = 2860 lbs # of Bolts required for Tension = 0.4

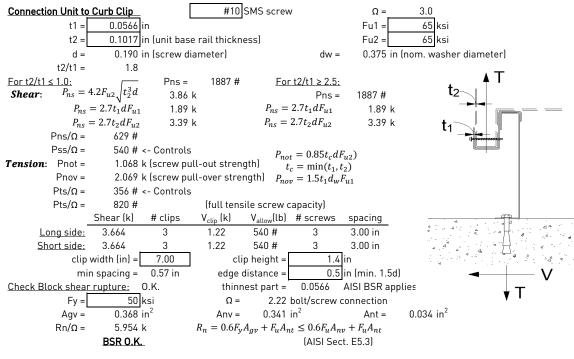
of Bolts required for Shear = 1.2 # of Bolts Used = 2.0 1714 lbs

***If combined fails: USE --> 3.0

0.798 <u>O.K.</u> Check Combined Stress in Bolts & Inserts:

StressComb =

<--- USE WELD


 $P_n/\Omega = \frac{1}{\Omega} 0.75tLF_u \ge V_{req}$ $L_{req'd} = \frac{V_{req}\Omega}{0.75tF_u}$

0.532 **0.K.**

Check 1/8" welded connection

Assume L/t > 25: 25*t = 1.415 in Lreq'd =

1.146 in

Connection of Curb to Supporting Structure

Connection of Curr	to Supporting Structu								
Roof Loading	SEISMIC: (0.6-0.14SI	DS)D + 0.7E	WIND: 0.6D + W						
<u>Transverse:</u>	Uplift _{MAX} =		Shear _{MAX} =	2054 lbs					
Compression _{SEISMIC} =	4738 lbs	=[FpmaxASD*(Hcm+Hcurb)+(1+0.14S _{DS})*(WGT _{unit+curb} /2)*wcurb]/wcurb							
$Tension_{SEISMIC} =$	3775 lbs	=Comp _{SEISMIC} -(0.6-0.7	14S _{DS})*(WGTunit+curb)						
Compression _{WIND} =	1375 lbs	=[F _{h transASD} *(Hcm+Hc	curb)+0.6*(WGT _{unit+curb} /2)*w	curb-F _{vertASD} *wcurb/2]/wcurb					
Tension _{WIND} =	1864 lbs	=[F _{h transASD} *(Hcm+Hc	curb)-0.6*(WGT _{unit+curb} /2)*w	curb+F _{vertASD} *wcurb/2]/wcurb					
<u>Longitudinal:</u>	Uplift _{MAX} =	2943 lbs	Shear _{MAX} =	2054 lbs					
Compression _{SEISMIC} =	3907 lbs	=[FpmaxASD*(Hcm+	Hcurb)+(1+0.14S _{DS})*(WGT _{ui}	_{nit+curb} /2)*Lcurb]/Lcurb					
$Tension_{SEISMIC} =$	2943 lbs	1 021011110	14S _{DS})*(WGTunit+curb)						
Compression _{WIND} =	482 lbs	=[F _{h transASD} *(Hcm+Hc	curb)+0.6*(WGT _{unit+curb} /2)*L	curb-F _{vertASD} *Lcurb/2]/Lcurb					
Tension _{WIND} =	971 lbs			curb+F _{vertASD} *Lcurb/2]/Lcurb					
Wood Attachment: 1/4"φ x 3.5" Simpson SDS screws w/ 2.25" threaded emt (SGmin = 0.43)									
	Tall _{metal} =		$Vall_{metal} = 1097$ lb:						
<u>Transverse:</u>	$Tall_{wood} =$	616 lbs	$Vall_{wood} = 400 lb$	S					
# of Sci	rews Req'd for Uplift =	6.13	COMBINED LOADING:	0.866 O.K.					
# of Scr	ews Req'd for Shear =	5.13	Screw Spacing =	9.8 in o.c.					
Total # of screws Required = 13									
1/4"φ x 3.5" Simpson SDS screws @ 9.8 in o.c. along long side of curb									
<u>Longitudinal:</u>									
	rews Req'd for Uplift =		COMBINED LOADING:	0.826 O.K.					
	ews Req'd for Shear =		Screw Spacing =	6.9 in o.c.					
Total # of screws Required = 12									
	oson SDS screws @ 6.9 ir								
Steel Deck Attachn		7 Bolts to steel angle		_					
T	Tall _{bolt} =		Vall _{bolt} = 2209 lb						
<u>Transverse:</u>	Tall _{metal} =	<u> </u>	Vall _{metal} = 1756 lb						
	Bolts Req'd for Uplift =		COMBINED LOADING:	0.841 O.K.					
	Bolts Req'd for Shear =		Bolt Spacing =	56.9 in o.c.					
Total	l # of Bolts Required =	3							
1/2" φ A307 Bolt	s to steel angle below de	eck @ 56.9 in o.c. along	long side of curb						
<u>Longitudinal:</u>									
	Bolts Req'd for Uplift =		COMBINED LOADING:	0.626 O.K.					
	Bolts Req'd for Shear =		Req'd Min Spacing =	35.8 in o.c.					
Total	l # of Bolts Required =	3							

1/2" φ A307 Bolts to steel angle below deck @ 35.8 in o.c. along short side of curb

For Concrete anchorage: SEISMIC $[0.6-0.14SDS]D + 0.7\Omega_o E$ $(\Omega_o = 2.5)$ w/ 4" embed Concrete Attachment: 3/4" ϕ Hilti Hit-HY 200 adhesive anchors 1722 lbs $Vall_{LRFD} =$ 2032 lbs $\propto = (1 + 0.2SDS)D + 2.5E = 1.87$ $Tall_{LRFD} =$ 920.9 lbs $Vall_{ASD} = Vall_{LRFD}/\alpha =$ 1086.6 lbs $Tall_{ASD} = Tall_{LRFD}/\alpha =$ (D = 0.465, E = 0.535)Uplift_{MAX} = 7487 lbs Shear_{MAX} = 5134 lbs Transverse: $= [2.5*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*(WGT_{unit+curb}/2)*wcurb]/wcurb$ Compression_{SEISMIC} = 8450 lbs Tension_{SEISMIC} = 7487 lbs =Comp_{SEISMIC}-(0.6-0.14S_{DS})*(WGTunit+curb) $Shear_{SEISMIC} =$ 5134 lbs =2.5*FpmaxASD/2 Min Bolts Req'd Uplift = 8.13 spacing = 12.72 in o.c. Tapplied = 623.9 lbs Vapplied = 427.8 lbs Min Bolts Req'd Shear = 4.72 spacing = 25.4375 in o.c. $\frac{T_{applied}}{T_{allow,ASD}} + \frac{V_{apllied}}{V_{allow,ASD}}$ $\frac{V_{apllied}}{2} \le 1.2 = 1.07$ Try using 12 bolts COMBINED LOADING = spaced at 10.34 in o.c. Use 12 - 3/4" φ Hilti Hit-HY 200 adhesive anchors @ 10.3 in o.c. max. along long side of curb w/ 4" embed Shear_{MAX} = 5134 lbs Longitudinal: Uplift_{MAX} = 5408 lbs $= [2.5*FpmaxASD*(Hcm+Hcurb)+(1+0.14S_{DS})*(WGT_{unit+curb}/2)*Lcurb]/Lcurb$ $Compression_{SEISMIC} =$ 6372 lbs = $Comp_{SEISMIC}$ - $(0.6-0.14S_{DS})*(WGTunit+curb)$ 5408 lbs Tension_{SEISMIC} = Shear_{SEISMIC} = 5134 lbs =2.5*FpmaxASD/2 Min Bolts Reg'd Uplift = 5.87 spacing = 11.9 in o.c. Tapplied = 540.8 lbs 4.72 spacing = 14.875 in o.c. Vapplied = 513.4 lbs Min Bolts Req'd Shear = $V_{apllied} \le 1.2$ $\frac{T_{applied}}{T_{allow,ASD}} + \frac{V_{apllied}}{V_{allow,ASD}}$ 10 Try using bolts COMBINED LOADING = spaced at 7.94 in o.c. Use 10 - 3/4" \$\phi\$ Hilti Hit-HY 200 adhesive anchors @ 7.9 in o.c. max. along short side of curb w/ 4" embed

CURB DESIGN SU	MMARY:	CBWC-115					
CURB RAIL	THICKNESS:	0.0566 in	16 Gauge				
UNIT CLIP	THICKNESS:	0.0566 in	16 Gauge				
# OF CLIPS (LONG SIDE) - 3 clips with 3 - #10 SMS screws each clip							
WEB STIFFENER: 16Ga x 3/4" x 7" (C-channel) stiffener at each clip							
# OF CLIPS (SHORT SIDE) - 3 clips with 3 - #10 SMS screws each clip							
WEB STIFFENER: 16Ga x 3/4" x 7" (C-channel) stiffener at each clip							
CORNER CONNECTION: Use 3 - 1/4" ϕ SAE Grade 8 bolts w/ 1/4-20-UNC Threaded inserts							
CURB ANCHORAGE		WOOD		STEEL		CONCRETE	
	1/4" φ Simp	oson SDS scr	ew w/ 2.25"	1/2" φ A307 bolts	3/4	l" φ thrd'd rod in Hilti HIT-HY	
	threaded	embed (SG	min=0.43)	1/2 \$\psi A307 boils		200 epoxy, min. 4" embed	
LONG DIRECTION	13	3 @ 9.81 in c).C.	3 @ 56.88 in o.c.		12 @ 10.34 in o.c.	
SHORT DIRECTION	12	2 @ 6.86 in c).C.	3 @ 35.75 in o.c.		10 @ 7.94 in o.c.	